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Exactly solvable model of two 
interacting Rydberg-dressed atoms 
confined in a two-dimensional 
harmonic trap
Przemysław Kościk1 & Tomasz Sowiński   2

Exactly solvable model of two Rydberg-dressed atoms moving in a quasi-two-dimensional harmonic 
trap is introduced and its properties are investigated. Depending on the strength of inter-particle 
interactions and the critical range of the potential, the two-particle eigenstates are classified with 
respect to the excitations of the center-of-mass motion, relative angular momentum, and relative 
distance variable. Having these solutions in hand, we discuss inter-particle correlations as functions of 
interaction parameters. We also present a straightforward prescription of how to generalize obtained 
solutions to higher dimensions.

Few-body systems of ultra-cold atoms provide a very comprehensive toolbox for exploring fundamental proper-
ties of quantum systems containing a mesoscopic number of particles1–3. Due to accessible tunability of their dif-
ferent parameters they can serve as quantum simulators of strongly correlated quantum systems of a few particles 
described by models being far beyond computational facilities of computers nowadays4. Typically, in the context 
of ultra-cold physics one assumes that mutual interactions between atoms are dominated by short-range forces 
and may be represented by simple s-wave (for bosons) or p-wave (for fermions) scattering processes. However, 
mainly due to the experimental progress with polar atoms and molecules, also dipolar long-range and anisotropic 
interactions are widely considered and they were found to have very interesting consequences for the system’s 
properties5–7. Alternatively, long-range interactions between ultra-cold atoms can be achieved when their excita-
tions to the Rydberg states are considered, i.e., when atoms become excited to large principal numbers8. In such 
a case, mutual interactions are not only long-range and strong but also have multipolar properties. In fact, the 
resulting interaction potential can be viewed as a combination of the standard long-range van der Waals inter-
action acting over large distances (measured recently with a very sensitive experimental scheme9) and soft-core, 
almost constant, potential when atoms are close enough10–14. Since coherent excitations to Rydberg states on 
demand were recently announced by many experimental groups (for review see15) Rydberg atoms become one 
of the candidates for fundamental blocks of future quantum simulations. In such cases, a deep understanding of 
their spatial correlations may be fundamentally important.

Inspired with the above experimental motivations, in this work we study the problem of two interacting 
Rydberg atoms confined in a two-dimensional isotropic parabolic trap. The discussion is carried out in the frame-
work of the simplified but exactly solvable model. The simplification is based on the assumption that the main 
contributions to the spatial properties of the system come from the soft-core part of interactions. This part we 
model simply by a flat potential of a finite range and strength. At the same time, we assume that the long-range 
part of the interactions is adequately less important and can be safely omitted. In this way, we end up with the 
interaction potential modeled by a step function in the relative distance between particles. It turns out that 
assuming this simplified shape of inter-particle interactions one can fully solve the corresponding two-particle 
Schrödinger equation in terms of special functions. Along with the discussion, we argue that the simplified 
approach is justified provided that the critical radius is not very large when compared to the natural length of the 
trapping potential.

Our work is organized as follows. In Sec. 2 we introduce the simplified model of interacting Rydberg-dressed 
atoms confined in a two-dimensional parabolic trap and we explain its origin. In Sec. 3 we present a full solution 
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of the corresponding two-particle eigenproblem in terms of the hypergeometric confluent functions. Then in Sec. 
4 we perform classification and discussion of the spectrum of the system and its lowest eigenstates. At this point, 
we also validate our simplified model by comparing its predictions with numerical results obtained for the same 
system but with interactions modeled by the realistic potential. In Sec. 5 we focus on inter-particle correlations 
for different parameters of interactions, while in Sec. 6 we shortly explain how one can generalize our analytical 
solutions to the case of two Rydberg-dressed atoms in a three-dimensional harmonic trap. Finally, we conclude 
in Sec. 7.

The Model
In this work we consider the system of two interacting quantum particles of mass m confined in an external 
quasi-two-dimensional harmonic isotropic trap of frequency Ω. The Hamiltonian of the system reads
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where ri = (xi, yi) are positions of particles. We assume that the dimensional reduction of the problem to two 
spatial dimensions is granted by very deep confinement in the remaining third spatial dimension. In such a case 
any spatial excitations in this direction are strongly suppressed. Consequently, one can safely assume that the 
dynamics is frozen and particles occupy only the lowest single-particle orbital.

It is well-known that in the case of highly-excited ultra-cold off-resonantly dressed Rydberg atoms the effec-
tive interaction potential have a very characteristic form10–14,16. It can be viewed as the natural van der Waals 
interaction acting on large distances (~1/r6) with significant modification when the inter-particle distance is 
comparable with so-called critical Rydberg radius Rc. It is argued that the potential can be written as:
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Here, the two independent parameters g and Rc describe characteristic scales of the potential and they are related 
to the interaction strength and aforementioned critical distance at which interactions change their character. 
Since these parameters directly depend on experimentally accessible quantities, namely the effective Rabi fre-
quency ωR and the detuning Δ, as ω= Δg 2 /R

4 3 and Rc = (C6/2Δ)(1/6)(C6 is the dispersion coefficient being con-
stant for chosen atom), they can be treated as parameters which can be tuned on demand (for details see for 
example14).

In fact, the potential (2) belongs to the large class of potentials of the form = +α α −V g r R[1 ( / ) ]R c
( ) 1 having an 

almost flat soft-core in the center ( ⪅r Rc) and a long-range tail decaying algebraically as ~r−α. In the limit of very 
large powers α this class of potentials is exactly equivalent to the simplified potential of the form

{V r V r a
r a
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≥

provided that V = g and a = πRc/[α sin (π/α)]. It means that in the case studied (α = 6) the potential (2) can be 
modeled by approximate potential (3) by fixing a = πRc/3 (see Fig. 1). Since the power α is quite large the approx-
imation can be treated as reasonable.

Having this argumentation in mind, in our work we model mutual interactions between particles with the 
finite-range soft-core potential (3). In this approximation, the interaction energy vanishes whenever the distance 
between particles is larger than the potential range a and it has non-vanishing constant value g at short distances. 
In the following, we show how to find all eigenstates of the Hamiltonian (1) with corresponding eigenenergies. 
In this way, we generalize recent results obtained for infinite interaction strength (V → ∞)17, as well as for the 
corresponding one-dimensional problem18,19, and we extend the list of exactly (or almost exactly) solvable models 

Figure 1.  Schematic comparison of the realistic shape of interaction potential VR(r) between Rydberg-dressed 
atoms (2) and the simplified rectangular box potential V(r) given by (3). In the latter case, the long-range part 
is completely neglected while the short-range part is replaced by a constant energy shift. Substantial differences 
between the two models are visible only in the vicinity of the critical radius Rc.
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of two interacting particles20–30. We also perform a comprehensive comparison of the results obtained with the 
two potential shapes (2) and (3).

Eigenproblem
The first step towards diagonalization of the Hamiltonian (1) is to separate the center-of-mass motion. Since 
particles are confined in a harmonic trap the separation is done by performing the following transformation of 
coordinates to the center-of-mass and relative motion positions

=
+R r r
2

, (4a)
1 2

r r (4b)1 2ξ = − .

Indeed, in this coordinates the Hamiltonian separates into two independent parts R  = + ξ
ˆ ˆ ˆ  of the form:
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where M = 2m and μ = m/2. Consequently, every eigenstate of (1) can be written as Υ(r1, r2) = Φ(R)Ψ(ξ). The 
center-of-mass Hamiltonian (5a) describes the single particle of mass M confined in a two-dimensional harmonic 
trap and its eigenfunctions ΦNL(R) with corresponding eigenenergies can be found straightforwardly. They are 
enumerated with two quantum numbers (N, L) related to excitations in the radial direction and the angular 
momentum of the center of mass, respectively. The relative motion Hamiltonian (5b) is equivalent to the 
Hamiltonian of a single particle of mass μ confined in a two-dimensional harmonic trap imposed in the center by 
the additional rectangular potential V( )|ξ| . Our aim is to analyze all the properties of the Hamiltonian ξ̂ . For 
convenience we express all quantities in the natural units of the harmonic oscillator, i.e., energies, positions, and 
momenta are measured in Ω , m/ Ω , and m Ω , respectively.

Note that the Hamiltonian ˆ
ξ  commutes with the relative angular momentum operator L̂ i /= − ξ × ∂ ∂ξ. 

Therefore, to reduce complexity of the problem we rewrite it to the polar coordinates ξ = (ρ, φ) and we represent 
all its eigen wave functions Ψ(ξ) in the standard angular momentum representation

ρ φ
ρ

ρΨ ξ = Ψ = .φ±f( ) ( , ) 1 ( )e
(6)
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The wave function Ψ(ρ, φ) obeys the Schrödinger equation H Eˆ − Ψ ξ =ξ( ) ( ) 0 iff  = …0, 1, 2,  and the 
radial part f(ρ) fulfills the one-dimensional radial Schrödinger equation of the form
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Due to the specific form of the interaction (3), the eigenequation (7) has simplified form in the two disjoint 
regions ρ < a and ρ > a:
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with =E  and E V= − , respectively. It is a matter of fact that for any E the Equation (8) has two independ-
ent solutions (for V ≠ 0) which can be expressed in terms of confluent hypergeometric functions U and 1F1 as 
follows:
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Since the function f1(ρ) is divergent in the limit ρ → ∞, any physically acceptable solution of (8) can be con-
structed only as the composition
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with appropriately chosen energy   and coefficient A to match both parts at ρ = a and to assure that the wave 
function f(ρ) is continuous and differentiable in a whole space

ρ
ρ ρ− = = − .

ρ=

Af a f a Af f( ) ( ) 0 d
d

[ ( ) ( )]
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These conditions can be fulfilled only for appropriately chosen (quantized) energies 
n . After simple algebra 

one finds that the eigenenergies 
n  must be solutions of the following transcendental equation
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where the quantum number n = 0, 1, … enumerates successive roots of the Equation (12). Finally, the eigenstates 
of the relative motion Hamiltonian ̂ξ are determined by two quantum numbers n( , )  and the angular momen-
tum orientation and they have the form

ρ
ρΨ ξ ∝ φ± ±f( ) 1 ( )e ,

(13)
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where f ( )n ρ  is given by (10) provided that the eigenenergy 


n  is the n-th root of the transcendental Equation (12).
At this point, it is interesting to point out that for some particular potential parameters V and a the exact solu-

tions may be significantly simplified. It may happen when the first arguments of the confluent hypergeometric 
functions U and 1F1 are integers and the functions are expressed in terms of simple algebraic expressions31. For 
example, when V = 4 and a = 2 one finds the ground-state energy  = 300  and consequently ρ ρ= ρf e( )1

1/2 /42
, 

ρ ρ ρ= − ρ−f ( ) ( /2 1)e2
2 /42

, and A = e−2. We present some other examples in Table 1. Such simple algebraic 
solutions play a very important role, since they may serve as benchmarks for the accuracy of different numerical 
techniques.

Finally, we want to emphasize that up to now the solutions are in fact obtained for distinguishable particles 
described by the Hamiltonian (1). In the case of indistinguishable atoms (fermions or bosons), one should impose 
additional requirements to the wave functions of the relative motion under exchange of particles’ positions, 
ξ → −ξ. In consequence, the bosonic (fermionic) states have even (odd) angular momentum quantum numbers 
. It means that the radial distribution of fermionic relative motion must necessarily vanish at ρ = 0. This fact can 

• V = 4, a = 2
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• V = 8, a = 2
=n( , ) (1, 1) and E11 = 6,
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3/2 2/4ρ ρ= ρ ,

ρ ρ ρ ρ= − + ρ−( )f ( ) 3 6 e2
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4 2 2/4,

A = −2e−2.

Table 1.  Several examples of potential parameters V and a for which the solutions of the eigenproblem (7) 
have simplified algebraic form. These particular solutions may serve as benchmarks for different numerical 
approaches.
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be viewed as a direct manifestation of the Pauli exclusion principle forbidding any two identical fermions to 
occupy the same position.

Eigenstates Classification
It is very instructive to start the analysis of the system’s properties focusing on the ground-state energy of the rela-
tive motion Hamiltonian (5b) in individual subspaces of given relative angular momentum, i.e., states with 
n( , ) (0, )=  . In Fig. 2 we present resulting spectra for several potential ranges a ∈ {0.5, 0.75, 1.0, 1.25}. For com-

pleteness, we compare eigenenergies obtained in our model of interaction potential V  (solid black lines) with those 
obtained numerically when the realistic model of mutual interactions VR is considered (red dots). It is clear that for 
not too large ranges of the potential, predictions of both approaches agree in a wide range of interaction strengths. 
Deviations are clearly visible for large potential ranges a 1⪆  and/or adequately strong interactions ⪆V 7.

Note, that even for quite large potential range, a = 0.5, and quite large strengths V, only the s-state with  0=  
is influenced by interactions. It is clear that states which are the most sensitive to interactions are characterized by 
the smallest relative angular momentum quantum numbers . Along with increasing , radial distributions of 
relative motion are pushed out from the center due to the additional centrifugal term in the Hamiltonian. In 
consequence, they are less sensitive to the interaction core. This effect is clearly seen when the radial density dis-
tribution of the relative motion is considered, F(ρ) = f2(ρ)/ρ. In Fig. 3 we plot this distribution for the bosonic 
 =n( , ) (0, 0) and the fermionic n( , ) (0, 1)=  ground states of the relative Hamiltonian (5b) and different 

potential strengths V (here we set a = 1). For increasing repulsions the density probability is suppressed in the 

Figure 2.  The ground-state energy of the relative motion Hamiltonian (5b) in the subspaces of given relative 
angular momentum 0, , 4= …  (labels on solid lines) for different values of the potential range a. Solid lines 
are obtained for simplified potential V while red dots for realistic interaction potential V  with Rc = 3a/π. It is 
clearly seen that for ranges smaller than the natural length of the harmonic oscillator (a 1⪅ ) both approaches 
give very similar results in a wide range of interaction strengths.
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center, while for attractions it is enhanced. In fact, this effect almost does not depend on long-range tails of the 
potential and it is an exclusive consequence of the potential core. It is clear when we compare the distributions 
obtained in the simplified model of interaction V  (solid lines) with predictions of the realistic model VR (dotted 
lines). In both cases, the resulting distributions are almost identical (see Fig. 3). In the limiting case, a → 0, only 
the s-states ( 0= ) are affected by interactions since only these states have non-vanishing distributions at ρ = 0.

The situation becomes even more interesting when excitations of the relative motion are considered. In Fig. 4 
we present the energy spectrum of the relative motion Hamiltonian (5b) for two different potential ranges classi-
fied accordingly with their quantum numbers n( , ). As it is seen, for interactions having larger potential ranges, 
an energetic order of eigenstates can be changed. Moreover, almost perfect degeneracies between different states 
visible for smaller ranges are lifted (compare behavior of states {(0, 4), (1, 2)} or {(1, 1), (0, 3)} for a = 0.5 and 
a = 1.0). Finally, let us draw some attention to the effect of decreasing splitting between the two lowest eigenstates 

Figure 3.  Radial density distribution F(ρ) of the relative motion in bosonic n( , ) (0, 0)=  and fermionic 
n( , ) (0, 1) =  ground states for a = 1 and different strengths of interaction V. Thick solid lines represent 

distributions obtained in the simplified model of interactions (3) while thin dotted lines represent results in the 
realistic model (2). Note that in the case of fermionic particles, due to the Pauli exclusion principle, the radial 
density distribution F(ρ) must necessarily vanish at ρ = 0.

Figure 4.  Spectrum of the relative motion Hamiltonian (5b) as a function of the interaction strength V 
presented for two representative values of the potential range a = 0.5 and a = 1.0. Different colors correspond to 
states with different relative angular momentum . For clarity all lines are labeled with their quantum numbers 
n( , ) .
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(0, 0) and (0, 1) (the latter is in fact doubly degenerated due to the orientation of the angular momentum) when 
larger ranges are considered. Vanishing of this particular gap may have crucial experimental consequences for 
distinguishable particles since then even very small but a finite temperature of the system may lead to the statisti-
cal mixing of these states and significantly change measurable properties of the system. On the other hand, in the 
situation of a small gap the states can be easily coupled by some additional well-controlled but non-conserving 
angular momentum interactions (for example spin-orbit coupling).

Inter-particle Correlations
Having analytical expressions for two-particle eigenstates of the interacting system 

 

ϒ ξ = Φ Ψ ξ(R, ) (R) ( )NL n NL n;  
it is very easy to perform the inverse transformation and obtain two-particle wave functions ( , ; , )NL n; 1 1 2 2

ρ ϕ ρ ϕϒ  
expressed by particles’ real-space positions r1 = (ρ1, φ1) and r2 = (ρ2, φ2). Then, one can straightforwardly analyze 
different interesting features of inter-particle correlations. Here we focus on the two simplest quantities which 
directly encode information about relative spatial correlations between particles. The first is the two-particle radial 
distribution n(ρ1, ρ2) defined as

∫ρ ρ ϕ ϕ ρ ϕ ρ ϕ= ϒn d( , ) d ( , ; , ) , (14)1 2 1 2 1 1 2 2
2

which can be directly interpreted as the probability density that simultaneously observed particles are at distances 
ρ1 and ρ2 from the center of the trap (see Fig. 5a). It is evident that along with increasing interaction strength V 
particles are pushed out from the center of the trap and their radial distances become correlated, i.e., the proba-
bility of finding particles at the same distance from the center increases. The second quantity is the two-particle 
azimuthal distribution Γ(φ1, φ2) defined as

( , ) d d ( , ; , ) (15)1 2 1 2 1 2 1 1 2 2
2∫ϕ ϕ ρ ρ ρ ρ ρ ϕ ρ ϕΓ = ϒ .

Figure 5.  Inter-particle correlations in the bosonic ground-state N L n( , , , ) (0, 0, 0, 0) =  of interacting 
Rydberg-dressed atoms. (a) The two-particle radial distribution n(ρ1, ρ2) for four representative sets of 
parameters characterizing the interaction potential. (b) The two-particle azimuthal distribution Γ(γ) for a = 1 
and different values of interaction strength V. (c) The standard deviation σΓ(V) of the distribution Γ(γ) as a 
function of potential strength V for two different values of potential range a. Maximal value of the standard 
deviation reached at V = 0 is equal to π/ 3  and corresponds to the flat distribution Γ(γ) = (2π)−1 [horizontal 
line in plot (b)]. The inset displays values of the standard deviation σΓ reached for an infinite potential strength 
(V → ∞) as a function of the potential range a.
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It is related to the probability that in a simultaneous measurement of particles’ positions the position vectors 
will be oriented at angles φ1 and φ2, respectively. If the two-particle quantum state is rotationally invariant (for 
example the two-boson ground-state of the system has this property) then the distribution (15) depends only on 
a difference γ = φ1 − φ2 and then one can consider the simplified distribution Γ(γ) = 2πΓ(γ + φ0, φ0) (with arbi-
trary chosen φ0) encoding probability density for the relative angle between position vectors.

We plot the distribution Γ(γ) for different interaction strengths V and a = 1 in Fig. 5b. Obviously, for V = 0 the 
distribution is flat and equal to (2π)−1. When repulsive interactions are switched on, the probability that particles 
occupy opposed sides of the trap (γ = ±π) is strongly enhanced. Contrary, for attractive interactions (V < 0), 
particles are more likely to be located on the same side of the trap (γ = 0). One can quantify an uncertainty that 
particles are exactly on the opposite (same) side by calculating the standard deviation defined as

∫σ γ γ γ γ= − Γ
π

Γ 2 d ( ) ( ) (16)
2

0

2

with γ π=  and 0γ =  for repulsive and attractive interactions, respectively. We display this quantity in Fig. 5c. It 
is clear that along with increasing interactions uncertainty decreases. Surprisingly, it decreases also when the 
range of the potential a increases. It means that larger ranges try to force particles to form a line with the center of 
the trap. This observation is also supported by results obtained for infinite potential strength V → ∞ (inset in 
Fig. 5c). As it is seen, in this limit the standard deviation σΓ(∞) decreases with the potential range a. Interestingly, 
the effect of the potential range is not so obvious for attractive interactions. In this case, the behavior of the system 
strongly depends on potential strength. All these three quantities together [n(ρ1, ρ2), Γ(φ1, φ2), and σΓ(V)] give a 
quite nice view on the spatial correlations induced by interactions build in the system. It can be summarized as 
follows. When repulsions are increased, positions of particles are forced to arrange exactly on opposite sides of the 
trap in a quite well-established distance from the center which is determined by the potential range. The effect is 
stronger for larger a. Contrary, when interactions are attractive, the most probable situation is that particles are 
found on the same side of the trap.

Generalization to three Dimensions
Finally, let us also mention that the presented solutions may be easily generalized to the problem of two-particles 
confined in the isotropic three-dimensional harmonic trap. In this case, all eigenfunctions of corresponding 
three-dimensional relative motion Hamiltonian are classified by three quantum numbers n m( , , )  and have a 
form

f( ) ( , , ) 1 ( )Y ( , ),
(17)n m n m





ρ θ φ
ρ

ρ θ φΨ ξ = Ψ =

where 


θ φY ( , )m  are three-dimensional spherical harmonic functions. The radial part of the eigenfunction ρf ( )n  
fulfills the following single-particle Schrödinger equation

V fd
d

( 1)
4

( ) ( ) 0
(18)

n n

2

2 2

2

ρ ρ
ρ ρ ρ





− +

+
+ + −





 = .

 







This eigenproblem is exactly equivalent to the previous two-dimensional problem (7) provided that one per-
form appropriate substitution 1/2� � � +  in (7). Consequently, by applying this substitution in (10) and (12), 
one obtains three-dimensional eigenstates and transcendental equation for eigenenergies, respectively.

Summary
To conclude, in our work we introduced a simplified model of two interacting Rydberg-dressed atoms confined 
in a harmonic trap. The model is a consequence of replacing the realistic shape of interaction potential by the 
soft-core finite-range forces modeled by a step function. The main advantage of the model proposed is its exact 
solvability in terms of special functions. This gives a route for analytical analysis of different properties of the 
system which are crucially important when inter-particle correlation are considered. By performing detailed 
numerical analysis, we show that the eigenstates obtained in the simplified model are very close to those obtained 
in a realistic model in a wide range of interaction parameters. Although our work is devoted only to two interact-
ing atoms, the solutions presented can be used as building-blocks for approximate methods dedicated to a larger 
number of particles. For example, similarly as it was done in different one-32–34, two-35,36, or three-dimensional37, 
one of the possible extensions is to use these two-particle solutions when variational ansatz of pair-correlated 
Jastrow wave functions are constructed38. Typically for this construction of the variational family, the correspond-
ing two-body exact solution may serve as a prescription for trial wave functions.

Finally, we want to point out that in cases of more than two interacting Rydberg atoms, the simplified model 
of interactions should be used carefully since neglecting the long-range part of interactions may lead to false 
conclusions. For sure, the simplified soft-core finite-range potential captures the most important part of realistic 
interactions between Rydberg atoms. As long as long-range tails do not affect (or affect much weaker) a third 
particle being far from considered pair, the simplified model should appropriately describe properties of the 
many-body system. It means that the simplified model of interactions gives an appropriate description only when 
two-body interactions are not substantially affected by long-range interactions with other particles. In other cases, 
the long-range tails may substantially change properties of the system and introduce additional correlations.

https://doi.org/10.1038/s41598-019-48442-4
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