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Transgenic mice, which express active Fyn tyrosine kinase under
the control of a glial fibrillary acidic protein promoter, have been
produced. This promoter induces protein expression in the initia-
tion stage of myelination in the peripheral nervous system (PNS)
“Phosphorylation of cytohesin-1 by Fyn is required for initiation of
myelination and the extent of myelination during development
(Yamauchi et al., 2015 [1])”. Herein we provide the data regarding
myelination-related protein markers and myelin ultrastructure in
transgenic mice.
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Value of the data
� This data set is of value to the scientific community to need the information for molecules con-
trolling myelination.

� The data can provide the method of studying the initiation of myelination in vivo.
� The data may promote further research on signaling molecules controlling myelination in vivo.
of myelin marker proteins MPZ and CNPase in transgenic mice expressing active Fyn. (A) Tissue
s) from 3-day-old sciatic nerves of active Fyn transgenic (Tg) and control (Ctrl) mice were used for
ti-V5 tag (for V5-tagged active Fyn), MPZ, CNPase, or actin antibody. Control actin proteins are also
-specific bands are indicated by an asterisk. (B) The scanned bands (MPZ and CNPase blots) were
for quantification. Data were evaluated using Student's t-test (**po0.01; *po0.05; n¼3).
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1. Data

The data shared in this article is the biochemical analysis for myelination-related proteins in active
Fyn transgenic mice. The data also provides myelin ultrastructure in transgenic mice.
2. Experimental design, materials and methods

We generated transgenic mice expressing active Fyn at the relevant developmental stage. The
sciatic nerves of these mice were then analyzed through electron microscopy at 3 days postnatal and
through immunoblotting of proteins such as myelin markers.

2.1. Data from Fyn transgenic mice

In immunoblotting, neonatal transgenic mice expressing active Fyn exhibited increased expression
levels of myelin marker proteins such as myelin protein zero (MPZ, also called P0) and 20,30-cyclic-
nucleotide 30-phosphodiesterase (CNPase) (Fig. 1A and B). In electron microscopic analysis, transgenic
mice exhibited smaller g-ratios, indicating increased myelin thickness, in the sciatic nerves
(0.7370.045 in the transgenic mice compared to 0.7870.060 in the control mice). Since the g-ratio is
Fig. 2. Transgenic mice exhibit increased myelin thickness. (A) Representative electron micrographs of 3-day-old transgenic (Tg) or
control (Ctrl) mouse sciatic nerve cross sections are shown. The scale bars indicate 1 μm. (B) The g-ratios for 3 mice are plotted for axon
diameters. The average g-ratios are also shown in the graph. (C) Distribution of the g-ratios is shown for axon diameters. (D) The g-
ratios (n¼67 control wild type mouse nerves and n¼64 transgenic mouse nerves) were evaluated using Student's t-test (**po0.01).
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the numerical ratio of an axon's diameter to the diameter of the axon's outermost myelinated fibers
[1–3], a smaller g-ratio indicates a thicker myelin sheath (Fig. 2A–D). In immunoblotting with an
antibody specific for phosphorylated Akt kinase (active Akt), increased phosphorylation was observed
in samples from transgenic mouse nerves (Fig. 3A and B). Akt is one of the central signal transducers
controlling myelination [2–5]. The myelination-associated transcription factor Krox20 [4,5] was also
increased in transgenic mouse nerves (Fig. 4, A and B). On the other hand, levels of Sox10 (Fig. 5A and
B) and Oct6 (Fig. 6A and B), transcription factors expressed in Schwann cell lineage cells [4,5], were
comparable in transgenic mice and controls.

2.2. Generation of active Fyn transgenic mice

A DNA fragment (�4.5 kb) containing the SV40 enhancer, a mouse glial fibrillary acidic protein
(GFAP) promoter specific for the neonatal stage of Schwann cells in the PNS [1,6,7], V5-epitope-
tagged active Fyn (isolated Src homology domain 1 [1]), an artificial intron, and human chorionic
gonadotropin polyA units [1,7] was digested from the vector backbone (�3.5 kb) with NcoI, purified,
and injected into fertilized BDF1 oocytes. Transgenic founder mice and established transgenic mice
were routinely identified using the KAPA genomic PCR kit (KAPA Biosystems, Wilmington, MA, USA)
with the specific primer pair 50-CCGGAATTCGAATATTAGCTAGGAGTTTCAGAAAGGGGGCCTG-30 and 50-
CCGGAATTCACTAGTGGGACTATGGTTGCTGACTAATTGAGATGC-30. PCR was performed in 35 cycles,
Fig. 3. Elevated phosphorylation of Akt in transgenic mice. (A) Tissue lysates (n¼3) from 3-day-old sciatic nerves of transgenic
(Tg) and control (Ctrl) mice were used for immunoblotting with an anti-phosphorylated pan-Akt, pan-Akt, or actin antibody.
(B) The scanned bands were densitometrically analyzed for quantification. Data were evaluated using Student's t-test
(**po0.01; n¼3).



Fig. 4. Increased expression of Krox20 in transgenic mice. (A) Tissue lysates (n¼3) from 3-day-old sciatic nerves of transgenic
(Tg) and control (Ctrl) mice were used for immunoblotting with an anti-Krox20 or actin antibody. (B) The scanned bands were
densitometrically analyzed for quantification. Data were evaluated using Student's t-test (**po0.01; n¼3).
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each consisting of denaturation at 94 °C for 0.5 min, annealing at 65 °C for 0.5 min, and extension at
0.5 °C for 1 min. The transgenic allele yielded PCR bands for 322 bases. One transgenic founder was
obtained from every 240 fertilized oocyte injections. Transgenic founders were mated to wild type
C57BL/6JJms mice. The transgene was stably maintained for at least 3 generations. Male mice were
used for experiments when their gender was distinguishable.

2.3. Immunoblotting

Mouse sciatic nerves were lysed in lysis buffer (50 mM HEPES-NaOH, pH 7.5, 20 mM MgCl2,
150 mM NaCl, 1 mM dithiothreitol, 1 mM phenylmethane sulfonylfluoride, 1 μg/ml leupeptin, 1 mM
EDTA, 1 mM Na3VO4, and 10 mM NaF) containing detergents (0.5% NP-40, 1% CHAPS, and 0.1% SDS).
The presence of these detergents is important for myelin protein isolation [7,8]. Equal amounts of the
proteins (20 μg total proteins) in centrifuged cell supernatants were heat-denatured for immuno-
blotting using the MiniProtean TetraElectrophoresis and TransBlot TurboTransfer System (Bio-Rad,
Hercules, CA, USA). The transferred membranes were blocked with the Blocking One kit (Nacalai
Tesque, Kyoto, Japan) and immunoblotted using primary antibodies, followed by peroxidase-
conjugated secondary antibodies (Nacalai Tesque). The bound antibodies were detected using the
ImmunoStar Zeta kit (Wako, Osaka, Japan). The scanned bands were densitometrically analyzed for
quantification using UN-SCAN-IT Gel software (Silk Scientific, Orem, UT, USA). The following



Fig. 5. Expression of Sox10 was comparable in transgenic mice and controls. (A) Tissue lysates (n¼3) from 3-day-old sciatic
nerves of transgenic (Tg) and control (Ctrl) mice were used for immunoblotting with an anti-Sox10 or actin antibody. (B) The
scanned bands were densitometrically analyzed for quantification.

Y. Miyamoto et al. / Data in Brief 7 (2016) 1098–1105 1103
antibodies were used: polyclonal anti-MPZ and monoclonal anti-actin from MBL (Aichi, Japan);
polyclonal anti-CNPase, monoclonal anti-pan-Akt, and monoclonal phosphorylated pan-Akt (active,
phosphorylated Ser-473) from Cell Signaling Technology (Danvers, MA, USA); anti-Krox20, anti-Oct6,
and anti-Sox10 from Abcam (Cambridge, UK); and anti-V5 epitope from Nacalai Tesque.
2.4. Electron microscopic analysis

Mouse sciatic nerves were fixed with 2% paraformaldehyde and 2% glutaraldehyde in 0.1% caco-
dylate buffer [1,7]. The tissues were postfixed with buffered 2% osmium tetroxide, dehydrated with an
ethanol gradient, treated with acetone, and embedded in epoxy resin. Ultrathin sections of cross
sections were stained with uranyl acetate and lead citrate, then observed and photographed with the
Hitachi H-7600 or JEOL JEM-2010 electron microscope system. Myelinated nerves in the cross sec-
tions were randomly selected, and the g-ratio was calculated for each axon and as an average.



Fig. 6. Expression of Oct6 was comparable in transgenic mice and controls. (A) Tissue lysates (n¼3) from 3-day-old sciatic
nerves of transgenic (Tg) and control (Ctrl) mice were used for immunoblotting with an anti-Oct6 or actin antibody. (B) The
scanned bands were densitometrically analyzed for quantification.
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2.5. Statistical analysis

Data are presented as means7SD from independent experiments. Intergroup comparisons were
performed using unpaired Student's t test. Differences were considered significant when p value was
less than 0.05.
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Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.
org/10.1016/j.dib.2016.03.096.
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