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Abstract 

Fibrosis can be defined as an excessive and deregulated deposition of extracellular matrix proteins, causing loss of 
physiological architecture and dysfunction of different tissues and organs. In the skin, fibrosis represents the hallmark 
of several acquired (e.g. systemic sclerosis and hypertrophic scars) and inherited (i.e. dystrophic epidermolysis bullosa) 
diseases. A complex series of interactions among a variety of cellular types and a wide range of molecular players 
drive the fibrogenic process, often in a context-dependent manner. However, the pathogenetic mechanisms leading 
to skin fibrosis are not completely elucidated. In this scenario, an increasing body of evidence has recently disclosed 
the involvement of Notch signalling cascade in fibrosis of the skin and other organs. Despite its apparent simplicity, 
Notch represents one of the most multifaceted, strictly regulated and intricate pathways with still unknown features 
both in health and disease conditions. Starting from the most recent advances in Notch activation and regulation, this 
review focuses on the pro-fibrotic function of Notch pathway in fibroproliferative skin disorders describing molecular 
networks, interplay with other pro-fibrotic molecules and pathways, including the transforming growth factor-β1, and 
therapeutic strategies under development.
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Background
Tissue homeostasis and function ground on the equilib-
rium between extracellular matrix (ECM) synthesis and 
degradation. However, in specific biological contexts the 
remodelling cycle of the ECM transiently shifts towards 
one of its two phases, a phenomenon that occurs for 
example during the physiological wound healing process. 
A wide range of genetic, immunological, metabolic and 
environmental cues can perturb the homeostatic turno-
ver of ECM, leading to fibrosis: the disproportionate and 

disorganized accumulation of ECM components, mainly 
collagens, in various organs [1, 2]. Dermal fibrosis under-
lies a large and heterogeneous spectrum of pathological 
conditions which can affect exclusively the skin or where 
the skin represents one of the targeted organs within 
the context of a multisystem disorder. Fibrotic diseases 
involving the skin include disorders due to an aberrant 
cutaneous wound healing process (e.g. hypertrophic 
scars and keloids), systemic sclerosis, dystrophic epider-
molysis bullosa, chronic graft-versus-host disease, eosin-
ophilic fasciitis and nephrogenic systemic fibrosis [3–5].

Progresses in deciphering the cellular and molecular 
bases of fibrosis have revealed that a multitude of mech-
anisms are able to trigger or sustain fibrotic events in a 
context-dependent fashion. Transforming growth factor 
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(TGF)-β1 represents the best-characterized player in 
fibrosis onset and maintenance [6, 7]. However, other 
factors, ranging from an inflammatory milieu to addi-
tional pro-fibrotic pathways, can overlap or support the 
TGF-β1 activity shaping the fibrotic processes and deter-
mining a wide range of disease manifestations [8–10].

Notch signalling is a highly conserved, ubiquitous, 
cell–cell communication pathway involved in cell fate, 
proliferation and tissue homeostasis both in embry-
onic development and adult life [11]. Notch activation 
requires binding between the Notch receptor exposed 
on the surface of a “signal-receiving cell” and the Notch 
ligand on a juxtaposed “signal-sending cell”. Receptor-
ligand interactions commit Notch receptor to a two-step 
proteolytic cascade generating a transcriptionally active 
intracellular fragment. Given its pleiotropic actions, the 
correct timing and magnitude of Notch activation are 
crucial to avoid detrimental consequences. In particular, 
gene mutations in the Notch core pathway members and 
network components are causative of neoplastic disor-
ders [12–14] and of a number of rare, mainly develop-
mental, diseases affecting almost all body districts [11, 
15, 16]. In addition, Notch signalling is dysregulated dur-
ing the onset and course of a variety of diseases, includ-
ing fibrosis. Notch can exert a pro-fibrotic role in lung, 
kidney, liver and skin by regulating myofibroblast activa-
tion and epithelial-to-mesenchymal transition (EMT), or 
by dialoguing with other potent fibrogenic pathways, in 
particular the TGF-β1 signalling [17].

This review focuses on the pro-fibrotic role of Notch 
pathway in acquired and inherited fibroproliferative dis-
orders affecting the skin. After briefly introducing the 
general mechanisms of Notch activation and regula-
tion, we will summarize Notch involvement in tissue 
fibrosis with a specific emphasis on the Notch cross-
talk with ECM components and the TGF-β signalling 
pathway. Thereafter we will discuss Notch role in skin 
physiopathology, focusing on the most recent findings 
on the fibrogenic activity of Notch in systemic sclerosis, 
hypertrophic scars, keloids and dystrophic epidermoly-
sis bullosa. Finally, the current molecular approaches to 
counteract Notch activation will be reviewed.

Notch activation, processing and regulation
Notch signalling cascade: from receptor‑ligand binding 
to transcriptional outcomes
In mammals, the Notch family is made of four Notch 
receptors (Notch 1–4) and five ligands (Jagged 1 and 
2, Delta-like 1, 3 and 4) differently expressed depend-
ing on the specific cell type and its biological context. 
Notch activation usually requires the binding between a 
Notch receptor and a Notch ligand exposed on two dif-
ferent, neighboring cells. Ligand engagement triggers two 

subsequent proteolytic cleavages (S2 and S3 cleavages) 
of Notch receptor to release a biologically active Notch 
intracellular domain (NICD), which translocates into the 
nucleus where it activates the transcription of its down-
stream targets, thereby mediating a multitude of biologi-
cal effects (Fig.  1) [11]. A “pulling force” exerted by the 
Notch ligand toward its tied receptor drives Notch acti-
vation by unmasking an ADAM (short for A Disintegrin 
And Metalloproteinase) metalloprotease cleavage site at 
the level of the Notch regulatory region (NRR), close to 
Notch receptor transmembrane segment [18, 19]. The 
NRR site is targeted by ADAM proteins, which operate 
the first ligand-induced proteolytic cleavage (S2 cleavage) 
and produce the Notch extracellular truncation (NEXT) 
fragment. In the second activation step, the NEXT frag-
ment is cleaved by the γ-secretase complex (S3 cleavage) 
to generate the NICD protein product (Fig. 1) [20, 21].

Although the mature Notch receptor usually interacts 
with its Notch ligand by direct cell–cell contact (trans-
activation), several evidences indicate that Notch sig-
nalling can also take place over long distances through 
dynamic filopodia [25, 26], basal protrusions in epithelial 
cells [27] or exosomes [28, 29].

In the nucleus, NICD interacts with the DNA-binding 
protein RBPJ (recombination signal binding protein for 
immunoglobulin kappa J region) and the co-activator 
Mastermind-like protein 1 (MAML1) creating a ter-
nary complex able to trigger target gene transcription. 
A growing body of evidence indicates that RBPJ acts as 
transcription repressor in the absence of NICD, whilst 
the recruitment of NICD determines the transition from 
an “OFF” to a transcriptionally active state by complex 
mechanisms including (i) the displacement of a set of 
RBPJ-bound co-repressors, (ii) modifications in RBPJ 
affinity/specificity for selected DNA loci or (iii) chroma-
tin rearrangements favouring accessibility and function of 
distal enhancer elements [30–32]. In mammals, the pro-
totypical bona fide Notch target genes are represented by 
the basic helix-loop-helix (bHLH) transcriptional factors 
of the hairy and enhancer of split (HES) family, includ-
ing HES1 and HES5, as well as by the HEY gene family 
(HES related with YRPW motif ) such as HEY1 [30]. HES 
and HEY family members act as transcriptional repres-
sors of gene expression by direct and indirect mecha-
nisms including the recruitment of histone deacetylases 
or the heterodimeric binding of specific bHLH activators, 
respectively [33]. HES and HEY factors critically drive 
differentiation of various cell types, and, for these rea-
sons, are tightly regulated and subjected to rapid cycles 
of activation and repression [33]. Beyond HES and HEY 
genes, multiple factors including (i) the context-depend-
ent accession by Notch transcriptional complex to spe-
cific DNA response elements, (ii) the NICD cooperation 
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with different co-activators, and (iii) the effects of post-
translational modifications (PTMs) and epigenetic mod-
ulators (see below) underlie the qualitatively divergent 
Notch-derived transcriptomes and determine the excep-
tionally wide range of Notch-based biological responses 
[11, 34].

Regulation of Notch pathway by post‑translational 
modifications
Notch signalling is under the control of multiple mecha-
nisms in each phase of its complex intracellular routes 

[35]. A variety of regulatory processes modulate Notch 
receptor and ligand expression, maturation, localiza-
tion, trafficking and stability prior, during and after the 
ligand-receptor interaction at the plasma membrane. An 
important role in controlling Notch pathway is played 
by post-translational modifications (PTMs) that occur 
at different stages of Notch member molecular life 
course. Indeed, both Notch receptors and ligands can 
undergo glycosylation, methylation, hydroxylation, acet-
ylation, ubiquitination, and, not least, phosphorylation 
[34]. Notch PTMs cooperate to finely tune the pathway 

Fig. 1  An overview of Notch maturation, activation and processing. Before integration into the plasma membrane, Notch receptor is decorated 
with different glycans by a complex series of enzymatic reactions occurring within the endoplasmic reticulum (ER) or the Golgi network. 
Post-translational adducts determine a differential responsiveness of Notch-expressing cells to the ligands. Thereafter, Notch receptor is cleaved 
at the level of the S1 cleavage site (S1) by a furin-like convertase residing in the trans-Golgi network. The cleavage results in the formation of 
a heterodimeric receptor, consisting of a Notch extracellular domain (NECD) and a Notch transmembrane domain (NTMD) held together by 
Ca2+-dependent ionic bonds [22, 23]. Similarly, also Notch ligand undergoes a “maturation process” consisting in its endocytosis, ubiquitination by 
the Neuralized and Mindbomb E3 ubiquitin ligases and “recycling” to the plasma membrane [24]. Notch ligands belong to the Delta/Serrate/LAG2 
(DSL) protein family. After ligand binding, the mature Notch receptor is subjected to two successive proteolytic cleavages (S2 and S3 cleavage). 
The first cleavage is exerted by an ADAM metalloprotease (e.g. ADAM17) close the transmembrane domain to generate the Notch extracellular 
truncation (NEXT) fragment (S2 cleavage). The second is operated by the γ-secretase complex within the transmembrane domain of the NEXT 
fragment (S3 cleavage) or in endosomes, to dump into the cytoplasm the biologically active Notch intracellular domain (NICD) (reviewed in [11]). In 
the cell nucleus, NICD forms a trimeric complex with RBPJ and MAML1, which initiates transcription of Notch downstream target genes
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functioning or to terminate the signal [36]. For a recent 
review of PTM-mediated regulation of Notch pathway 
see [34]. Among PTMs, ubiquitination of NICD by the 
ubiquitin E3 ligase FBXW7 (also known as SEL10) has 
been validated as a key mechanism to switch-off Notch 
effects [37]. Of note, FBXW7-dependent ubiquitina-
tion requires the concomitant phosphorylation of spe-
cific amino acid residues within the Pro-Glu-Ser-Thr 
(PEST) domain of NICD, by different kinases, including 
the Down-syndrome-associated kinases DYRK1A and 
DYRK1B [38] and the cyclin-dependent kinase 8 (CDK8) 
[39]. Thus, PTMs and their interplay represent an addi-
tional wall to break down in understanding the complex-
ity of Notch cascade, and potential druggable targets to 
modulate Notch activity in disease conditions [34].

Epigenetic regulation of Notch signalling
microRNAs (miRNAs or miRs) are a class of non-coding 
RNAs (nc-RNAs) that regulate gene expression at the 
posttranscriptional level. Each miRNA binds to specific 
messenger RNAs (mRNAs), thus indicated as miRNA 
targets, leading to their degradation or translational inhi-
bition. miRNAs are involved in almost all physiological 
and pathological events, including the fine regulation of 
the Notch pathway. Indeed, an ever-growing number of 
miRNAs have been reported as modulators of the Notch 
pathway [40–43]. A list of miRNAs experimentally-val-
idated by gene reporter assay as negative regulators of 
Notch receptors and ligands is available as Supplemen-
tary Information [see Additional file 1: Table S1].

The impaired regulation of miRNAs targeting Notch 
pathway members contributes to many disease con-
ditions, including fibrosis of various organs [43–47]. 
Notably, the Notch signalling pathway can also up- or 
down-regulate the expression of specific miRNAs. For 
instance, Notch activation in vascular smooth muscle 
cells (VSMCs) results in a direct, RBPJ-dependent, up-
regulation of miR-143/145 cluster which in turn cooper-
ates with Jagged 1 (JAG1)/Notch signalling to promote 
VSMC contractile phenotype [48]. On the other hand, 
the Notch-RBPJ-MAML1 complex can repress miRNA 
expression, as described in CD4 T cells for miR-29 family 
members [49].

Long nc-RNAs (lncRNAs) are a broad and heterogene-
ous class of RNA molecules (> 200 nucleotides in length) 
including intergenic transcripts and sense/antisense 
RNAs overlapping protein-coding genes. Functional 
studies revealed that lncRNAs can act both as enhanc-
ers and repressors of gene expression through in cis and 
in trans mechanisms. However, the roles and biological 
relevance of the vast majority of them remain elusive 
[50]. As for the interplay between Notch signalling and 
lncRNA activity, it has been shown that the lncRNA 

NEAT1 (Nuclear-Enriched Abundant Transcript 1) con-
trols miR-129-5p levels and indirectly regulates the abun-
dance of NOTCH1, a miR-129-5p target, in rat astrocytes 
[51]. In neural progenitors, the lncRNA LncND (Neuro 
Development) controls miR-143-3p activity, and in turn 
the expression levels of NOTCH1 and NOTCH2, two 
miR-143-3p targets [52]. On the other hand, the Notch 
pathway drives the expression of the pro-tumorigenic 
lncRNA LUNAR1 (Leukemia-Associated Non-coding 
IGF1R Activator RNA 1) in T-ALL [53] and colorec-
tal cancer [54]. Review articles focused on the crosstalk 
between Notch signalling pathway and lncRNAs have 
been recently published [55, 56].

Besides miRNA- or lncRNA-based regulatory mecha-
nisms, other processes such as histone [57–60] and 
mRNA modifications, the latter known as epitran-
scriptome, have been demonstrated to regulate Notch 
activity in a cell-specific manner [61, 62]. In particular, 
the reversible methylation of the N6 position of spe-
cific adenosine bases (m6A) within target mRNAs and 
nc-RNAs in eukaryotic cells has recently emerged as 
a pervasive modulator of gene expression, with roles in 
health and disease conditions. Briefly, m6A influences the 
mRNA structure and the binding of specific regulatory 
proteins, with implications in splicing, nuclear reten-
tion, mRNA stability and translation efficiency [62–66]. 
As for the interplay between Notch and m6A, a recent 
study revealed that METTL3 (methyltransferase like 3), 
a subunit of the N6-methyltransferase complex, is able to 
methylate several Notch transcripts and potentiate Notch 
activity in glioma stem-like cells [62].

Notch pathway in tissue fibrosis
Fibrosis is a pathological condition marked by excessive 
deposition of fibrous connective tissue in an injured or 
inflamed tissue. It can affect all organs resulting in dis-
ruption of the physiological tissue architecture and func-
tion [67]. A wound healing (WH) response ensues any 
tissue injury to rapidly restore homeostasis. The WH 
process is classically resumed in four successive but over-
lapping phases: haemostasis, inflammation, new tissue 
formation (or proliferative phase) and remodelling. In the 
WH context, fibrosis is due to several interlinked mecha-
nisms that affect the proper magnitude and spatiotem-
poral sequence of the WH phases, leading to a chronic 
WH response [68, 69], with continued tissue damage, 
repair and regeneration. Different acute or chronic stim-
uli including infections, autoimmune and inflammatory 
reactions and mechanical injury contribute to fibrosis 
onset, often in a disease-dependent manner [67].

The phenoconversion of fibroblasts (FBs) and other 
mesenchymal precursor cells into a highly specialized cell 
type called myofibroblast is a crucial process that triggers 
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and sustains fibrogenesis in all fibrotic diseases. Myofi-
broblasts are characterized by contractile and secretory 
abilities given by the production of specific contractile 
proteins (e.g. α-SMA, α-smooth muscle actin) and secre-
tion of ECM matricellular proteins [70, 71]. Of note, 
many of the classical fibrogenic signalling pathways such 
as TGF-β, platelet-derived growth factor (PDGF), WNT 
and hedgehog (Hh) are strictly connected and cooperate 
to induce myofibroblast differentiation and persistence, 
driving disease progression and maintaining it over time 
[2, 7, 8].

Notch and fibrosis
Notch signalling is emerging as a potent inducer of fibro-
sis in liver, lung, kidney and skin [17, 72–74]. The Notch 
cascade is involved in FB proliferation [75], myofibroblast 
differentiation [74, 76], contractile phenotype induction 
and acts synergistically with other pro-fibrotic pathways, 
primarily the TGF-β signalling. These pro-fibrotic fea-
tures are particularly evident in VSMCs, where: (i) the 
JAG1-NOTCH1-RBPJ axis and the myocardin (MYOCD) 
signalling synergistically activate expression of smooth 
muscle cell (SMC) marker genes such as myosin, heavy 
polypeptide 11, smooth muscle (MYH11) and transgelin 
(TAGLN) [77] and (ii) JAG1/NOTCH3 interactions lead 
to the induction of contractile marker proteins (α-SMA 
and calponin—CNN1) and, in turn, of the contractile 
phenotype in in  vitro SMCs-endothelial cells 3D cocul-
ture models [78] as well as in VSMC disorders driven by 
inactivating mutations in the NOTCH3/TGF-β regulator 
gene HtrA serine peptidase 1 (HTRA1) [79]. Moreover, 
Noseda and coll. demonstrated that the human ACTA2 
gene, encoding α-SMA, contains a RBPJ consensus bind-
ing site, whose activation is necessary and sufficient 
to obtain a Notch-mediated α-SMA transcription in 
endothelial cells and primary FBs [80–82]. In addition to 
its direct effects in regulating myofibroblast differentia-
tion as well as the synthetic/proliferative and contractile 
features of activated FBs, Notch signalling possesses an 
important role in inflammation and EMT [83–85], two 
processes involved in fibrosis outcome. However, studies 
in this field, in relation to fibrotic mechanisms, are still 
limited.

Notch cross‑talk with the extracellular matrix and its 
pro‑fibrotic components
The extracellular matrix (ECM) is the non-cellular con-
stituent of all tissues and organs. It contains a hydrated 
multifaceted mixture of macromolecules (e.g. fibrous gly-
coproteins, glycosaminoglycans, proteoglycans) which is 
synthetized by all resident cells, especially by FBs [86–
88], in a tissue- and context-dependent manner [89, 90]. 
ECM works as a structural scaffold but also importantly 

as a biologically active system, able to modulate the 
behaviour of the surrounding cells and orchestrate a 
plethora of processes including cell proliferation, motil-
ity, differentiation, polarity and WH. Given its pleiotropic 
roles, ECM homeostasis is crucial for health maintenance 
[91–93]. Indeed, ECM architecture and composition 
are altered in multiple pathological conditions, includ-
ing fibrosis [94–96]. Specific to fibrosis, it is well estab-
lished that ECM composition and mechanical properties 
strongly impact on the bio-availability and activity of key 
anti- and pro-fibrotic factors involved in fibrosis, first and 
foremost the fibrogenic growth factor TGF-β1 [94, 95, 
97–99].

At the cellular level, surface receptors and proteins 
decorating the membranes act as effective “mechanosen-
sors” able to intercept biochemical and biophysical ECM 
modifications (e.g. composition, force and rigidity—the 
so-called ECM stiffness) and to convert them into molec-
ular and functional inputs through the induction of intra-
cellular signalling cascades [100].

The pro-fibrotic Notch pathway is also emerging as a 
“sensing system” able to intracellularly transmit a vari-
ety of microenvironmental cues, including chemical and 
physical ECM modifications [101]. On the other hand, 
ECM modulates Notch signalling activation through 
direct and indirect mechanisms involving both core 
ECM components and ECM-related pathways. A per-
tinent example is represented by MAGP-2 (Microfi-
bril Associated Glycoprotein-2)—a microfibril/elastin 
network structural component also involved in fibrosis 
[102]—which directly interacts with the tandem EGF-
like repeats in DSL (Delta/Serrate/LAG2) ligands and 
NOTCH1 receptor. MAGP-2-NOTCH1 interactions 
promote the receptor heterodimer dissociation and its 
activation through an ADAM-independent mechanism 
[103, 104]. On the contrary, in endothelial cells MAGP-2 
co-operates with the integrin αVβ3 to recruit the c-SRC 
kinase which phosphorylates N1ICD at specific tyrosine 
residues, leading to a reduction of its half-life and tran-
scriptional ability [105, 106]. Additional ECM proteins 
able to modulate Notch activation via direct or indirect 
routes include periostin (POSTN), an ECM matricellular 
protein which binds NOTCH1 and preserves its expres-
sion in stress conditions [107], type I and type IV colla-
gens [108] and laminin-111 [109].

Notch and TGF‑β1: the fibrogenic dialogue
The TGF-β pathway is a paradigm of signal transduction 
mechanisms initiated by the activation of a serine/thre-
onine kinase receptor at the plasma membrane. Briefly, 
TGF-β cascade is triggered by the binding between 
a member of the TGF-β and BMP (Bone Morphoge-
netic Protein) ligand subfamilies, and a ligand-specific 
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heteromeric receptor complex [110]. Then, the signal is 
propagated by the receptor-mediated recruitment and 
phosphorylation activation of the cytoplasmic SMAD 
proteins (SMADs) (TGF-β canonical pathway) or by 
alternative molecular cascades, in particular the MAPK 
(Mitogen Activated Protein Kinase) signalling (TGF-β 
non-canonical pathway) [110–112]. Phosphorylated 
SMAD2 and SMAD3 proteins form a complex with 
SMAD4 to convey signals from TGF-β receptors into the 
nucleus, where SMADs act as transcriptional factors. The 
intricate interplay of ligand and receptor types, SMADs 
and cofactors as well as of signal-driven transcription 
factors (SDTFs) and lineage-determining transcription 
factors (LDTFs) underlies the various TGF-β-dependent 
transcriptional outcomes in relation to specific cell con-
texts and biological conditions [110].

Notably, TGF-β1 signalling plays an outstanding role in 
fibrosis of several tissues and organs, due to the potent 
induction of ECM protein synthesis and myofibroblast 
differentiation [113, 114]. Importantly, TGF-β-mediated 
modifications of the ECM composition and proper-
ties (e.g. ECM stiffness) contribute to perpetuate, in a 
vicious-cycle, myofibroblast activity and TGF-β produc-
tion [97, 114].

Several reports highlighted a cooperation between dif-
ferent Notch and TGF-β pathway members in a variety of 
cellular contexts and biological processes [83, 115–119], 
including fibrosis.

The Notch pathway members JAG1 and HES1, are early 
transcribed in response to TGF-β stimulation in HaCaT 
keratinocytes [115]. Similarly, the TGF-β/Notch axis syn-
ergistically acts to promote the transcription of Hes1 in 
chicken embryos, neural stem cells, myoblasts and epi-
thelial cells through SMAD3 and SMAD4 activation [83, 
120]. Interestingly, SMAD3 is able to directly interact 
with NICD and can be recruited to RBPJ-binding sites 
on DNA in the presence of RBPJ and NICD in C2C12 
myoblast cells [120]. In the context of fibrosis, the Notch/
TGF-β axis cooperates to induce fibrosis in several tissue 
and organs, and its pharmacological targeting represents 
a powerful strategy to counteract the fibrogenic process 
[121–124]. The dialogue between Notch and TGF-β 
induces the expression of contractile and pro-fibrotic 
markers (e.g. α-SMA, CNN1 and TAGLN) in different 
cell types including SMCs [125], mesenchymal stem cells 
(MSCs) [126], lung FBs [122] and RLE-6TN rat alveolar 
epithelial cells [127]. In RLE-6TN cells, the cis-elements 
CArG box (CC(A/T)6GG box) and TCE (TGF-β control 
element) lying in the promoter of ACTA2 gene are critical 
for the transcriptional induction of α-SMA in response to 
both TGF-β and NICD [127]. The well-established role of 
Notch in contractility-associated gene expression, cou-
pled with its mechanosensitive properties [27] and its 

TGF-β-mediated induction in response to mechanical 
stress [128], suggest that the fibrosis-driven activation of 
Notch signalling could prime or enforce, in a self-pow-
ered loop, the fibrotic behaviour of myofibroblasts.

The Hippo member Yes-associated protein 1 (YAP1) 
is emerging as an important mechanosensitive system, 
able to convert external ECM-dependent inputs into 
pro-fibrotic outputs at the intracellular level. In TGF-
β1–treated FBs as well as in primary myofibroblasts from 
patients with Dupuytren disease, a fibroproliferative dis-
order of the hands and fingers, YAP1 activation leads 
to induction of a pro-fibrotic phenotype with increased 
ECM production and cell contractility [129]. Interest-
ingly, the two highly related transcriptional cofactors 
YAP and TAZ can also interact with the Notch cascade 
by different modalities in relation to the different cellular 
contexts. In general, YAP/TAZ can (i) mediate transcrip-
tional regulation of Notch family members; and (ii) co-
operate with Notch to transcribe common, downstream 
target genes [130].

Beyond the TGF-β, a cross-talk between Notch and the 
fibrogenic Wnt pathway [131] has been shown to occur at 
multiple levels ranging from a reciprocal regulation to an 
opposite or synergistic activity [119, 132–137]. Despite 
the well-established relationship between Notch and Wnt 
signalling, mechanistic studies exploring their interplay 
in fibrotic disease models are still missing [138].

Notch expression and role in skin physiology 
and pathology
Notch in keratinocyte differentiation and proliferation
From a simplified perspective, human skin is composed 
of a stratified squamous epithelium, the epidermis, 
standing above a connective tissue, the dermis (Fig. 2, left 
panel). Epidermal tissue is continually self-renewing, and 
keratinocytes (KCs), the major cell type of the epider-
mis, represent its foremost “shaping force”. Epidermis is 
organized into four distinct layers typified by KCs at vari-
ous stages of differentiation (Fig.  2, left panel). In brief, 
moving upward from the basal layer to the top of the 
epidermis (i.e. the horny layer) KCs undergo a complex 
series of molecular events that progressively modify their 
features, such as morphology and keratin type expression 
and organization, and commit the cell to terminal differ-
entiation (TD) (Fig. 2, left panel). Epidermal homeostasis 
rests on a perfect equilibrium between KC proliferation 
and differentiation programs. The Notch signalling path-
way exerts a crucial role in regulating and maintaining 
skin homeostasis, orchestrating KCs differentiation at the 
level of inter-follicular epidermis (IFE) and hair follicles 
(HFs), and finally working in epithelial barrier formation 
[139–142]. The analysis of Notch signalling components 
in skin revealed that Notch receptors and ligands exhibit 
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stringent qualitative and quantitative expression patterns 
within the different areas of IFE and HFs [140, 143, 144] 
(Fig.  2, right panel). As for the specific effects of Notch 
receptors and ligands in human KCs, functional investi-
gations revealed that NOTCH1 reduces the proliferative 
rate of stem cells (SCs) compartment, while NOTCH2 
and NOTCH3 cooperate to induce TD [145]. The anti-
proliferative role of NOTCH1 has been also documented 
in mouse epidermis [146] and is in line with its tumour 
suppressor function in squamous cell carcinoma (SCC) 
[147]. For these reasons, dysregulation of Notch signal-
ling can contribute to the pathomechanisms of various 
skin disorders and syndromes marked by an altered KC 
proliferation/differentiation rate including Adams-Oliver 
syndrome—a congenital disorder characterized by termi-
nal transverse limb malformations, skin and skull bone 
defects—as well as psoriasis and atopic dermatitis [148].

Notch in fibroproliferative skin diseases
Multiple lines of evidence revealed that Notch activa-
tion is involved in the pathogenesis of skin fibroprolif-
erative diseases, both acquired (e.g. dermatofibromas, 
hypertrophic scars, keloids and systemic sclerosis) and 
inherited (i.e. dystrophic epidermolysis bullosa, DEB). 

A comparative immunohistochemical analysis of skin 
biopsies from patients affected with different fibroprolif-
erative diseases revealed that NICD staining, suggestive 
of Notch pathway activation, varies in a cell-dependent 
manner according to the disease types (Fig.  3) [149]. In 
particular, abundant expression of NICD was present in 
FBs from keloids, hypertrophic scars and dermatofibro-
mas, while it was barely detectable in FBs from normal 
control skin. The following paragraphs describe the most 
recent advances in Notch-mediated mechanisms of fibro-
sis in skin diseases.

Systemic sclerosis
Systemic sclerosis (SSc) is an autoimmune connective 
tissue disorder of unknown etiology affecting the skin, 
muscles and multiple internal organs, characterized by 
a highly heterogeneous evolution and outcomes. In SSc 
patients, the hyperactivated immune response against a 
multitude of autoantigens leads to vascular dysfunction 
[150], inflammation and fibrosis of the skin and visceral 
organs [151]. The molecular mechanisms underlying SSc 
onset are intricate, and many pathways contribute to its 
pathogenesis, including the signalling cascade initiated 
by TGF-β [152] and the Notch pathway [153].

Fig. 2  Skin architecture and Notch pathway member distribution. (Left panel) Organization of human skin. The epidermis is the thinnest and 
most superficial layer of the skin, it is connected to the underlying dermis through the cutaneous basement membrane zone (BMZ), the highly 
specialized structure which connects the epidermis to the dermis ensuring skin integrity and stability against mechanical insults. Epidermis is 
arranged into four distinct layers: basal, spinous, granular and stratum corneum (or horny layer). The deepest layer of the epidermis, overlaying the 
BMZ, is the basal layer which is followed by the spinous and the granular layers whilst the stratum corneum is the outermost. Each layer is typified 
by keratinocytes (KCs) at various stages of differentiation. KCs of the basal layer are characterized by their ability to proliferate. Indeed, in the basal 
layer, epidermal stem cells (SCs) divide to self-renew and produce transient amplifying cells (also known as committed progenitors—CPs), which 
possess a more limited proliferation capability. In the early phases of differentiation, CPs detach from the BMZ and move toward the stratum 
corneum becoming terminally differentiated cells (TDs) devoid of nuclei. (Right panel) Expression pattern of Notch receptors (NOTCH1-4) and 
Notch ligands (JAG1 and DLL1) in human skin [143, 144]
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In vivo and in vitro evidences showed that Notch sig-
nalling is activated in SSc and drives fibrosis [76, 154]. 
High levels of NICD and JAG1 have been found in 
lesional skin biopsies as well as in cultured skin FBs 
from SSc patients. Interestingly, in SSc fibrotic skin the 
expression of JAG1 ligand is particularly prominent in 
inflammatory infiltrates, suggesting that T-cells might 
contribute to activate Notch cascade in resident FBs 
[76]. Pharmacological and siRNA-mediated inhibition 
of Notch signalling in primary SSc FBs reduces COL1A1 
and COL1A2 expression and α-SMA abundance. On 
the other hand, healthy FBs treated with the recombi-
nant JAG1 protein (Jag1-Fc) show an increased release 
of ECM and fibroblast-to-myofibroblast differentiation 
[76]. Inflammation- and ROS-depended hyperactivation 
of ADAM17 could represent a mechanism underlying the 
aberrant levels of NICD in SSc skin [154–156].

As for epigenetic involvement in SSc fibrosis, Was-
son and coll. recently described the up-regulation of the 
lncRNA HOX transcript antisense RNA (HOTAIR) in 
primary SSc FBs, and validated its involvement in fibro-
genesis via the EZH2-mediated activation of Notch 
signalling [47]. In addition, exosomes (EXOs)—small 
membrane-bound vesicles of endocytic origin involved 
in cell–cell communication [157, 158]—derived from 
serum [159] and neutrophils of SSc patients [160] dis-
play a specific set of differentially expressed miRNAs 
and lncRNAs involved in fibrosis and regulation of pro-
fibrotic pathways, including Notch [159, 160]. Imatinib 
is a tyrosine kinase (TK) inhibitor, with an anti-inflam-
matory and anti-fibrotic role in preclinical and clinical 
models of SSc and other disorders [161, 162]. Notably, 

recent pharmacokinetic analyses revealed that the Notch 
pathway also controls imatinib uptake in SSc FBs through 
the reduction of expression levels of key organic mole-
cule transporters, such as the multidrug and toxin extru-
sion transporter MATE1 [163]. Finally, specific NOTCH3 
polymorphisms correlate with an increased susceptibil-
ity to develop various forms of SSc, suggesting that they 
can prime disease pathomechanisms or modulate clinical 
manifestations of fibrosis [164].

Hypertrophic scar
Hypertrophic scar (HS), clinically appearing as a raised 
scar confined to the site of injury, is a common WH com-
plication, deriving from aberrant abnormal proliferative 
and remodelling phases on a background of genetic sus-
ceptibility [9, 165]. HS is typified by dermal alterations, 
in particular FB hyperproliferation, overproduction of 
ECM and by the persistence of α-SMA-positive myofi-
broblasts [166]. In addition, the epidermis is thickened 
and its major constituents, the KCs, are activated and 
undergo accelerated differentiation [166, 167]. Finally, 
the KC-FB cross-talk plays an important role in HS 
development [168, 169]. A study by Li and coll. revealed 
that Notch signalling is activated in the epidermis of HS 
patients, regulates production of fibrotic factors in KCs, 
both in  vitro and in  vivo models, and significantly con-
tributes to scar hyperplasia [168]. Inflammatory burden 
is one the most important factors in pathological scarring 
and macrophages are well-known determinants in the 
pathological drift of the healing process in several skin 
diseases, including the HS [170]. A recent study showed 
that blocking Notch activity in macrophages alleviates 

Fig. 3  NOTCH1 activation in fibroproliferative skin diseases. Immunohistochemical staining pattern showing the expression levels of the cleaved, 
biologically active NOTCH1 protein (NICD, Notch intracellular domain) in skin biopsies from patients affected with four different fibroproliferative 
diseases and normal controls. In general, NICD is constitutively expressed in keratinocytes, endothelial cells and immune cells of patients affected 
with the various fibroproliferative disorders and healthy biopsies, with no significant variation among them. As for NICD expression in fibroblasts, it 
was generally low in morphea and barely detected in healthy controls. On the other hand, Notch pathway is activated in fibroblasts from keloids, 
hypertrophic scars and dermatofibromas. Figure adapted from [149]
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scar formation by lessening inflammatory response and 
collagen accumulation [171]. At the same time, in  vivo 
experiments revealed that RBPJ knock-out (KO) mice are 
characterized by a reduced expression of type I and type 
III collagens and of several fibrotic markers in the healed 
skin [171].

Adipose-derived mesenchymal stem cells (AMSCs) 
are considered promising tools to counteract fibropro-
liferative disorders such as HS and keloids in accordance 
to their ability to reduce the production of pro-fibrotic 
factors and lessen myofibroblast features. Recently, Han 
and coll. demonstrated that conditioned medium from 
AMSCs alleviates the fibrotic phenotype (i.e. fibrosis-
associated ECM synthesis, proliferation, migration) of 
HS and KD FBs by reducing the activity of TGF-β1 and 
NOTCH1 cascade [172].

Keloid disease
Keloid disease (KD), which appears clinically as a raised 
scar that grows beyond the injury site and has no ten-
dency to regress, is a benign although disabling fibro-
proliferative skin disorder derived by an excessive and 
abnormal WH process [173]. The dermis of KD is char-
acterized by abundant thick hyalinized collagen bundles, 
also known as “keloidal collagen”, and by the persistence 
of myofibroblasts, and is surmounted by a thickened epi-
dermis which undergoes accelerated differentiation [166]. 
Though Notch signalling has been less investigated in KD 
than in other fibrotic skin diseases, available experimen-
tal evidences support its involvement in KD pathomech-
anisms [174, 175]. A study by Syed and Bayat revealed 
that (i) NOTCH1, NOTCH2 and JAG1 mRNA and pro-
tein levels are significantly up-regulated in KD skin biop-
sies and primary FBs from KD patients (KD FBs) with 
respect to healthy tissues and FBs, respectively; (ii) Notch 
pathway stimulates cell proliferation, migration, invasion 
and angiogenetic properties of cultured KD FBs; and (iii) 
Notch activation positively correlates with inflamma-
tory degree in KD tissues, suggesting that immune cells 
might turn on Notch cascade in  vivo [174]. Further-
more, a recent study reported that KD FBs from sub-
jects affected with active KD (i.e. patients with a recent 
keloid and complaining keloid pruritus and pain) exhibit 
a more prominent NOTCH1 activation as compared to 
KD patients with stable lesions [175]. In addition, KD FBs 
were hallmarked by: (i) a reduced autophagic flux, which 
has been associated with a reduced autophagy-mediated 
degradation of Notch, and (ii) a NOTCH1-mediated 
induction of α-SMA, TGF-β3 and NLRP3 (NACHT, LRR 
and PYD domains-containing protein 3) inflammasome, 
which primes the inflammatory cascade in KD. Finally, 
treatment of KD FBs with rapamycin—an inducer of 
autophagy—determined NOTCH1, and in turn NLRP3, 

down-regulation in KD FBs [175]. Deregulation of the 
Notch pathway in KD has been recently described by an 
integrative analysis of mRNA and miRNA expression lev-
els at the wound site of KD-prone individuals [176].

Dystrophic epidermolysis bullosa
Epidermolysis bullosa (EB) embraces a heterogeneous 
group of inherited skin fragility disorders typified by 
skin blistering and superficial wounds [177]. The under-
lying genetic defects are the major determinants of dis-
ease extent and clinical phenotype. However, genetic, 
epigenetic and environmental factors can deviate the 
expected genotype–phenotype correlations, contribut-
ing to disease severity variability in EB individuals car-
rying the same mutations [178]. The recessive dystrophic 
EB (RDEB) subtype is caused by biallelic mutations in 
the COL7A1 gene, encoding type VII collagen (COL7), 
the major component of anchoring fibrils which ensure 
adhesion of the cutaneous basement membrane zone to 
the dermis. In RDEB patients, loss of the structural func-
tion of COL7 disrupts skin resilience to mechanical stress 
and impairs the WH process. In RDEB, wound sites are 
enriched in immune cells, bacteria and myofibroblasts 
that fuel, in a self-renewing loop, the inflammatory bur-
den and the development of inflammation- and injury-
driven soft tissue fibrosis [5]. Fibrosis is a regular and 
devastating disease complication in RDEB patients that 
leads to joint contractures, hand and foot digit fusion 
and mitten deformities and favours the onset of aggres-
sive and metastasizing squamous cell carcinomas (SCCs) 
[179, 180]. Understanding the molecular mechanisms 
regulating fibrosis in RDEB represents a critical step 
towards the development of novel therapeutic strategies 
to counteract disease progression and improve patients’ 
quality of life. Despite the pro-fibrotic role of Notch 
signalling in a wide range of fibrotic disorders and the 
paradigm of RDEB as a powerful model to investigate 
common mechanisms of fibrosis [5], the involvement of 
this pathway in EB-associated fibrosis remains almost 
unexplored.

In a recent study, our group showed for the first time 
that JAG1 protein levels and the cleaved/activated form 
of NOTCH1 are increased in RDEB FBs as compared to 
primary skin FBs from healthy subjects and positively 
correlate with the abundance of the pro-fibrotic miR-
145-5p [45]. In accordance with these findings, our pre-
vious genome-wide expression analysis performed on 
RDEB FBs from a monozygotic twin pair with markedly 
different phenotypic disease manifestations revealed the 
up-regulation of JAG1 and Notch family members in 
the more severely affected twin [178]. We are currently 
exploring the Notch role in RDEB-associated fibrosis, 
including its interplay with the TGF-β pathway.



Page 10 of 17Condorelli et al. J Biomed Sci           (2021) 28:36 

In addition to fibrosis, Notch could be an important 
factor in regulating RDEB-associated inflammation due 
its well-established involvement in immune cells devel-
opment and function [84]. Finally, inactivating mutations 
in NOTCH1, NOTCH2 and NOTCH4 are recognized 
genetic determinants in RDEB-associated SCCs [180, 
181]. Although the pro-tumorigenic properties of Notch 
pathway, alone or in cooperation with other signalling 
mechanisms, are well investigated in human cutaneous 
malignant melanoma and SCC [146, 182–184], mecha-
nistic studies in RDEB-SCC models are missing.

Therapeutic routes
The fibrosis-limiting effects of Notch signalling inhibi-
tion have been extensively and successfully described 
in numerous preclinical models. However, safety and 
therapeutic potential of Notch inhibitors remain to be 
fully elucidated in the clinical practice, in particular in 
the context of long-term treatments for chronic diseases 
such as fibrosis [17, 185]. Of note, the Notch cascade 
represents a relevant therapeutic target in cancer, where 
over 70 clinical trials have been registered [186–188]. 
Interestingly Nirogacestat (PF-03084014), a Notch GSI 
(γ-secretase inhibitor), entered a phase III clinical study 
(ClinicalTrials.gov Identifier: NCT03785964) for the 
treatment of desmoid tumour/aggressive fibromatosis, 
rare, slow-growing malignancies arising from FBs and 
characterized by a heterogeneous outcome.

GSIs are a wide family of molecules able to halt 
γ-secretase enzymes activity [189]. Initially, they were 
developed to block presenilin 1 and 2, the enzymes 
responsible for amyloid precursor protein formation in 
Alzheimer’s disease, but nowadays GSIs represent the 
prototypical drugs to counteract Notch pathway acti-
vation in blood malignancies and solid cancers [188, 
190–192]. Unfortunately, GSIs are nonspecific Notch 
inhibitors and the definition of their therapeutic win-
dow is critical to avoid toxic side effects [193]. Indeed, 
low-dose, combinatorial therapies against the main mor-
phogenic pathways (i.e. Hedgehog, Wnt and Notch) have 
been shown effective in murine models of SSc, and could 
represent a safer approach to counteract skin fibrosis in 
human patients [194].

In addition to the GSIs, several molecules able to 
inhibit the initial steps of Notch trafficking and pro-
cessing, uncouple receptor-ligand interactions or selec-
tively prevent the interaction between NICDs and their 
nuclear co-activators have been developed [195–200] 
(Fig. 4 and Additional file 1: Table S2) and clinical testing 

is underway for some of them. Non-GSIs Notch inhibi-
tors range from monoclonal antibodies (mAbs) to Notch 
ectodomain-based molecular decoys. In the clinical prac-
tice, antibody- and ectodomain-based inhibition strate-
gies could halt the Notch signalling cascade in a selective 
manner, avoiding the potential harmful effects given 
by pan-Notch inhibitors. Moreover, both repurposing 
drugs such as artesunate, an anti-malarial agent, as well 
as plant-derived natural products, such as astragaloside, 
have been reported to down-regulate TGF-β and Notch 
signalling cascades and lessen pulmonary fibrosis in vitro 
and in rat models [122, 201].

In conclusion, the intricate mechanisms underlying 
Notch maturation, processing, regulation and activity 
represent as many steps of complexity in pathway under-
standing, but at the same time they make Notch a pow-
erful druggable target in multiple phases of its molecular 
life, by an ever-growing range of potential therapeutic 
tools (Fig. 4 and Additional file 1: Table S2).

Conclusions
Despite Notch signalling represents a timeless research 
topic in a multitude of physiological and pathological 
conditions, its mechanism of action remains intricate. 
Notch-based biological outputs are complex, subjected 
to a tight regulation and extremely diversified, often in 
a cell- and context-dependent fashion. This intrinsic 
complexity makes Notch investigation challenging but 
fascinating. In the skin, Notch is a well-established regu-
lator of keratinocyte differentiation and, in turn, loss-of-
function mutations in genes encoding Notch members 
are important players in the onset of SCC. On the con-
trary, though several in  vivo and in  vitro studies estab-
lished a role for Notch cascade activation in different 
fibroproliferative diseases, also in combination with sev-
eral pro-fibrotic pathways, in particular the TGF-β1, its 
involvement in FB behaviour appears as yet incompletely 
investigated. Similarly, interactions between Notch and 
ECM members in fibroproliferative skin disorders have 
been described but not fully elucidated. The findings 
summarized in this review show that the Notch pathway 
pervasively regulates different aspects of skin homeosta-
sis and its dysregulation can underlie the pathomecha-
nisms of fibrosis. Thus, targeting the Notch cascade 
could represent a relevant tool for future therapeutic 
approaches in fibrotic skin disorders.
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