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The cutoff level applied in sequencing analysis varies according to the sequencing
technology, sample type, and study purpose, which can largely affect the coverage
and reliability of the data obtained. In this study, we aimed to determine the optimal
combination of parameters for reliable RNA transcriptome data analysis. Toward this
end, we compared the results obtained from different transcriptome analysis platforms
(quantitative polymerase chain reaction, Illumina RNASeq, and Oxford Nanopore
Technologies MinION) for the transcriptome encoded by human chromosome 18 (Chr
18) using the same sample types (HepG2 cells and liver tissue). A total of 275
protein-coding genes encoded by Chr 18 was taken as the gene set for evaluation.
The combination of Illumina RNASeq and MinION nanopore technologies enabled the
detection of at least one transcript for each protein-coding gene encoded by Chr 18.
This combination also reduced the probability of false-positive detection of low-copy
transcripts due to the simultaneous confirmation of the presence of a transcript by
the two fundamentally different technologies: short reads essential for reliable detection
(Illumina RNASeq) and long-read sequencing data (MinION). The combination of these
technologies achieved complete coverage of all 275 protein-coding genes on Chr
18, identifying transcripts with non-zero expression levels. This approach can improve
distinguishing the biological and technical reasons for the absence of mRNA detection
for a given gene in transcriptomics.

Keywords: proteomics, transcriptomics, threshold, human genome, qPCR, Illumina RNASeq, Oxford Nanopore
Technologies MinION

INTRODUCTION

One of the key steps in transcriptome profiling is to determine the criteria for uncovering gene
expression; that is, to establish the appropriate threshold for identifying whether or not a gene
is expressed. Despite the widespread use of sequencing methods, it is commonly recognized that
the choice of threshold (i.e., the cutoff level after which the signal is considered reliable) depends
on the specific task being solved, sample type, and technology used (Sha et al., 2015). In particular,
different sequencing technologies use different units to measure expression levels, such as reads per
kilobase per million (RPKM), transcripts per kilobase per million, fragments per kilobase million,
copies per cell, or number of cycles (Bullard et al., 2010).
Regardless of the chosen measurement unit, there is a tendency for an increase in the cutoff
level to cause a decrease in the number of registered transcripts, thereby increasing the reliability
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of detection (Łabaj and Kreil, 2016; Zhao et al., 2020). This
tendency has also been confirmed in targeted polymerase chain
reaction (PCR)-based transcriptome mining, in which increasing
the number of cycles in droplet digital PCR transcriptome
profiling confirmed the presence of transcripts that scored below
the cutoff level in the sample (Radko et al., 2019).

However, there is a need for a “gold standard” transcriptome
data analysis, which would enable obtaining complete
transcriptome coverage of the genome of interest, such as
that encoded by a single chromosome. In this study, we sought
to establish such a gold standard using human chromosome 18
(Chr 18) as an example. We performed comparative analyses of
sequencing from previously published transcriptome datasets
(Zgoda et al., 2013; Ponomarenko et al., 2014; Poverennaya
et al., 2016; Radko et al., 2019)obtained with three different
methods applied to the same sample of biological materials:

quantitative PCR (qPCR), Illumina RNASeq (Illumina),
and the recently developed nanopore sequencing platform
MinION developed by Oxford Nanopore Technologies (ONT)
(Jain et al., 2016). ONT can produce long reads of more
than104 nucleotides, which is an advantage compared with
the Illumina platform that produces reads for sequences
up to 300 nucleotides in length (Slatko et al., 2018). The
disadvantage of ONT is that long reads contain errors at a rate
of approximately one lost or misread site per 100 sequenced
nucleotides (Amarasinghe et al., 2020). At present, ONT is
the only sequencing technology that offers real-time analysis
(for rapid insights) in fully scalable formats from the pocket
to population scale, which can enable analyses of native DNA
or RNA, and can sequence fragments of any length to achieve
short to ultra-long read lengths. Transcript sets encoded by 275
protein-coding genes on Chr 18 measured using these three

FIGURE 1 | Correlation between the results of transcriptome profiling of the (A) HepG2 cell line and (B) liver, using the Illumina platform in 2017 and 2020. X axis
corresponds to the number of genes, detected using Illumina 2020; Y axis corresponds to the number of genes, detected using Illumina 2017. Ti, Tanimoto index.
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independent approaches (qPCR, Illumina, and ONT) in the
HepG2 cell line and human liver tissue samples were used for
this comparative analysis.

The aim of this study was to establish the optimal
technology or combination of technologies for transcriptome
analysis based on obtaining the maximum number of detected
products at the mRNA level along with complete transcriptome
coverage depending on the selected cutoff level for each
platform. It is presumed that the lowest possible cutoff level
leads to maximum coverage because of the reduction in
unreliable results. The confirmation of low-copy transcripts
with the three different technologies could therefore be used
to judge the reliability of the results obtained. These results
can be applied to establishing gold standard approaches
for transcriptome analyses of other human chromosomes in
the future.

MATERIALS AND METHODS

Data
The results of transcriptome profiling using three technologies
(qPCR, RNASeq, and ONT) of Chr 18 genes in the liver tissue
and HepG2 cell line obtained by Russian Consortium were
analyzed. The details of the samples, sample preparation, and
experimental procedures are described in Krasnov et al. (2020).
It is necessary to specify, that our study deals only with RNA
transcriptome data. Datasets were previously published in the
Russian Proteomic Consortium annual reports (Ponomarenko
et al., 2014; Poverennaya et al., 2016; Archakov et al., 2019).

Tanimoto Index
Bajusz et al. (2015) demonstrated that the Tanimoto index
(Rogers and Tanimoto, 1960) is one of the best measures for
assessing similarity, and is now widely used in chemoinformatics
and bioinformatics. In particular, they ranked the performances
and correlations of eight similarity metrics, which were
statistically analyzed using the sum of ranking differences and
analysis of variance. They found that the Cosine, Dice, Tanimoto,
and Soergel similarity metrics had equivalent high performance,
whereas the similarity measures derived from Euclidean and
Manhattan distances were far from optimal. Based on this
finding, we used the Tanimoto index to estimate the similarity
among the results of transcriptomic profiling using the three
different technologies.

Specifically, the coefficient of semantic similarity T (a, b)
between two objects a and b is calculated using the Tanimoto
normalization equation (Rogers and Tanimoto, 1960):

T(a, b) =
|Pab|

|Pa| + |Pb| − |Pab|
(1)

where Pa indicates the variety of transcripts a, Pb indicates the
variety of transcripts b, and Pab indicates the variety of transcripts
shared in a and b.

If the Tanimoto index is within 1.0–0.7, it is considered
that the two sets are identical, Tanimoto index values

from 0.75 to 0.55 indicate that the similarity is much
weaker, and values of 0.55 and below indicate that the arrays
differ considerably.

Cutoff Level
There is currently no standard guideline for defining the low
expression or noise threshold in transcriptomics; therefore, the
researchers suggest the approach to determining a threshold

FIGURE 2 | Dependence of the number of detected transcripts of
chromosome 18 for various platforms (Illumina 2020 data, ONT, and qPCR)
on the cutoff level and the concordance of the results obtained with the
known genome of chromosome 18.
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for expression above noise: to compare the number of genes
expressed at different cutoffs across all samples (Koch et al.,
2018). In this work, we used cutoff levels that have been
generally recommended in the related literature and compared
the number of transcripts obtained depending on the cutoff
level. In particular, we applied the following cutoff levels for
comparison: 0 (Dall’Agnol et al., 2014), 0.1 (Abdullah et al., 2016),
1 (Xu et al., 2016; Łabaj and Kreil, 2016), 5 (Yang and Chen, 2019),
and 10(Wright et al., 2013).

This approach takes into account a variety of factors,
including the sequencing depth, batch effects, and technical
variability. The resulting cutoff value will not only impact the
number of genes to be trimmed from the original dataset
but may also affect the interpretation of individual gene
expression graphs.

Reliability of the Results
In our work, we proceed from considerations that the more
technologies a transcript has been detected, the more reliable its
detection is. If a transcript is detected by only one technology,
we do not know if this is due to the peculiarities of a particular
sequencing technology or a false-positive result. At least two
reasons can lead to false positive results. First, the presence of
DNA in the RNA preparation. The second is the erroneous
mapping of readings to genes due to the read length or the
high error rate. Within the framework of this study, we cannot
accurately determine the reason for the occurrence of unreliable
results, since the main purpose of this study is to compare the
results obtained by various technological platforms. Moreover,
the lower the abundance of transcript, the less reliable the result
is usually considered to be.

RESULTS AND DISCUSSION

Transcriptomic profiling using the Illumina platform (RNASeq)
was reported in two different studies by Poverennaya et al. (2017)
and by Vavilov et al. (2020). Figure 1 shows the results obtained
in 2017 and 2020 at different RPKM levels, demonstrating
90% correspondence; therefore, only the results obtained in
2020 were used for the comparative analysis among the three
technologies in this study.

The Tanimoto index showed a tendency to increase with
an increase in the cutoff level, which was a consistent
trend for both the HepG2 cell line (Figure 1A) and in the
liver tissue (Figure 1B). The greatest similarity between the
transcripts obtained in 2017 and 2020 was found at cutoff levels
of >0.1, >0.5, and >1 for the HepG2 cell line and >0.1, >5,
and >5 for liver tissue. In addition, the qualitative composition
of the transcripts detected by the Illumina platform in 2017
and 2020 at different cutoff levels did not differ significantly,
especially observed at RPKM cutoff levels of 0, 0.1, and 1.
However, the composition of the arrays at an RPKM cutoff
level of >5 differed significantly between years both in the
HepG2 cell line and in the liver tissue (Tanimoto index of 0.51
and 0.43, respectively). This discrepancy between the arrays
is most likely due to the lifespan of the transcripts and that
highly abundant transcripts disintegrate faster, which would
lead to differences in transcript detection when samples are
analyzed 3 years apart.

The number of common transcripts detected by the different
technologies varied depending on the cutoff level. Figure 2 shows
that the largest number of detected transcripts corresponded
to a cutoff level of >0. With an increase in the cutoff level

FIGURE 3 | Venn diagrams showing the detection of HepG2 cell line transcripts by the Illumina, ONT, and qPCR platforms depending on the selected cutoff level.

Frontiers in Genetics | www.frontiersin.org 4 June 2021 | Volume 12 | Article 674534

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-674534 June 8, 2021 Time: 16:52 # 5

Ilgisonis et al. “Gold Standard” for Transcriptome

to 0.1, the number of detected transcripts dropped sharply.
This may be attributed to noise pollution of the signal in the
range from 0 to 0.1.

Regardless of the specific technology used, employing the
cutoff level of 0.1 led to a decrease in the number of detected
transcripts by 40–60%, and a cutoff level of 0.1 and above led to
a decrease in the detected transcripts by 40–50%. The Tanimoto
index decreased to 0.6, and then further decreased to 0 at higher
cutoffs, indicating that transcripts for most of genes of Chr18
remained unrecorded. This may be due to the contamination
of DNA in the RNA preparation or the erroneous mapping
of readings to genes. To reveal the most reliable results, the
intersection of sets of transcripts obtained by the three different
technologies (Illumina, ONT, and qPCR) in the HepG2 cell line
and in the liver tissue were compared.

Venn diagrams representing the number of intersecting
(common) transcripts according to different cutoff levels for

different technologies in the HepG2 cell line and liver tissue
are shown in Figure 3 and Figure 4, respectively. In HepG2
cells, a total of 236 transcripts were common to all three
technologies, whereas 138 transcripts in the liver tissue were
commonly identified; however, the total number of registered
transcripts was 273 and 267, respectively. With an increase in
the cutoff level to 0.1 and higher, the number of common
transcripts obtained with the three platforms decreased sharply,
whereas the number of transcripts detected by each platform
increased. This increase in the number of intersecting transcripts
with a decrease in the cutoff level reflects an increase in the
sensitivity of each technology, making it possible to exclude the
significant role of unreliable results in the expression of the Chr
18 genome (RPKM > 0), despite the theoretical existence of
such a possibility.

The intersection of the results obtained by the three
technologies was maximal at the minimum cutoff level (>0)

FIGURE 4 | Venn diagrams showing the detection of chromosome 18 transcripts in the liver by the Illumina, ONT, and qPCR platforms depending on the selected
cutoff level.
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for both the liver and HepG2 cells (Figures 3, 4). Importantly,
this shows that applying the same minimal cutoff with different
technologies will reveal the same reliable transcripts.

Interestingly, at different cutoff levels, the different
technologies showed different patterns of increase in specific
transcripts that were detected with only one technology. The
maximum increase in the number of transcripts detected by
a single technology in the HepG2 cell line was 36, which was
obtained using qPCR at a cutoff level ≥1, and was 55 using
Illumina in the liver tissue. Therefore, different transcripts
are detected by different platforms according to variation
in sensitivities, highlighting the importance of using several
technologies to obtain a reliable transcriptome.

Figures 3, 4 further show that an increase in the cutoff level
leads to a decrease in the total portion of transcripts detected by
the three technologies. In the HepG2 cell line, at a cutoff level >0,
over 236 transcripts were obtained by the three platforms, which
represents more than 50% of the Chr 18 genome, and at a cutoff
level >1, the number of common transcripts sharply dropped to
48, representing only 20% of the chromosome genome. The same
trend was found for the liver tissue.

Transcripts that were not detected by any technology at any
cutoff level corresponded to two proteins: Q6ZTR6 and Q9HC47.
According to the UniProt database (accession date—02.2021)
(Apweiler et al., 2004), these proteins also could not be confirmed
(Figure 5). Q6ZTR6 is annotated as a “predicted” protein,
and Q9HC47 corresponds to cutaneous T-cell lymphoma-
associated antigen 1 protein, which is annotated at a PE2

FIGURE 5 | Results obtained using the Illumina and ONT technologies at a
cutoff level >0.

level (protein evidence confirmed at the transcript level). These
findings suggested that these missing transcripts did not actually
correspond to missing protein detection on these platforms.
Ten transcripts were obtained using only ONT technology,
which could be considered false positives (Figure 5). To assess
this possibility, we screened the complete genomes of the liver
and HepG2 cell lines obtained from an RNASeq database
(accession date—02.2021) (Edgar et al., 2002), demonstrating
that these unique transcripts found using ONT technology have
no homologous sequence to genes on any other chromosomes
besides Chr 18. This suggested that these undetected transcripts
are likely the result of extremely underrepresented gene
expression on Chr 18 (Supplementary Material). Of course,
detection of these transcripts could be a results of DNA
contamination or wrong mapping of poor quality nanopore
reads, but we cannot estimate it in the course of this research.

Thus, the use of two technologies, Illumina and ONT,
enabled the identification of transcripts corresponding to all
experimentally observed proteins derived from genes located on
human Chr 18, with the exception of two transcripts that were
also not confirmed at the protein level in the Nextprot database
(accession date—02.2021) (Zahn-Zabal et al., 2020).

CONCLUSION

The greatest coverage of the human genome encoded by Chr
18 was achieved at a cutoff level of >0. Among the three
technologies compared (qPCR, Illumina, and ONT), Illumina
sequencing and nanopore technology (ONT) complement each
other well in terms of non-overlapping common transcripts and
detection the complete set of protein-coding genes encoded by
the chromosome. In particular, the combined use of Illumina
RNASeq and ONT revealed 98–100% of transcripts of the
Chr 18 genome at a cutoff level of 0. We also found an
expected result that the lowest possible cutoff level leads to
maximum coverage due to the lack of unreliable results. However,
confirmation of the existence of low-copy transcripts when using
all three technologies could further ensure the reliability of the
results obtained. This was evidenced by the comparison of the
Tanimoto index, which decreased with an increasing cutoff level
(Figure 2). At a cutoff level of 0.1 and higher, the Tanimoto
index was reduced to 0.6 or less, which indicates that under these
conditions, the transcriptome obtained would differ significantly
from the full Chr 18 exome.
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