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Abstract
Neurobionic material is an emerging field in material and translational science.
Formaterial design,much focus has already been transferred fromvonNeumann
architecture to the neuromorphic framework. As it is impractical to reconstruct
the real neural tissue solely from materials, it is necessary to develop a feasible
neurobionics framework to realize advanced brain function. In this study, we
proposed a mathematical neurobionic material model, and attempted to explore
advanced function only by simple and feasible structures. Here an equivalent
simplified framework was used to describe the dynamics expressed in an equa-
tion set, while in vivo study was performed to verify simulation results. In neu-
ral tissue, the output of neurobionic material was characterized by spike fre-
quency, and the stability is based on the excitatory/inhibitory proportion. Spike
frequency inmathematical neurobionic material model can spontaneously meet
the solution of a nonlinear equation set. Assembly can also evolve into a cer-
tain distribution under different stimulations, closely related to decisionmaking.
Short-termmemory can be formed by coupling neurobionicmaterial assemblies.
In vivo experiments further confirmed predictions in our mathematical neuro-
bionic material model. The property of this neural biomimetic material model
demonstrates its intrinsic neuromorphic computational ability, which should
offer promises for implementable neurobionic device design.
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1 INTRODUCTION

Neurobionic material is the emerging field in material
and translational science. Over the past decades, develop-
ing electronics have emerged to mimic biological sensory
and motor systems.1–4 Nonetheless, no artificial devices
are readily available to mimic advanced biological func-
tions such as decision making or short-term memo-
ries. Further development of those functional artificial
devices may rely on progress in material, fabrication, and
advanced algorithm.5–7 Recent development in artificial
intelligence and big data analysis drives an ever-rising
desire for superior computing algorithm and associated
hardware. However, the current von Neumann architec-
ture computational system limits computing speed caused
by data shuttling among hardwires.8 Thus, cognitive com-
puters of non-von Neumann architecture has been devel-
oped to overcome this bottleneck, such as neuromorphic
computing.9,10 Recent progress in phase-change random-
access memory (PCRAM) device is one candidate for pro-
grammable material.11,12 In this context, it is necessary to
develop a feasible neurobionics framework to conceptual-
ize advanced brain function.
Brain is a natural computational organ adapt to the envi-

ronment. The network is the most distinctive mesoscopic
structure of brain. Although more details for brain struc-
ture have been revealed over the past century following
findings by Camillo Golgi, the understanding achieved is
still not very in-depth. The wiring logic of brain tissue
can be the template of neurobionic material. Generally,
function of neurobionic material depends on the frame-
work. However, as the neurobionicmaterial cannot exactly
duplicate the real tissue, we should maximize the effect
by a feasible artificial framework. Tsien and associates13–15
raised a postulate regarding the cerebral basic wiring
logic, indicating that the brain may organize the microar-
chitecture of cell assemblies as 2n-1 combinations that
would enable knowledge and adaptive behaviors to emerge
upon learning. This hypothesis suggests certain neural
assembly as a classifier, which is the basis of advanced
functions.
In spite of all these particulars, we want to verify the

advanced capability of the simple network property, in
order to fit the feasible neurobionics framework. In this
study, we proposed a neurobionic material model, and
attempted to explore possible computational function
with only the structure of the network that is achiev-
able by PCRAM. Accomplishment of such neurobionic
material model should offer promises for implementable
neurobionic device design and translational science
field.

HIGHLIGHTS

1. We mathematically prove the meaning of
synapses as the parameter of a nonlinear equa-
tion set, in which spike frequency of each neu-
ron can meet the solutions.

2. Some advanced brain functions are feasible in
this neurobionic material model.

3. The model based on our simplification is prac-
tical in biomaterial field.

2 MATERIALS ANDMETHODS

2.1 Mathematical model from neural
tissue to neurobionic material

To fit the feasibility needs frommaterial design, we should
simplify the structure of the artificial assembly, but with
little discount of its computational ability. The simplest
model of a neuron is a summator, which can sum up the
input signal, judge, and then output a signal known as a
spike. Even in this momentary process, thousands of reac-
tions have happened, but all those details are ignored in
this study except the most indispensable property. This
kind of network model was first described by McCulloch
and Pitts.16 It is noteworthy that the neuro-behavior is dis-
continuous; the neuron’s output is represented by the den-
sity or probability of spikes, not the amplitude. Actually,
the behavior of the neuro-network can be divided by a
very short time interval, proposed as a spike unit. This is a
sound approximate assumption that makes the following
study possible. A real neuro-network is extremely compli-
cated; for example, different connections, synapseweights,
and thresholds are all unknowable. However, all those
factors can be discretized and made equivalent to other
forms. Now, we raise two equivalent and two discretized
assumptions, aiming to transform the extremely compli-
cated neuro-network behavior into a describable mathe-
matical model, which is similar to the Hopfield network
model.17
First, a real neuro-network can be imagined as a directed

matrix (Figure 1A). The weight of each synapseWij refers
to the i to j connection. Pyramidal neurons are a kind
of excitatory neurons, while interneurons are a kind of
inhibitory neurons.18,19 Therefore, in Figure 1A, each row
has a consistent sign of the weight. In our mathemati-
cal model, we plan to break this limitation by type equiv-
alence, which means that an inhibitory neuron will be
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F IGURE 1 Mathematical model transformation from real to neurobionic assembly. A, Illustration of a connection matrix from a neural
assembly. B, Two equivalence and discretization methods for the connection pattern. C, Illustration of the equivalence and discretization for a
connection matrix. D, Architecture of an implementable neurobionic device

transformed into synapses that directly inhibit the next set
of neurons (Figure 1B). By this equivalence, every neu-
ron in the matrix is similar, having both excitatory and
inhibitory synapses. The next step is to achieve threshold
equivalence to unitize each neuron’s threshold of activa-

tion to zero (Figure 1B). Then, synapse weight discretiza-
tion is performed to unitize Wij to −1, 0, or 1, depending
on the weight situation. Finally, the interval from the sig-
nal transmission between neurons is also unitized, using
a medium neuron to cause a delay. Figure 1C is a given
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network that is expressed by a directed matrix and then
transformed into an equivalent simplified matrix. In the-
ory, this equivalent simplifiedmatrix can describe any kind
of complex network. Also, this model has the maximal
freedom, which will allow any possible behavior of a nat-
ural network to be revealed. Thus, we call this mathemat-
ical model a differential of the neuro-network. By simpli-
fication of the neural assembly, we can connect those neu-
rons in an artificial material that consists of small vari-
able cells that can apply positive or negative current to a
neuron. The existence of the positive or negative current
is decided by the previous active neuron, which is similar
to the excitatory/inhibitory synapse. The running speed of
the assembly depends on the current circle interval delay.
All the variable cells can be modified to a positive or nega-
tive mode freely as needed (Figure 1D).

2.2 Operation rules of the neurobionic
material

The dynamics of the neural network can be expressed by
the following recursive formulas:

𝑀 =

⎛⎜⎜⎝
𝑚11 ⋯ 𝑚1𝑙

⋮ ⋱ ⋮

𝑚𝑘1 ⋯ 𝑚𝑘𝑙

⎞⎟⎟⎠ , 𝑘 = 𝑙, 𝑚𝑘𝑙 ∈ {−1, 1} , (1)

𝑆 (𝑡) =
(
𝑌𝑡
1
𝑌𝑡
2
…𝑌𝑡

𝑖

)
, 𝑌𝑡

𝑖
∈ {0, 1} , (2)

𝑋 = 𝑆 (𝑡 − 1) × 𝑀, (3)

𝑌𝑡
𝑖
= 𝐹

[
𝑋𝑡
𝑖

]
=

⎧⎪⎨⎪⎩
0, when𝑋𝑡

𝑖
≤ 0

1, when𝑋𝑡
𝑖
> 0

, (4)

𝑆 (𝑡 + 1) = 𝐹 [𝑆 (𝑡) × 𝑀] =
(
𝑌𝑡+1
1

𝑌𝑡+1
2

…𝑌𝑡+1
𝑖

)
. (5)

M is the equivalent simplified matrix mentioned above.
S(t) is the state of the present network, assembled by Yit,
which denotes the activation (1) or silence (0) of one neu-
ron. X is the medium process before judgment is carried
out by the function F, which determines its activation or
silence at the next time point. Although we now have a
limited prediction of the behavior or dynamics of this equa-
tion set, it is worth noting that the issue we are concerned
with is not one state of the Yit set but the distributions of
Yit over time, which are known as spikes. The initial state
of the network is not to be set very exactingly, a single fir-
ing neuron is usually chosen. All the simulation experi-
ments were performed by MATLAB v2014. Parameters in

each test were available in related sections. Detailed proofs
for equations demonstrated in the results are as follows.

2.3 Spike probability distribution in a
closed neurobionic material assembly

Because the ensemble 𝑋𝑡
𝑖
and 𝑌𝑡

𝑖
is limited by a circle T,

for a large number of dimensions i as well as iterations,
𝑋𝑡
𝑖
will form a distribution. For each 𝑋𝑡

𝑖
, 𝑋𝑡

𝑖
can be cal-

culated by
𝑇∑
1

𝑋𝑡
𝑖

𝑇
. During the iterations, the probability of

𝑌𝑡
𝑖
= 0 or 1 can also be calculated as 𝑃0

𝑖
or 𝑃1

𝑖
. The rela-

tionship between 𝑋𝑡
𝑖
and 𝑃1

𝑖
(or 𝑃0

𝑖
) is expressed as follows.

By enough iterations, that is, 𝑡 → ∞,𝑋𝑡
𝑖
will be fixed as

𝑋𝑖 , having less of a relationship with t. Define an ensem-
ble 𝑋 = {𝑋1 𝑋2⋯𝑋𝑖}. Because 𝑌𝑡𝑖 = 0 or 1 is similar to
some kind of sampling process from ensemble𝑋, each dis-
tribution can be considered a normal distribution by a suf-
ficiently large i and t as:

𝑃
(
𝑋|𝑌𝑡

𝑖
= 1

)
∼ 𝑁

(
𝑢1, 𝜎

2
)
, (6)

𝑃
(
𝑋|𝑌𝑡

𝑖
= 0

)
∼ 𝑁

(
𝑢0, 𝜎

2
)
. (7)

According to Bayes’ theorem,

𝑃
(
𝑌𝑡
𝑖
= 1|𝑋) = 𝑃

(
𝑋|𝑌𝑡

𝑖
= 1

)
⋅ 𝑃

(
𝑌𝑡
𝑖
= 1

)
𝑃
(
𝑋
) , (8)

𝑃
(
𝑌𝑡
𝑖
= 0|𝑋) = 𝑃

(
𝑋|𝑌𝑡

𝑖
= 0

)
⋅ 𝑃

(
𝑌𝑡
𝑖
= 0

)
𝑃
(
𝑋
) . (9)

Therefore,

log
𝑃
(
𝑌𝑡
𝑖
= 1|𝑋)

𝑃
(
𝑌𝑡
𝑖
= 0|𝑋) = log

𝑃
(
𝑋|𝑌𝑡

𝑖
= 1

)
.𝑃

(
𝑌𝑡
𝑖
= 1

)
𝑃
(
𝑋|𝑌𝑡

𝑖
= 0

)
.𝑃

(
𝑌𝑡
𝑖
= 0

)
= log 𝑃

(
𝑋|𝑌𝑡

𝑖
= 1

)
− log 𝑃

(
𝑋|𝑌𝑡

𝑖
= 0

)
+ log

𝑃
(
𝑌𝑡
𝑖
= 1

)
𝑃
(
𝑌𝑡
𝑖
= 0

)
= −

(
𝑋 − 𝑢1

)2
2𝜎2

+

(
𝑋 − 𝑢0

)2
2𝜎2

+ log
𝑃
(
𝑌𝑡
𝑖
= 1

)
𝑃
(
𝑌𝑡
𝑖
= 0

)
=
2 (𝑢1 − 𝑢0)𝑋 +

(
𝑢0

2 − 𝑢1
2
)

2𝜎2
+ log

𝑃
(
𝑌𝑡
𝑖
= 1

)
𝑃
(
𝑌𝑡
𝑖
= 0

) .



ZOU et al. 5 of 17

Thus,

𝑃
(
𝑌𝑡
𝑖
= 1|𝑋)

𝑃
(
𝑌𝑡
𝑖
= 0|𝑋) =

𝑃
(
𝑌𝑡
𝑖
= 1|𝑋)

1 − 𝑃
(
𝑌𝑡
𝑖
= 1|𝑋) = 𝑒

2(𝑢1−𝑢0)𝑋+(𝑢02−𝑢12)
2𝜎2

+log
𝑃(𝑌𝑡𝑖 =1)
𝑃(𝑌𝑡𝑖 =0) .

Hence,

𝑃
(
𝑌𝑡
𝑖
= 1|𝑋) =

1

1 + 𝑒

(𝑢0−𝑢1)𝑋
𝜎2

+
(𝑢12−𝑢02)

2𝜎2
+log

𝑃(𝑌𝑡𝑖 =0)
𝑃(𝑌𝑡𝑖 =1)

∼
1

1 + 𝑒𝐴𝑋+𝐶
. (10)

Clearly, A < 0 and C is a constant. 𝑃( 𝑌𝑡
𝑖
= 1𝑋) con-

forms to a logistic curve.
Therefore, the relationship between 𝑋𝑡

𝑖
and 𝑃1

𝑖
is 𝑃1

𝑖
=

1

1+𝑒𝐴𝑋+𝐶
.

In addition,

𝑋𝑡
𝑗
=

∑𝑇

1
𝑋𝑡
𝑗

𝑇
=

∑𝑇

1

∑𝑖

1
(𝑌𝑡

𝑖
× 𝑚𝑖𝑗)

𝑇
=

∑𝑇

1

∑𝑖

1
𝑌𝑡
𝑖

𝑇

×𝑚𝑖𝑗 =
∑𝑖

1

∑𝑇

1 𝑌
𝑡
𝑖

𝑇
× 𝑚𝑖𝑗

=
∑𝑖

1
𝑃1
𝑖
× 𝑚𝑖𝑗 = (𝑃1

1
𝑃1
2
⋯𝑃1

𝑖
) × 𝑀.

Substituting this function into Equation (10) yields

(
𝑃1
1
⋯𝑃1

𝑖

)
×𝑀 =

1

𝐴
.

(
log

1 − 𝑃1
1

𝑃1
1

− 𝐶⋯ log
1 − 𝑃1

𝑖

𝑃1
𝑖

− 𝐶

)
.

(11)

2.4 Shannon entropy shifts under
stimulation in the neurobionic material

It is not difficult to understand that the number of𝑌𝑡
𝑖
sets is

finite, relying on the previous state of the network, known
as 𝑆(𝑡 − 1), meaning that the state of the network is a fixed
point or a loop.
If the state of 𝑆(𝑡) is a loop, we can begin on any point

as (0)→𝑆(1)→𝑆(2)⋯→𝑆(𝑡)→𝑆(0)⋯, and the cycle is𝑇.
Assume that cycle 𝑇 is large enough and that 𝑆(𝑡) is unpre-
dictable for an observer, such as a series of random sys-
temic states. According to theBoltzmann entropy theorem,

the entropy for the assembly can be calculated as

𝑆𝑇 = 𝑘 ln 𝑇.

On the other hand, we can also calculate the entropy of
the assembly for each neuron by its spike probability 𝑃𝑖 .
According to the Shannon entropy theorem,

𝑆𝑃 = −
∑𝑖

1
𝑃𝑖 log 𝑃𝑖.

(To be more precise, because the amount of 𝑆𝑇 is
not exactly random but restricted by the dynamic rules,
namely, 𝑆𝑇 ≤ 𝑆𝑃)

𝑘 ln 𝑇 = −
∑𝑖

1
𝑃𝑖 log 𝑃𝑖.

Imaging there are 𝑁 neurons firing as described above,
and 𝑛 neurons are then restricted (𝑃′

1
⋯ 𝑃′𝑛 = 0 or 1). The

new circle 𝑇′ ≤ 𝑇.

𝑘 ln 𝑇′ = −

𝑖∑
𝑛+1

𝑃′
𝑖
log 𝑃′

𝑖
.

Then,

−

𝑖∑
𝑛+1

𝑃′
𝑖
log 𝑃′

𝑖
= 𝑘 ln 𝑇′ ≤ 𝑘 ln 2𝑁−𝑛 ≤ 𝑘 ln 2𝑁

−𝑛 = 𝑘 ln𝑇 − 𝑛 ≤ −

𝑖∑
𝑛+1

𝑃𝑖 log 𝑃𝑖.

That means the spike probabilities of left neurons are
polarized.

2.5 Stability of neurobionic material
relates to excitatory/inhibitory proportions

Assume that there is an iteration system described by func-
tions given by Equations (1)-(5). For matrix given in Equa-
tions (1), we can set the parameters 𝐸−1 and 𝐸1, as well as
𝑁2, representing the expected proportion of −1 or 1, and
the number of elements (𝐸−1 + 𝐸1 = 1).
As mentioned above, when 𝑡 → ∞, vector 𝑆(𝑡) =

(𝑌𝑡
1
𝑌𝑡
2
…𝑌𝑡

𝑖
) will be trapped in a circle T (𝑌𝑡

𝑖
∈ {0, 1}).

The probability of 𝑌𝑡
𝑖
= 1(𝑃1

𝑖
) is the solution of the non-

linear system of Equation (11):

(
𝑃1
1
⋯𝑃1

𝑖

)
×𝑀 =

1

𝐴
.

(
log

1 − 𝑃1
1

𝑃1
1

− 𝐶⋯ log
1 − 𝑃1

𝑖

𝑃1
𝑖

− 𝐶

)
.

(11)



6 of 17 ZOU et al.

Let us define a value �̃�, which denotes the expected
amount of 𝑌𝑡

𝑖
= 1 for each t. Here, we doubt that �̃� is sta-

ble and consider how to calculate �̃�. The proof is as fol-
lows.
Suppose that at one time t, the amount of𝑌𝑡

𝑖
= 1 is𝑁(𝑡),

and𝑁(𝑡) < 𝑁. Substituting Equation (3) into Equation (4),
the value of 𝑌𝑡+1

𝑖
is determined by

𝑌𝑡+1
𝑖

= 𝐹
[
𝑋𝑡+1
𝑖

]

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, when
(
𝑌𝑡
1
𝑌𝑡
2
…𝑌𝑡

𝑖

)
×

⎛⎜⎜⎜⎝
𝑀1𝑖

⋮

𝑀ki

⎞⎟⎟⎟⎠ ≤ 0

1, when
(
𝑌𝑡
1
𝑌𝑡
2
…𝑌𝑡

𝑖

)
×

⎛⎜⎜⎜⎝
𝑀1𝑖

⋮

𝑀ki

⎞⎟⎟⎟⎠ > 0

, 𝑖 = 𝑘.

Taking the parameters 𝐸−1 and 𝐸1 into consideration,
we can easily see that when 𝐸−1 < 𝐸1, the probability
of 𝑌𝑡+1

𝑖
= 1 is higher than the situation 𝐸−1 > 𝐸1. This

is because (𝑌𝑡
1
𝑌𝑡
2
…𝑌𝑡

𝑖
) ×

⎛⎜⎜⎝
𝑀1𝑖

⋮

𝑀𝑘𝑖

⎞⎟⎟⎠ is similar to a random
sampling process from

⎛⎜⎜⎝
𝑀1𝑖

⋮

𝑀𝑘𝑖

⎞⎟⎟⎠. 𝑌𝑡𝑖 = 1 means that 𝑀𝑘𝑖 is

selected and summed into 𝑋𝑡+1
𝑖

.
Therefore, the value of 𝑋𝑡+1

𝑖
is similar to the binomial

distribution

𝑃
(
𝑋𝑡+1
𝑖

)
=
∑𝑁(𝑡)

𝑛=0

[
𝑁 (𝑡)

𝑘

]
𝐸1

𝑛𝐸−1
𝑁(𝑡)−𝑛. (12)

WhenN is sufficiently large,𝐸−1 and 𝐸1 are not very dif-
ferent, and the binomial distribution will approximate a
normal distribution:

𝑃
(
𝑋𝑡+1
𝑖

)
∼ 𝑁

(
𝑢 = 𝑁 (𝑡) ⋅ 𝐸1, 𝜎

2 = 𝑁 (𝑡) ⋅ 𝐸1 ⋅ 𝐸−1
)
.

(13)
Therefore, the probability of 𝑃(𝑋𝑡+1

𝑖
> 0) is equal to the

difference in the cumulative density function:

𝑃
(
𝑋𝑡+1
𝑖

> 0
)
= Φ

(
𝑁 (𝑡) − 𝑁 (𝑡) ⋅ 𝐸1√
𝑁 (𝑡) ⋅ 𝐸1 ⋅ 𝐸−1

)

−Φ

⎛⎜⎜⎝
𝑁(𝑡)

2
− 𝑁 (𝑡) ⋅ 𝐸1√

𝑁 (𝑡) ⋅ 𝐸1 ⋅ 𝐸−1

⎞⎟⎟⎠ .
If 𝑁(𝑡) is stable, 𝑁 (𝑡 + 1) = 𝑁 × 𝑃 (𝑋𝑡+1

𝑖
> 0) = 𝑁(𝑡).

The value of 𝑁(𝑡) is the solution to the function

𝑁 (𝑡) = 𝑁 ⋅

[
Φ

(
𝑁 (𝑡) − 𝑁 (𝑡) ⋅ 𝐸1√
𝑁 (𝑡) ⋅ 𝐸1 ⋅ 𝐸−1

)

− Φ

⎛⎜⎜⎝
𝑁(𝑡)

2
− 𝑁 (𝑡) ⋅ 𝐸1√

𝑁 (𝑡) ⋅ 𝐸1 ⋅ 𝐸−1

⎞⎟⎟⎠
⎤⎥⎥⎦ . (14)

When 𝐸1 is within a certain range, 𝑁(𝑡) is similar to a
fixed point.

2.6 In vivo experiments

2.6.1 Animals and grouping

Eighteen male Sprague-Dawley (SD) rats weighing 200-
250 g were used in the experiments. All rats were raised
and maintained in a specific pathogen-free (SPF)-II envi-
ronment. All operative procedures were performed under
strict aseptic conditions. Before experimentation, the rats
were allowed to acclimate to laboratory conditions. All ani-
mal experiments were in accordance with the ARRIVE
guidelines. All experiments were approved by the Animal
Care andUseCommittee ofHuashanHospital, FudanUni-
versity.
As we calculated in the neurobionic tissue model,

the proportion of inhibitory neurons and the stimulation
intensity will affect the amount of active neurons. So we
planned to use in vivo brain tissue to verify the prediction.
The brain cortex tissue diversity was created by the fer-
ric chloride (FeCl3) injection (high inhibitory proportion
and high stimulation intensity) and FeCl3 + desferrioxam-
ine (DFO) treatment (medium inhibitory proportion and
medium stimulation intensity). Thus, the ratswere divided
into three groups: Tissue A: the sham control, with intra-
cortical injection of saline only (low inhibitory proportion
and low stimulation intensity, n = 6); Tissue C: FeCl3-
induced group, with intracortical injection of freshly pre-
pared FeCl3 solution (100 mM, 5 µL) and subsequent treat-
ment with saline (10 mL/kg) for 14 days (n = 6); Tissue B:
with intracortical injection of freshly prepared FeCl3 solu-
tion (100 mM, 5 µL) and subsequently treated with DFO
(100 mg/kg, concentration: 10 mg/mL for 14 days, n = 6).
No unexpected death existed during the experiment.

2.6.2 FeCl3-induced epileptic model

After a midline scalp incision, the pericranial muscles and
fascia were retracted laterally. Next, a bone hole (1 mm
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diameter) was drilled 1 mm posterior and 2 mm lateral to
the bregma (the bone hole locates at the locus of the senso-
rimotor cortex following the coordinates of the stereotaxic
atlas). Through this hole, 5 µL of freshly prepared aque-
ous solution containing 100 mM FeCl3 was injected over a
period of 5 minutes into the sensorimotor cortex at a depth
of 0.5 mm using a microinjection syringe. The needle was
held in place for an additional 30-60 seconds to prevent
reflux. For rats that would undergo electroencephalograph
(EEG) recording, a bipolar electrode was implanted, one
on the surface of the sensorimotor cortex under the hole
used for FeCl3 injection, and another reference electrode
was simultaneously implanted on the contralateral frontal
dura surface. Subsequently, the bone hole was covered
with bone wax, and the wound was closed with stitches.
After modeling, rats were randomly grouped into groups.
EEGwas recorded fromdays 1 to 28 after intracortical injec-
tion of FeCl3. In the sham control animals (Tissue A), 5 µL
of saline was injected intracortically into the sensorimotor
cortex.

2.6.3 EEG study

Wireless EEG-collecting implants (DSI, USA) were used
to record EEG of rats 24 hours per day for 28 days (sam-
pling rate 200 Hz). Each EEG file was analyzed manually
by scanning through the EEG recording on the computer
screen. Average field potential was calculated by Clampfit
9.0 program. The investigators were blinded to the animal
group assignment.

2.6.4 Western blot analysis

The cortex tissue of the injection area was collected for
further analysis. All of the nuclear and cytoplasmic pro-
teins (100 µg) of the brain tissue were size-fractionated
using SDS-polyacrylamide gel electrophoresis (SDS-PAGE)
and transferred to Immobilon-P membranes (Millipore).
The blottedmembranes were incubatedwith primary anti-
bodies against GABAR-1/2, GAPDH (Abcam, HK Ltd), fol-
lowed by incubation with an HRP-conjugated secondary
antibody (Jackson). The immunoreactivity was detected
using an enhanced chemiluminescence reaction system
(Amersham Pharmacia Biotech).

2.6.5 Immunofluorescent staining

Brain tissues were fixed in 10% formalin, embedded
in paraffinor paraffin, sectioned at 4 µm thicknesses,
and stained with antiparvalbumin (rabbit polyclone,
Abcam, HK Ltd). The secondary antibody was goat

anti-rabbit immunoglobulin. Nuclei were visualized with
4′,6-diamidino-2-phenylindole (DAPI). Slides were pho-
tographed for red (Alexa Fluor 594) and green (Alexa Fluor
488) fluorescence with a fluorescent microscope (E400;
Nikon, Tokyo, Japan). Cells were analyzed as the amount
of positive staining per field (×200) in the area of injection
site. Five random areas in three sections from each brain
were chosen for calculation, which was performed by 2
independent observers who were blinded to group assign-
ment.

2.6.6 Statistical analysis

Data of behavioral, EEG, Western blot, and tissue analy-
sis were all analyzed by two independent researchers who
were blinded to each group. All the data are presented as
the means ± SD. Data were analyzed using independent-
sample t-tests and one-way analysis of variance (ANOVA).
P-value< .05 was considered as statistically significant. All
statistical analyses were performed using Graphpad Prism
5.0 for Windows.

3 RESULTS

3.1 General features of the neurobionic
tissue model

The neurobionic material comprises the artificial neurons,
themodifiable connective chipmatrix driven by the power
system. The output of neurobionic material is character-
ized by spike frequency of each neuron. If there is no inter-
ference with this assembly, it is not difficult to understand
that the amount of the Yit set is finite, relying on the previ-
ous state of the network, known as 𝑆(𝑡 − 1), meaning the
state of the assembly is a fixed point or a loop.
In a closed neurobionic material assembly constructed

by random connections, we have already proved that the
spike probability distribution of each neuron is in accor-
dance with a sigmoid curve in the assembly (see Materials
andMethods). In the rest of the stable state, total assembly
activity is related to the proportion of excitatory synapses.
The spike frequency or probability (𝑃

𝑖
) of a certain neuron

possesses a weak correlation with the expectative accumu-
lation calculated by the connection matrix, but has a close
relation to the posterior average input accumulation 𝑋𝑖 .
The relationship can be expressed as the following equa-
tion:

𝑃𝑖 =
1

1 + 𝑒𝐴𝑋𝑖+𝐶
. (10)

𝑃
𝑖
is the spike probability, 𝑋𝑖 is the expected accumu-

lated input, and A and C are network-related parameters.
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This basic equation describes the relationship between the
spike probability and average input accumulation for a
neuron. In Figure 2A, we demonstrate a representative
example of a random connective neural assembly of 1000
neurons with similar amounts of excitatory and inhibitory
synapses. Spikes in the time series for each neuron, which
have a fixed activation probability without any regularity
of distribution, are shown in Figure 2B. Taking average
accumulation (average number of input signals at each
time point) into consideration, the relationship presents
a sigmoid curve (logistic function, Figure 2C). It is note-
worthy that this is a closed assembly without any effect,
and the sigmoid curve is automatically formed by a proper
excitatory/inhibitory connection proportion. In given sit-
uations, as the inhibitory proportion exceeds the upper
limit, the closed assembly cannot operate continuously.
The estimated highest inhibitory proportion will be calcu-
lated below. If we input some stimulations into this net-
work, such as a persistent activation of a portion of neu-
rons, the firing rates of almost all of the rest of neurons will
change. However, the sigmoid distribution will be main-
tained except for the alteration of parametersA andC (Fig-
ure 2D).

3.2 Spike probabilities in the
neurobionic material can meet the solution
of a nonlinear equation set

Activation pattern of each neuron is usually decided by the
connection pattern of the network, which is defined as the
directed connection matrix M, as mentioned above. How-
ever, it is impossible to predict the spike probability of each
neuron directly by M. The reason is that the spike prob-
ability is the solution of a set of nonlinear equations and
has been proved (see Materials and Methods). In particu-
lar, we cannot calculate the spike probability by summing
the synapses weights toward one neuron inM, even for the
expectation. In Figure 3A, we employed a closed neuron
cluster of 500 neurons, and the left panel shows the ori-
gin activation pattern of each neuron. However, when we
adjust matrixM by summing the total number of synapses
weights connected to each neuron and then array them in
ascending or descending order, the spike probability is not
strictly arranged by similar order, despite the general trend.
In a 1000-neuron closed neuron cluster, the spike proba-
bility of each neuron has a weak linear correlation with
the expected accumulation from the assembly (Figure 3B).
In addition, when stimulants exist, the strength of contin-
uous stimulation relative to one neuron has a weak cor-
relation with its spike probability shift (Figure 3C). That
is to say, with a stepwise rise in persistent input to a cer-
tain neuron, the spike probability cannot be elevated in a

consistent manner. In most situations, the activation pat-
tern will not change synchronously only by swapping the
row inM (Figure 3D). The entire phenomenon mentioned
above indicates that the spike probability of one neuron in
the assembly is not a solution of a simple or linear equa-
tion. The following is an equation set that describes their
relationship in a steady state (see Materials and Methods):

(
𝑃1
1
⋯𝑃1

𝑖

)
×𝑀 =

1

𝐴
.

(
log

1 − 𝑃1
1

𝑃1
1

− 𝐶⋯ log
1 − 𝑃1

𝑖

𝑃1
𝑖

− 𝐶

)
.

(11)
In this equation set, 𝑆𝑖 is the summation of external stim-

ulations to one neuron in the neurobionicmaterial. If there
is no stimulant, 𝑆𝑖 equals zero. To verify this finding, we
give a randomequation setmentioned above and solve it by
MATLAB. Thenwe use the same parameters to operate the
neural assembly to a steady state, and count the spike prob-
ability of each neuron. Finally, we plot the scatter diagram
between exact numerical solution and related spike prob-
ability, and find they are linear dependent exactly (Fig-
ure 3E, R = 0.98).

3.3 Distribution shift of the spike
probability under stimulation

To date, we have described only the dynamic patterns in a
closed neurobionic material assembly. In a changing envi-
ronment, the assembly will be affected by inputs at every
moment, typically leading to a more certain state. We have
already proved that in a neural assembly, increasing the
stimulation strength will elevate the slope of the original
sigmoid curve and polarize the spike probabilities of each
neuron, leading to a lower Boltzmann entropy (or Shan-
non entropy, seeMaterials andMethods). Figure 4A shows
a closed assembly that receives inputs step by step. We
can see the shift in the spike probabilities of each neu-
ron caused by the increasing input. The entropy as well
as the number of active neurons of the whole assembly is
decreased at each step (Figure 4B). Some spike probabili-
ties are increased,while others are suppressed, being polar-
ized (Figure 4C). As mentioned above, the spike shifting
rules are in accord with the solution of the equation. This
phenomenonhas an obvious implication, namely themore
information we obtain, the more convinced we become
regarding a choice.

3.4 The running stability of the
neurobionic material

The running stability of the neurobionic material is of
great importance for its functions and materials design.
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F IGURE 2 Spontaneous spike probability distribution of a closed neurobionic assembly. A, Random connection matrix with similar
excitatory/inhibitory proportions. Neuron number= 1000, excitatory/inhibitory= 1:1. B, Spike-time series of each neuron in the assembly. Each
dot represents a firing. C, Average accumulation-spike probability curve of the neurobionic material assembly. D, Spike-time series and related
average accumulation-spike probability curve of the neurobionicmaterial assembly,with orwithout stimulation inputs.Neuronnumber= 1000,
excitatory/inhibitory ratio = 0.53:0.47. Arrows: neurons of persistent activation; stimulation 1 = stimulation 2 = 50 neurons
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F IGURE 3 Spike probabilities cannot be predicted by linear operations. A, Ranking by ascending or descending synapse weight summa-
tion cannot sort the spike probabilities. Neuron number = 500, excitatory/inhibitory = 0.53:0.47. B, Weak correlation between the actual spike
probability and the expected probability calculated by the synapse weight summation. C, Weak correlation between the spike probability shift
and the expected shift calculated by the input summation. D, Swapping the column of the connectionmatrix cannotmaintain the previous spike
probability. E, Scatter diagram between exact numerical solution and related spike probability. Neuron number = 400, excitatory/inhibitory
ratio = 0.5:0.5, R = 0.98
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F IGURE 4 Polarization of the spike probability resulting from an increase in stimulations. A, Spike-time series of each neuron in the
neurobionic material, affected by increases in the stimulations. Neuron number = 500, excitatory/inhibitory ratio = 0.53:0.47. B, Information
entropy of the observed neuron spike probabilities from the increase in stimulations. C, Polarization of the spike probability owing to the
increase in stimulations

To be adaptive to the changing inputs, the assembly trans-
forms into a certain stable state, meaning that the acti-
vation of each neuron causes a switch to a certain mode,
being excited or inhibited. In this neurobionicmaterial, the
running stability is closely related to the distribution of −1

and 1 in matrix M. The simulation test also demonstrates
that the number of neurons is another factor affecting the
assembly stability. Even the spatial distribution of−1 and 1
is set at random; stability seems to be an intrinsic property
under the proper parameters. Figure 5A shows the assem-
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F IGURE 5 Dependence of the activity of neurobionic assembly on the neuron amount and excitatory/inhibitory proportion. A, Spike-time
series of eachneuron in the neurobionicmaterial for different neuron amounts and excitatory/inhibitory proportions. B andC, Illustration of the
activity regularity for different parameters. D, Relationship between the excitatory/inhibitory ratio and assembly activity. Neuron number= 500
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bly stability under different parameters. To keep the activa-
tion of each neuron stable in a closed neurobionicmaterial
assembly, the distribution of −1 and 1 inM should be near
half and a half to avoid over excitation or inhibition (Fig-
ure 5B). As the neuron number increases, the proportion
of 1 has to grow in step to remain stable. It is notable that
the proportion of 0 in matrix M will not influence the sta-
bility in a closed network, which is related to the synapse
density (Figure 5C). However, when the assembly is not
closed, which means that extra input exists, the network
behavior will differ among various synapse densities. Now
we have already proved that the total spike rate is related to
the number of neurons as well as the proportions of excita-
tory and inhibitory neurons (see Materials and Methods).
The details can be described by Equation (14).

𝑁 (𝑡) = 𝑁 ⋅

[
Φ

(
𝑁 (𝑡) − 𝑁 (𝑡) ⋅ 𝐸1√
𝑁 (𝑡) ⋅ 𝐸1 ⋅ 𝐸−1

)

− Φ

⎛⎜⎜⎝
𝑁(𝑡)

2
− 𝑁 (𝑡) ⋅ 𝐸1√

𝑁 (𝑡) ⋅ 𝐸1 ⋅ 𝐸−1

⎞⎟⎟⎠
⎤⎥⎥⎦ . (14)

In this transcendental equation, 𝑁(𝑡) means the
expected number of active neurons at one time point.
𝑁 is the total number of neurons, while 𝐸1 and 𝐸−1 are
the excitatory and inhibitory neuron proportions. Φ is
the accumulation density function for a normal distribu-
tion. Figure 5D demonstrates some randomly connected
neuron assemblies (500 neurons) with various excitatory
neuron proportions, which were in accordance with our
prediction.

3.5 Mathematical neurobionic model
behaves as the real cortex

Accoding to the results above, the activation of the mathe-
matical neurobionic model depends on the inhibitory neu-
ron proportion and the intensity of stimulation. To ver-
ify the consistency with the real cortex, we use a FeCl3-
induced injury model to prepare different cortex tissues in
vivo followed by EEG recording that can represent the acti-
vation. Tissue A is the normal cortex that contains smaller
inhibitory neuron proportion and lower intensity of stimu-
lation. Tissue C is the FeCl3-damaged cortex that contains
larger inhibitory neuron proportion and higher intensity
of stimulation as the epileptogenesis, while Tissue B has
an intermediate state between Tissues A andC (Figures 6A
and 6B). EEG recording demostrated different average field
potentials that represented various activation states among
Tissues A, B, and C, which meet the prediction in our neu-
robionic material model (Figures 6C and 6D).

3.6 Phase coupling among neurobionic
material assemblies

Since the spike probability of each neuron in an assem-
bly depends only on the connection matrix and stimu-
lant as Equation (11), it seems that memory will be stored
only in synapses. However, as mentioned above, the phase
of firing will be labeled in the spike sequence after stim-
ulation, making it possible for assemblies coupling to
occur.
As in a single neural assembly, both the spike prob-

abilities and relative phase among neurons are decided
by the stimulation pattern: hence, neurons in one assem-
bly will not be coupled freely. Figure 7A shows two neu-
rons from different assemblies can achieve free coupling.
With .25 and .5 homogeneous spike probabilities, they
can couple to a downstream neuron with two major pat-
terns (synchronous or asynchronous). Modulated by dif-
ferent thresholds, the downstream neuron will fire on
various probabilities ranging from .0 to .9 (Figure 7A).
Figure 7B shows framework neural assemblies that can
achievememorization. The goal of the framework is to dis-
tinguish past inputs bymodulating the thresholdwhen the
inputs are dismissed. First, two different inputs are con-
nected to the coupling units (1 to 4), which are indepen-
dent of each other, hence making coupling possible. Then,
four coupling units are connected to the output unit, which
is also unidirectional. As mentioned above, a high or low
threshold will lead to different coupling results; thus, there
is also a thresholdmodulator that affects the output signal.
Our results show that for different input modes (modes 1,
2, and 3), the output unit can demonstrate obvious distin-
guishable firing patterns of the unit with the influence of
the step-up threshold (Figures 7C and 7D), representing a
recall process of the previous inputs. Here, we focus only
on the spike probability combination as a pattern, not the
detailed firing sequence. If we do not disturb the coupling
units, the phase memory will remain among them, unless
the new inputs arrive in and interfere the phase to repre-
sent another memory.

4 DISCUSSION

Nowadays, artificial electronics can perceive all five nat-
ural human senses, including visual, auditory, olfac-
tory, gustatory, and tactile senses.2 Moreover, some elec-
tronic sensors are somehow beyond human capabili-
ties. For example, although deficient in rendering sharp
or high-resolution images, artificial visual devices have
broader optical wavelength and view angle than its bio-
logical counterpart.20 Besides, sensors for some nonhu-
man senses, like magnetic field or humidity, are also
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F IGURE 6 Activation of the neurobionic assembly is similar to the real cortex in vivo. A, Immunofluorescent staining of parvalbumin
and 4′,6-diamidino-2-phenylindole (DAPI) in different rat cortex (200×). Red: parvalbumin, blue: DAPI. B,Western blots and histograms show-
ing relative levels of GABAR1 and GABAR2 in Tissues A, B, and C. C, Representative in vivo EEG recording for Tissues A, B, and C cortex.
D, Theoretical prediction of the activation in neurobionic tissue. Tissue A: normal cortex; Tissue B: FeCl3-induced injured cortex with DFO
intervention; Tissue C: FeCl3-induced injured cortex; n = 6 per group, data are mean ± SD, *P < .05 versus Tissue A, **P < .01 versus Tissue A

integrated into artificial sensory organs.21 Exoskeleton
is wearable device that assists to carry heavy loads or
helps paralyzed patients to restore motor function. Con-
trolled by electroencephalogram or electromyogram sig-
nal, the lower limb exoskeleton may be a better alterna-
tive than a wheelchair.22 Instead of basic walking or stand-
ing, researchers have developed more complicated func-
tions like running or going up or downstairs.23 The fine
movement can also be facilitated by hand exoskeleton that
helps in patients or elderly people rehabilitation and activ-
ities of daily life.4 For patients suffering from amputa-
tion, new generation of bionic prostheses controlled by
EMG signal is emerging, but they are still far from replicat-

ing the intrinsic motor functions,3 and also the advanced
brain functions. Further development of more advanced
and functional artificial devices rely on progress on design,
material, and fabrication. Many researchers have focused
on the improvement of material, while more biocom-
patible or human-like design, such as artificial organic
synapses, better brain-machine interfaces or advanced
algorithm, are also drawing lot of attention.1,6,7
In this work, we proposed a neurobionics material

model and found the rules of a spike probability dis-
tribution created using a random connection, ultimately
inferring an equation set of solutions that can meet the
spike probabilities of each neuron. According to our find-
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F IGURE 7 Phase coupling among artificial neurobionic assemblies. A, Different coupling phases and thresholds leading to different
outputs from the same two neurons. B, Connection framework of neurobionic assemblies embodying memory. There are two input units and
four coupling units to be connected for phase coupling and recording. C, Spike-time series of the outcome coupled by four coupling units when
three kinds of inputs disappear. The threshold of output unit was adjusted by an increasing threshold modulator to highlight firing distinction.
D, Heat maps of spike probabilities of outcome unit, which can show three different firing modes representing three kinds of removed inputs.
Distinctions remain under an increasing modulation threshold
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ings, general activity of this neurobionic material is closely
related to the excitatory/inhibitory proportion and stimu-
lation intensity, similar to the in vivo situation. Using the
frequency or probability of spikes, the neurobionic mate-
rial can perform operations and offer solutions. This is the
intrinsic function of the neurobionicmaterial assembly. By
modification of the connective matrix, the function can be
transformed to another equation set of different parame-
ters to solve certain problems spontaneously. By this kind
of framework, we do not quite understand the real meso-
scopic network structure about advanced brain functions,
but only adjust the connection parameters according to the
equation set.
The spike probability distribution in neurobionic mate-

rial can be used to solve certain decision-making prob-
lems in certain conditions. Theoretical foundations for
modern research on decision making were laid within the
development of evidence-accumulation models.24 In vivo
experiments revealed that the accumulator value is closely
related to the decision probability or firing rate, presented
as a sigmoid curve.25,26 According to our findings, firing
rate distribution in the neurobionic material can sponta-
neously form a sigmoid curve with or without stimula-
tion, which is the neural basis of decision making. It has
already been proved that logistic function is a kind of max-
imum entropy distribution, conforming to the decision-
making principle. Under the restriction of synapses, the
maximum entropy distribution is the most proper dis-
tribution of spike probabilities with the minimum miss-
selection risk. For instance, in the decision-making pro-
cess, we make a decision at random without any useful
information unless there is sufficient reason to make a
choice. Such related inference may answer several issues
related to this process.27 Learning is a modulation process
for decision making. With learning, better choices may
be attained in certain situations. To describe this process,
Hebb proposed that an increase in synaptic efficacy arises
from a presynaptic repeated and persistent stimulation of
a postsynaptic cell.28 This theory does make sense and
is also validated in gastropods.29 The similar mechanism
for working memory (WM) is short-term synaptic plastic-
ity (STSP),30 and the memory was still considered to be
restored in synapses. Taking advantage of PCRAM, we can
easily adjust the wiring framework using the cutting-edge
knowledge. For instance, according to Equation (11), there
are two main free variables, one is the spike frequency 𝑃

𝑖
,

and another is the connection matrixM. If we want to ini-
tially fix spike frequency 𝑃

𝑖
for each neuron to achieve a

function, the connection matrixM can be solved by Equa-
tion (11). Then, we can adjust the PCRAM to change the
connection matrixM in our device.
How information in WM is maintained is the criti-

cal issue to understand the mechanisms underlying WM.

Although it is assumed that information in WM is main-
tained in persistent neuronal activity,31–35 some consid-
ered the persistent activity is not necessary. For instance,
“activity-silent” memory trace of a stimulus can be main-
tained in network by STSP.36 Besides, recent human stud-
ies suggested that information can be encoded in a silent
or latent state prior to reactivation into neuronal activ-
ity by probing the circuit.37,38 In this study, we revealed
that the stimulus information can be encoded in artificial
neurobionic material in the rest state, just by phase cou-
pling. In addition, the information can also be retrieved
by simple modulation. This framework indicates the pos-
sibility for WMmaintained without persistent activity and
even without STSP. Thus, by combination of artificial neu-
robionic material assemblies, the implementable intelli-
gence devices can achieve more complex functions.
Despite of the findings in this study, the model neuro-

bionic device is still far from clinical application. Essen-
tial parts of the device have to include high-density elec-
trodes for continuous signals input and output, a PCRAM
matrix for parameter modulation, and a permanent power
system. The major success criteria of this model should be
the functional improvements confirmed by neuropsycho-
logical tests in the cognitive-impaired patients, verified by
cohort study. Application risks may include the rejection
reaction, epileptic effect, and psychiatric disorder.With the
progress in PCRAM and biocompatible materials, we will
achieve the final success in the near future.

5 CONCLUSIONS

In summary, the salient finding from our work proposed a
feasible design of an assembly framework based on imple-
mentable neurobionic material, reminiscent of real brain
tissue. Then, we mathematically validated that the spike
probability distribution in this material is a spontaneous
phenomenon, and distribution is a maximum entropy dis-
tribution under one certain stimulus, which can be applied
to decision-making problem. Second, we also prove that
the spike probability fits the solution of a nonlinear equa-
tion set, which bridges from connection modification to
spike probability.Moreover,we propose the phase coupling
effect from parallel to hierarchical neuromorphic assem-
blies, indicating the possibility of more complex function
for these implementable neurobionics devices.
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