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morbidity Index; CI, confidence interval; CLD, chronic liver disease; EHR,
electronic health record; HR, hazard ratio; ICD-10-CM, International
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rative; NAFLD, nonalcoholic fatty liver disease; NCATS, National Center
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BACKGROUND & AIMS: In patients with chronic liver disease
(CLD) with or without cirrhosis, existing studies on the out-
comes with severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection have limited generalizability. We used
the National COVID Cohort Collaborative (N3C), a harmonized
electronic health record dataset of 6.4 million, to describe
SARS-CoV-2 outcomes in patients with CLD and cirrhosis.
METHODS: We identified all patients with CLD with or without
cirrhosis who had SARS-CoV-2 testing in the N3C Data Enclave
as of July 1, 2021. We used survival analyses to associate SARS-
CoV-2 infection, presence of cirrhosis, and clinical factors with
the primary outcome of 30-day mortality. RESULTS: We iso-
lated 220,727 patients with CLD and SARS-CoV-2 test status:
128,864 (58%) were noncirrhosis/negative, 29,446 (13%)
were noncirrhosis/positive, 53,476 (24%) were cirrhosis/
negative, and 8941 (4%) were cirrhosis/positive patients.
Thirty-day all-cause mortality rates were 3.9% in cirrhosis/
negative and 8.9% in cirrhosis/positive patients. Compared to
cirrhosis/negative patients, cirrhosis/positive patients had 2.38
times adjusted hazard of death at 30 days. Compared to non-
cirrhosis/positive patients, cirrhosis/positive patients had 3.31
times adjusted hazard of death at 30 days. In stratified analyses
among patients with cirrhosis with increased age, obesity, and
comorbid conditions (ie, diabetes, heart failure, and pulmonary
disease), SARS-CoV-2 infection was associated with increased
adjusted hazard of death. CONCLUSIONS: In this study of
approximately 221,000 nationally representative, diverse, and
sex-balanced patients with CLD; we found SARS-CoV-2 infection
in patients with cirrhosis was associated with 2.38 times
mortality hazard, and the presence of cirrhosis among patients
with CLD infected with SARS-CoV-2 was associated with 3.31
times mortality hazard. These results provide an additional
impetus for increasing vaccination uptake and further research
regarding immune responses to vaccines in patients with se-
vere liver disease.
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Hrespiratory syndrome coronavirus 2 (SARS-CoV-2)
infection, with clinical manifestations ranging from liver
function test elevation to acute hepatic decompensation.1–4
In patients with existing chronic liver diseases (CLD) and
cirrhosis, the outcomes of SARS-CoV-2 infection have been
mixed.5–10 Previous small-scale studies from tertiary
referral centers have demonstrated mortality rates
approaching 40% for patients with cirrhosis who were
infected by SARS-CoV-2.7,10 Other studies, however, have
shown that patients with cirrhosis who test positive for
SARS-CoV-2 infection had similar mortality rates compared
to those patients hospitalized with complications of
cirrhosis without SARS-CoV-2 infection.9

A study of patients with and without cirrhosis based on
national data extracted from the US Department of Veterans
Affairs Clinical Data Warehouse demonstrated that patients
with cirrhosis were less likely to test positive for SARS-CoV-
2 but, when positive, were 3.5 times more likely to die from
all-causes compared to those who tested negative. Although
this was one of the largest studies of outcomes of SARS-CoV-
2 infection in patients with cirrhosis to date, 88% of the
underlying patient population was male, limiting general-
ization to other patient populations.11

The National COVID Cohort Collaborative (N3C) was
formed in April 2020 as a centralized resource of harmo-
nized electronic health record (EHR) data from health sys-
tems around the United States.12,13 As of July 1, 2021, 214
clinical sites had signed data transfer agreements and 57
sites had harmonized data included in the N3C Data
Enclave—a diverse and nationally representative central
repository of harmonized EHR data and a new model for
collaborative data sharing and analytics. Initial results up to
December 2020 from the N3C main cohort have been
characterized and described previously.14 To address the
conflicting results and gaps of previous studies, we used the
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WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

We used the National COVID Cohort Collaborative (N3C),
a harmonized EHR dataset of 6.4 million, to describe
SARS-CoV-2 outcomes in patients with CLD and
cirrhosis.

NEW FINDINGS

In this study of 220,727 patients with liver disease, 30-day
mortality was 8.9% for cirrhosis/SARS-CoV-2–positive
patients and SARS-CoV-2 infection was associated with
a 2.38-times hazard of death.

LIMITATIONS

Comparison population of cirrhosis/SARS-CoV-2–
negative is likely sicker than the general cirrhosis
population. There is substantial not-at-random
missingness of multiple covariates.

IMPACT

This study corroborates previous research on the
increased risk of adverse outcomes in cirrhosis/SARS-
CoV-2–positive patients. This study provides additional
impetus for increasing vaccine uptake among this
vulnerable population.
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N3C Data Enclave to answer the following 3 distinct ques-
tions regarding outcomes of SARS-CoV-2 infection in pa-
tients with CLD:

1. What is the association between SARS-CoV-2 and
mortality in patients with CLD with cirrhosis?

2. What is the association between cirrhosis and mor-
tality in patients with CLD who tested positive for
SARS-CoV-2?

3. What are the factors associated with mortality among
patients with CLD with cirrhosis who tested positive
for SARS-CoV-2?
Methods
The National COVID Cohort Collaborative

The N3C is a centralized, curated, harmonized, secure, and
nationally representative clinical data resource with embedded
analytical capabilities. The N3C is composed of members from
the National Institutes of Health (NIH) Clinical and Trans-
lational Science Awards Program and its Center for Data to
Health, IDeA Centers for Translational Research, National
Patient-Centered Clinical Research Network, Observational
Health Data Sciences and Informatics network, TriNetX, and
Accrual to Clinical Trials network. N3C’s design, infrastructure,
deployment, and initial analyses from the main N3C cohort
have been described previously.12,14 N3C Data Enclave is a
secure cloud-based implementation of Palantir Foundry (Pal-
antir Technologies, Denver, CO) analytic suite hosted by the
NIH National Center for Advancing Translational Sciences
(NCATS).12,14

The N3C Data Enclave includes EHR data of patients who
were tested for SARS-CoV-2 or had related symptoms after
January 1, 2020. For patients included in the N3C Data Enclave,
encounters in the same source health system beginning on or
after January 1, 2018 are also included to provide lookback
data. N3C uses centrally maintained “shared logic sets” for
common diagnostic and phenotype definitions.12,14 All EHR
data in the N3C Data Enclave are harmonized in the Observa-
tional Medical Outcomes Partnership (OMOP) common data
model, version 5.3.1.15,16 In the OMOP common data model,
classification vocabularies, such as International Classification
of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM),
or Standard Nomenclature of Medicine; are mapped to standard
OMOP concepts based on semantic and clinical relationships.17

Vocabulary classification and mapping of various ontologies to
the OMOP standard vocabulary is maintained by Observational
Health Data Sciences and Informatics Network and publicly
available on ATHENA (http://athena.ohdsi.org/), which is a
web-based vocabulary repository.18 For all analyses, we used
the deidentified version of the N3C Data Enclave, versioned as
of July 1, 2021 and accessed on July 3, 2021. To protect patient
privacy, all dates in the N3C Data Enclave are uniformly shifted
up to ±180 days within each partner site in the deidentified
database.

Definition of SARS-CoV-2 Status
SARS-CoV-2 testing status was based on a modified version

of the N3C shared logic set; specifically, OMOP concept identi-
fiers signifying culture and nucleic acid amplification testing for
SARS-CoV-2 (Supplementary Table 1) were queried among all
patients included in the N3C Enclave.12,14 We did not query
SARS-CoV-2 antibody testing, as this might be a marker of
remote infection or vaccination rather than active infection. The
“index date” for all analyses was defined as the date of the
earliest positive test (for SARS-CoV-2–positive patients) or
earliest negative test (for SARS-CoV-2–negative patients).11

Patients who underwent repetitive SARS-CoV-2 testing were
classified based on the above definitions governing the earliest
test. Patients who did not have SARS-CoV-2 testing by the
above definitions (eg, those who were clinically diagnosed with
“suspected COVID-19” or those with antibody testing only)
were excluded. To account for uniform date shifting that occurs
per partner site in the deidentified N3C Data Enclave, we
calculated a “maximum data date” to reflect the last known date
of records for each data partner and excluded patients who
were tested <90 days of this “maximum data date.”

Definitions of Chronic Liver Disease and Cirrhosis
CLD diagnoses were made based on documentation of at

least 1 OMOP concept identifier corresponding to previously
validated ICD-10-CM codes for liver diseases (Supplementary
Table 2) at any time before the index date.19–22 As “steatosis
of the liver” is a common finding in alcohol-associated liver
disease (AALD) and nonalcoholic fatty liver disease (NAFLD),
patients with OMOP concept identifier 4059290 (correspond-
ing to ICD-10-CM code K76.0) and at least 1 OMOP concept
identifier describing alcohol use (Supplementary Table 2) in
accordance with definitions by the Centers for Disease Control
and Prevention and the National Institute on Alcohol Abuse and
Alcoholism Alcohol Epidemiologic Data System, were catego-
rized as those with AALD.23–26 Patients with OMOP concept
identifier 4059290 without an alcohol use OMOP concept
identifier were categorized as NAFLD.

http://athena.ohdsi.org/
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Diagnoses were determined in a hierarchical manner such
that NAFLD categorization was made only after exclusion of all
other CLD causes. In those patients identified to have CLD, di-
agnoses of cirrhosis were made based on documentation of at
least 1 OMOP concept identifier corresponding to previously
validated ICD-10-CM codes for cirrhosis and its complications
(Supplementary Table 2) at any time before the index date.12,27

Diagnoses of cirrhosis, therefore, can only take place in the
setting of an existing CLD diagnosis. Patients who had under-
gone orthotopic liver transplantation (n ¼ 12,170 patients) as
signified by OMOP concept identifier 42537742 (corresponding
to ICD-10-CM code Z94.4) were excluded from all analyses.

Study Design and Questions of Interest
Using the above definitions for SARS-CoV-2 testing and

chronic liver disease/cirrhosis; we isolated our adult patients
(with age 18 years or older documented) study population. We
divided the study patients into the following cohorts (Figure 1):

� CLD without cirrhosis and SARS-CoV-2–negative: non-
cirrhosis/negative;

� CLD without cirrhosis and SARS-CoV-2–positive: non-
cirrhosis/positive;

� CLD with cirrhosis and SARS-CoV-2–negative: cirrhosis/
negative; and

� CLD with cirrhosis and SARS-CoV-2–positive: cirrhosis/
positive.

Based on these cohorts, we investigated 3 questions or
associations of interest concerning SARS-CoV-2 infection in
patients with CLD with or without cirrhosis:

1. What is the association between SARS-CoV-2 and all-
cause mortality at 30 days in patients with CLD with
cirrhosis? This a comparison between patients with CLD
with cirrhosis who tested positive for SARS-CoV-2
(cirrhosis/positive) and patients with CLD with
cirrhosis who tested negative for SARS-CoV-2 (cirrhosis/
negative).

2. What is the association between cirrhosis and all-cause
mortality at 30 days in patients with CLD who tested
positive for SARS-CoV-2? This is a comparison between
patients with CLD with cirrhosis who tested positive for
SARS-CoV-2 (cirrhosis/positive) and patients with CLD
without cirrhosis who tested positive for SARS-CoV-2
(noncirrhosis/positive).

3. What are the demographic and clinical factors associated
with all-cause mortality at 30 days among patients with
CLD with cirrhosis who tested positive for SARS-CoV-2
(cirrhosis/positive)?
Outcomes
All patients were followed until their last recorded visit

occurrence, procedure, measurement, observation, or condition
occurrence in the N3C Data Enclave. The primary outcome was
all-cause mortality at 30 days after the index SARS-CoV-2 test
date. Secondary outcomes included hospitalization within 30
and 90 days after the index date, mechanical ventilation within
30 and 90 days, and all-cause mortality at 90 days after the
index date. The outcome of death was ascertained based on
EHR data indicating in-hospital death, out-of-hospital death, or
referral to hospice. The outcome of mechanical ventilation was
ascertained by OMOP procedure or condition concepts. The
outcome of hospitalization was ascertained based on recorded
OMOP visits concepts. These outcomes were defined centrally
based on concept sets in N3C shared logic and have been
implemented on the full N3C cohort.12,14 To account for po-
tential delays in data reporting/harmonization and outcome
ascertainment from data partner sites, we had excluded all
patients who had SARS-CoV-2 testing <90 days of the
“maximum data date” as defined above.
Baseline Characteristics
Baseline demographic characteristics extracted from N3C

Data Enclave included age, sex, race/ethnicity, height, weight,
body mass index (BMI), and state of origin. States were clas-
sified into 4 geographic regions (Northeast, Midwest, South,
and West) defined by the Centers for Disease Control and
Prevention’s National Respiratory and Enteric Virus Surveil-
lance System.28 Patients were categorized as living in “other/
unknown” region if they originated from territories not other-
wise classified (eg, Guam, Puerto Rico, US Virgin Islands, or
other dependencies) or if state of origin was censored to pro-
tect patient privacy in ZIP codes with few residents. We eval-
uated comorbid conditions based on the original Charlson
Comorbidity Index (CCI),29,30 consistent with central practices
per the N3C consortium.14 As per definitions established in N3C
shared logic, CCI comorbid conditions were extracted centrally
using the ‘icd’ R package,14,31 which processes and categorizes
diagnosis codes from raw data tables. To avoid double-counting
liver-related comorbidities in our analyses, we calculated a
modified CCI based on the original assigned weights for
comorbidities (Supplementary Table 3), excluding “mild liver
disease” and “severe liver disease.”

Components of common laboratory tests (basic metabolic
panel, complete blood count, liver function tests, and serum
albumin) were extracted based on N3C shared logic sets except
for international normalized ratio, which we custom-defined
based on standard OMOP concept identifiers (Supplementary
Table 4). We extracted the most complete values to calculate
the Model for End-Stage Liver Disease-Sodium (MELD-Na)
score closest to or on the index date from within 30 days before
to 7 days after the index date. Fifty-five percent of patients had
laboratory tests performed within 2 days of the index date
available; 17,653 patients, which represented 8% of the full
analytical sample, had full laboratory data for calculation of
MELD-Na scores. The time frame of 30 days before to 7 days
after the index date was consistent with definitions used cen-
trally by N3C to identify hospitalizations of interest in the main
cohort.14
Statistical Analyses
Clinical characteristics and laboratory data were summa-

rized with medians and interquartile ranges (IQRs) for
continuous variables or numbers and percentages for categor-
ical variables. Comparisons between groups were performed
using c2 and Kruskal-Wallis tests where appropriate. We used
the Kaplan-Meier method to calculate 30-day and 90-day



Figure 1. Kaplan-Meier curve for 30-day overall survival.
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cumulative incidences of hospitalization, mechanical ventila-
tion, and death. We used Cox proportional hazard models to
evaluate the associations between SARS-CoV-2 and mortality
among patients with cirrhosis, between cirrhosis and mortality
among patients with CLD who tested positive for SARS-CoV-2,
and factors with mortality for cirrhosis/positive patients. In
all multivariable analyses, we adjusted for age, sex, race/
ethnicity, CLD etiology, CCI score, and region of origin.

We conducted stratified analyses based on categories of
MELD-Na scores, categories of modified CCI scores, and
selected comorbidities associated with worse outcomes in
SARS-CoV-2 infection per central N3C data: obesity (defined as
�30 kg/m2), diabetes, chronic renal disease, congestive heart
failure, and chronic pulmonary disease. Lastly, as full MELD-Na
scores and serum albumin values were available for 17,653
(8%) and 75,267 (34%) patients in the analytical sample,
respectively, we conducted sensitivity analyses of models
involving patients with cirrhosis. Two-sided P values <.05 were
considered statistically significant in all analyses. Data queries,
extractions, and transformations of OMOP data elements and
concepts in the N3C Data Enclave were conducted using the
Palantir Foundry implementations of Spark-Python, version 3.6,
and Spark-SQL, version 3.0. Statistical analyses were performed
using the Palantir Foundry implementation of Spark-R, version
3.5.1 “Feather Spray” (R Core Team, Vienna, Austria).32
Institutional Review Board Oversight
Submission of data from individual centers to N3C are

governed by a central Institutional Review Board (IRB) proto-
col #IRB00249128 hosted at Johns Hopkins University School
of Medicine via the SMART IRB40 Master Common Reciprocal
reliance agreement. This central IRB cover data contributions
and transfer to N3C and does not cover research using N3C
data. If elected, individual sites can choose to exercise their own
local IRB agreements instead of using the central IRB. As NCATS
is the steward of the repository, data received and hosted by
NCATS on the N3C Data Enclave, its maintenance, and its
storage are covered under a central NIH IRB protocol to make
EHR-derived data available for the clinical and research com-
munity to use for studying COVID-19. Our institution has an
active data transfer agreement with N3C. This specific analysis
of the N3C Enclave was approved by N3C under the Data Use
Agreement titled “[RP-7C5E62] COVID-19 Outcomes in Patients
with Cirrhosis.” The use of N3C data for this study was
authorized by the IRB at the University of California, San
Francisco under #20-33149.

Results
As of July 1, 2021, fifty-seven sites that had completed

data transfer were harmonized and integrated into the N3C
Enclave. This included approximately 7.1 billion rows of
data on 6,378,074 unique patients, of which 5,285,444 had
at least 1 SARS-CoV-2 culture or nucleic acid amplification
test. Of these approximately 5.3 million patients who had
undergone testing, an analytical sample of 220,727 patients
with CLD with or without cirrhosis was assembled, after
applying exclusion criteria for transplant status, age, and
date shifting in the N3C Enclave (Supplementary Figure 1).
Based on SARS-CoV-2 test results, we divided the 220,727
patients with CLD into the following 4 cohorts: 128,864
(58%) noncirrhosis/negative, 29,446 (13%) noncirrhosis/
positive, 53,476 (24%) cirrhosis/negative, and 8,941 (4%)
cirrhosis/positive.

Demographic and Clinical Characteristics
The baseline demographic and clinical characteristics of

the 4 cohorts are presented in Table 1. In general, the 4



Table 1.Baseline Demographic, Clinical, and Laboratory Characteristics of the 220,727 Patients With Chronic Liver Diseases
With and Without Cirrhosis Included in the Analysis

Characteristic
Noncirrhosis/negative

(n ¼ 128,864)
Noncirrhosis/positive

(n ¼ 29,446)
Cirrhosis/negative

(n ¼ 53,476)
Cirrhosis/positive

(n ¼ 8941)

Sex, female 68,209 (53) 15,947 (54) 23,479 (44) 4009 (45)

Age 54 (42–64) 53 (41–62) 60 (50–67) 61 (51–68)
18–29 y 8732 (7) 2163 (7) 1431 (3) 229 (3)
30–49 y 42,408 (33) 10,365 (35) 11,315 (21) 1696 (19)
50–64 y 48,582 (38) 10,952 (37) 22,528 (42) 3702 (41)
65þ y 29,142 (23) 5966 (20) 18,202 (34) 3314 (37)

Race/ethnicity
White 80,114 (62) 15,995 (54) 35,308 (66) 5055 (57)
Black/African-American 19,524 (15) 4291 (15) 8701 (16) 1701 (19)
Hispanic 16,898 (13) 5524 (19) 5424 (10) 1289 (14)
Asian 4639 (4) 968 (3) 1203 (2) 195 (2)
Unknown/other 7689 (6) 2668 (9) 2840 (5) 701 (8)

Height, cma 170 (163–178) 170 (163–178) 170 (163–178) 170 (163–178)

Weight, kga 90 (75–107) 94 (79–112) 83 (69–100) 86 (72–104)

BMI, kg/m2,a 31 (27–37) 33 (28–38) 29 (24–34) 30 (25–36)
BMI �30 kg/m2 46,239 (36) 9405 (32) 15,198 (28) 2401 (27)

Liver disease etiology
NAFLD 85,420 (66) 21,237 (72) 17,753 (33) 3492 (39)
Hepatitis C 27,657 (21) 4691 (16) 10,577 (20) 1707 (19)
AALD 8017 (6) 1941 (7) 17,980 (34) 2518 (28)
Hepatitis B 5406 (4) 1170 (4) 2173 (4) 399 (4)
Cholestatic 785 (1) 100 (0) 3158 (6) 522 (6)
Autoimmune 1579 (1) 307 (1) 1835 (3) 303 (3)

Decompensated cirrhosis 36,930 (69) 5993 (67)

Modified CCIb 1 (0–3) 1 (0–3) 2 (0–5) 3 (1–6)

Comorbidities
Diabetes 39,865 (31) 10,510 (36) 20,954 (39) 4339 (49)
Chronic renal disease 11,660 (9) 2651 (9) 10,235 (19) 2228 (25)
Congestive heart failure 10,615 (8) 2169 (7) 10,235 (19) 2044 (23)
Chronic pulmonary disease 36,229 (28) 7,391 (25) 16,271 (30) 2859 (32)

Region
Northeast 14,940 (12) 2664 (9) 4273 (8) 791 (9)
Midwest 20,098 (16) 4498 (15) 10,345 (19) 1574 (18)
South 22,066 (17) 3670 (12) 9596 (18) 1142 (13)
West 16,462 (13) 2560 (9) 6367 (12) 657 (7)
Other 55,298 (43) 16,054 (55) 22,895 (43) 4777 (53)

Laboratory testsa

Albumin, g/L 4.0 (3.6–4.4) 3.7 (3.1–4.1) 3.4 (2.8–4.0) 3.1 (2.6–3.7)
AST, u/L 28 (20–47) 33 (22–52) 41 (25–74) 43 (27–77)
ALT, u/L 31 (19–56) 37 (22–66) 29 (18–51) 32 (20–57)
Total bilirubin, mg/dL 0.5 (0.4–0.7) 0.4 (0.3–0.7) 0.9 (0.5–2.0) 0.8 (0.4–1.8)
Creatinine, mg/dL 0.8 (0.7–1.0) 0.8 (0.6–1.0) 0.9 (0.7–1.2) 0.9 (0.7–1.4)
INR 241 (190–301) 239 (184–311) 174 (106–254) 163 (99–252)
Platelet, 109/L 13.0 (11.4–14.3) 12.9 (11.4–14.1) 11.3 (9.3–13.1) 10.9 (9.0–12.8)
Hemoglobin, g/dL 1.1 (1.0–1.2) 1.1 (1.0–1.2) 1.3 (1.1–1.7) 1.3 (1.1–1.8)
Neutrophil, 109/L 4.8 (3.4–6.8) 4.2 (3.0–6.2) 4.3 (2.9–6.6) 4.3 (2.9–6.6)
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cohorts differed significantly with regard to distributions of
age, race/ethnicity, height, weight, BMI, etiologies of chronic
liver disease, modified CCI scores, National Respiratory and
Enteric Virus Surveillance System regions, and laboratory
test values. Of note, patients with cirrhosis were less likely
to be women: 53% of noncirrhosis/negative, 54% of non-
cirrhosis/positive, and 44% of cirrhosis/negative and 45%
of cirrhosis/positive cohorts. Of CLD etiologies, there were



Table 1.Continued

Characteristic
Noncirrhosis/negative

(n ¼ 128,864)
Noncirrhosis/positive

(n ¼ 29,446)
Cirrhosis/negative

(n ¼ 53,476)
Cirrhosis/positive

(n ¼ 8941)

Lymphocyte, 109/L 1.8 (1.3–2.5) 1.4 (1.0–2.0) 1.3 (0.8–2.0) 1.1 (0.7–1.7)
Neutrophil/lymphocyte ratio 2.8 (1.8–4.6) 2.5 (1.7–4.2) 3.2 (2.0–5.6) 3.7 (2.1–7.1)

MELD–Nac 9 (7–13) 10 (8–13) 16 (11–24) 17 (11–24)

NOTE. Continuous variables are presented as median (IQR), ordinal and categorical variables are presented as n (%).
ALT, alanine transaminase; AST, aspartate transaminase; INR, international normalized ratio.
aHeight, weight, BMI, and laboratory tests exhibit a range of missingness from 38% to 88% of the total sample.
bModified CCI was calculated based on the original CCI score, excluding weights for “mild liver disease” and “severe liver
disease.”
cMELD-Na scores were calculated for 17,653 patients, which represent 8% of the total sample.
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notable differences in the distribution of patients with
AALD: 34% and 28% of the cirrhosis/negative and
cirrhosis/positive cohorts, respectively, compared to 6%
and 7% of the noncirrhosis/negative and noncirrhosis/
positive cohorts, respectively.

Full MELD-Na components were available with scores
calculated in 17,653 patients, representing 8% of the total
population. Among noncirrhosis patients, full MELD-Na
components were available for 6866 of 158,310 patients
(4%), the median MELD-Na was 9 (IQR, 7–13) and 10 (IQR,
8–13) in noncirrhosis/negative and noncirrhosis/positive
patients, respectively. Among patients with cirrhosis, full
MELD-Na components were available for 10,787 of 62,427
(17%) patients, median MELD-Na was 16 (IQR, 11–24) and
17 (IQR, 11–24) in cirrhosis/negative and cirrhosis/positive
patients, respectively. For 121,703 patients with CLD (55%)
whose location data were available, every state and Centers
for Disease Control and Prevention National Respiratory
and Enteric Virus Surveillance System region was repre-
sented, both in the full sample and among those with pos-
itive SARS-CoV-2 tests (Supplementary Figure 2).
Death, Hospitalization, and Mechanical
Ventilation Rate

Cumulative incidences of outcomes of interest (30- and
90-day all-cause death, hospitalization, and mechanical
ventilation) are presented in Table 2. Thirty-day death rates
increased progressively from 0.4% in noncirrhosis/negative
patients to 1.7% in noncirrhosis/positive patients, and from
3.9% in cirrhosis/negative patients to 8.9% in cirrhosis/
positive patients. Ninety-day death rates also increased
progressively from 0.8% in noncirrhosis/negative patients
to 2.3% in noncirrhosis/positive patients, and from 7.0% in
cirrhosis/negative patients to 12.7% in cirrhosis/positive
patients. Thirty- and 90-day mechanical ventilation rates
also increased in a similar fashion based on SARS-CoV-2
status and presence of cirrhosis. Of note, 30-day and 90-
day hospitalization rates were consistently higher among
patients with cirrhosis compared to those patients without
cirrhosis. Among both noncirrhosis and cirrhosis patients,
those testing negative for SARS-CoV-2 had higher 30- and
90-day hospitalization rates. Kaplan-Meier curves for
30-day mortality among the 4 cohorts are presented in
Figure 1.
Association Between SARS-CoV-2 Infection and
Death in Patients With Cirrhosis

In univariate analyses, compared to cirrhosis/negative
patients, SARS-CoV-2 positivity (cirrhosis/positive) was
associated with 2.37 times hazard of death within 30 days
(hazard ratio [HR], 2.37; 95% confidence interval [CI], 2.18–
2.58; P < .01). In multivariate analyses, compared to
cirrhosis/negative patients, SARS-CoV-2 positivity
(cirrhosis/positive) was associated with 2.38 times hazard
of death within 30 days (adjusted hazard ratio [aHR], 2.38;
95% CI 2.18–2.59; P < .01) after adjusting for race/
ethnicity, CLD etiology, modified CCI, and region.

Of note, age (aHR, 1.02; 95% CI, 1.01–1.02; P < .01),
other/unknown race/ethnicity (aHR, 1.35; 95% CI, 1.16–
1.58; P < .01), AALD as etiology (aHR, 1.47; 95% CI, 1.33–
1.61; P < .01), and modified CCI (aHR, 1.06 per point; 95%
CI, 1.05–1.07; P < .01) were associated with higher 30-day
mortality hazards in multivariate analyses. Cholestatic liver
disease as etiology (aHR, 0.66; 95% CI, 0.53–0.81; P < .01)
and location in other/unknown region (aHR, 0.71; 95% CI,
0.62–0.82; P < .01) were associated with lower 30-day
mortality hazards in multivariate analyses. Detailed results
are presented in Table 3.
Association Between Presence of Cirrhosis and
Death in Patients With Chronic Liver Disease
Who Tested SARS-CoV-2–Positive

In univariate analyses, compared to noncirrhosis/posi-
tive patients, the presence of cirrhosis (cirrhosis/positive)
was associated with 5.34 times hazard of death within 30
days (HR, 5.34; 95% CI, 4.75–6.00; P < .01). In multivariate
analyses, compared to noncirrhosis/positive patients, the
presence of cirrhosis (cirrhosis/positive) was associated
with a 3.31 times hazard of death within 30 days (aHR, 3.31;
95% CI, 2.91–3.77; P < .01) after adjusting for race/
ethnicity, CLD etiology, CCI, and region.

Of note, age (aHR, 1.05 per year; 95% CI, 1.05–1.06;
P < .01), Hispanic ethnicity (aHR, 1.20; 95% CI, 1.02–1.42;



Table 2.Cumulative Incidences of Mortality, Mechanical Ventilation, and Hospitalization At 30 and 90 Days After Index Date

Variable
Noncirrhosis/negative,

% (n ¼ 128,864)
Noncirrhosis/positive,

% (n ¼ 29,446)
Cirrhosis/negative,
% (n ¼ 53,476)

Cirrhosis/positive,
% (n ¼ 8,941)

Hospitalization by day 30 27.2 (27–27.5) 20.4 (19.9–20.9) 48.8 (48.3–49.2) 47.2 (46.1–48.2)

Hospitalization by day 90 29.4 (29.2–29.7) 22.9 (22.1–23.1) 51.7 (51.3–52.1) 50.1 (49–51.2)

Mechanical ventilation by day 30 0.8 (0.7–0.8) 1.8 (1.7–2) 4.8 (4.6–5) 8.8 (8.2–9.4)

Mechanical ventilation by day 90 0.9 (0.9–1) 2.0 (1.8–2.1) 6.0 (5.8–6.2) 9.9 (9.3–10.5)

Mortality by day 30 0.4 (0.4–0.4) 1.7 (1.6–1.9) 3.9 (3.7–4) 8.9 (8.3–9.5)

Mortality by day 90 0.8 (0.7–0.8) 2.3 (2.1–2.4) 7.0 (6.8–7.3) 12.7 (12–13.4)

NOTE. Values are presented as cumulative incidence rate (95% CI).
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P ¼ .03), other/unknown race (aHR, 1.25; 95% CI, 1.01–
1.55; P ¼ .04), chronic hepatitis C as etiology (aHR, 1.27;
95% CI, 1.08–1.48; P < .01), AALD as etiology (aHR, 1.40;
95% CI, 1.20–1.65; P < .01), and modified CCI (aHR, 1.07
per point; 95% CI, 1.05–1.08; P < .01) were associated with
higher 30-day mortality hazards in multivariate analyses.
Female sex (aHR, 0.84; 95% CI, 0.74–0.95; P < .01), location
Table 3.Association of SARS-CoV-2 Infection With All-Cause 30
Cirrhosis/Negative)

Variable

Univariable Cox regres

HR 95% CI

SARS-CoV-2 infection 2.37 2.18–2.58

Age, y 1.02 1.02–1.02

Sex, female 0.91 0.84–0.98

Race/ethnicity, n (%)
White Ref —

Black/African American 1.10 0.99–1.21
Hispanic 1.08 0.96–1.22
Asian 0.92 0.70–1.20
Unknown/other 1.32 1.14–1.53

Etiology of liver disease, n (%)
NAFLD Ref —

Hepatitis C 0.91 0.81–1.01
AALD 1.20 1.10–1.31
Hepatitis B 0.97 0.80–1.19
Cholestatic 0.60 0.49–0.74
Autoimmune 0.79 0.62–1.00

Modified CCIa 1.07 1.06–1.08

Region
Northeast Ref —

Midwest 0.87 0.79–1.08
South 0.95 0.84–1.15
West 0.77 0.69–0.98
Other 0.71 0.65–0.87

aModified CCI was calculated based on the original CCI score
disease.”
in the Midwest (aHR, 0.51; 95% CI, 0.41–0.62; P < .01),
location in the South (aHR, 0.75; 95% CI, 0.61–0.91; P <
.01), location in the West (aHR, 0.43; 95% CI, 0.33–0.57; P <
.01) and other/unknown locations (aHR, 0.46; 95% CI, 0.39–
0.54; P < .01) were associated with lower 30-day mortality
hazards in multivariate analyses. Detailed results are pre-
sented in Table 4.
-Day Mortality in Patients With Cirrhosis (Cirrhosis/Positive vs

sion Multivariable Cox regression

P value aHR 95% CI P value

<.01 2.38 2.18–2.59 <.01

<.01 1.02 1.01–1.02 <.01

.01 0.99 0.91–1.07 .74

— Ref — —

.08 0.98 0.88–1.09 .68

.21 1.04 0.92–1.18 .54

.53 0.95 0.72–1.26 .73
<.01 1.35 1.16–1.58 <.01

— Ref — —

.09 0.97 0.86–1.08 .55
<.01 1.47 1.33–1.61 <.01
.78 1.01 0.82–1.24 .93

<.01 0.66 0.53–0.81 <.01
.05 0.88 0.70–1.12 .30

<.01 1.06 1.05–1.07 <.01

— Ref — —

.06 0.92 0.79–1.07 .26

.49 1.06 0.91–1.23 .47
<.01 0.88 0.75–1.05 .15
<.01 0.71 0.62–0.82 <.01

, excluding weights for “mild liver disease” and “severe liver



Table 4.Association of Presence of Cirrhosis With All-Cause 30-Day Mortality in All Patients With Chronic Liver Disease Who
Tested Positive for SARS-CoV-2 Infection (Cirrhosis/Positive vs Noncirrhosis/Positive)

Variable

Univariable Cox regression Multivariable Cox regression

HR 95% CI P value aHR 95% CI P value

Presence of cirrhosis 5.34 4.75–6.00 <.01 3.31 2.91–3.77 <.01

Age, y 1.07 1.06–1.07 <.01 1.05 1.05–1.06 <.01

Sex, female 0.65 0.58–0.73 <.01 0.84 0.74–0.95 <.01

Race/ethnicity
White Ref — — Ref — —

Black/African American 1.29 1.11–1.49 <.01 0.98 0.83–1.15 .80
Hispanic 0.95 0.81–1.2 .54 1.20 1.02–1.42 .03
Asian 1.11 0.81–1.54 .51 1.38 0.99–1.92 .06
Unknown/other 1.04 0.84–1.29 .69 1.25 1.01–1.55 .04

Etiology of liver disease
NAFLD Ref — — Ref — —

Hepatitis C 1.86 1.61–2.16 <.01 1.27 1.08–1.48 <.01
AALD 2.55 2.20–2.96 <.01 1.40 1.20–1.65 <.01
Hepatitis B 1.44 1.08–1.91 .01 0.93 0.70–1.25 .65
Cholestatic 1.95 1.34–2.85 <.01 0.74 0.51–1.09 .13
Autoimmune 2.00 1.38–2.91 <.01 1.19 0.82–1.73 .37

Modified CCIa 1.18 1.16–1.19 <.01 1.07 1.05–1.08 <.01

Region
Northeast Ref — — Ref — —

Midwest 0.49 0.40–0.59 <.01 0.51 0.41–0.62 <.01
South 0.65 0.53–0.78 <.01 0.75 0.61–0.91 <.01
West 0.30 0.23–0.40 <.01 0.43 0.33–0.57 <.01
Other 0.40 0.34–0.47 <.01 0.46 0.39–0.54 <.01

aModified CCI was calculated based on the original CCI score, excluding weights for “mild liver disease” and “severe liver
disease.”
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Factors Associated With 30-Day Mortality Among
Cirrhosis/Positive Patients

Demographic and clinical factors associated with all-
cause 30-day mortality among cirrhosis/positive patients
are presented in Table 5. In univariate analyses, we found
that age (HR, 1.04 per year; 95% CI, 1.03–1.04; P < .01),
other/unknown race (HR, 1.30; 95% CI, 1.00–1.67; P ¼ .05),
and modified CCI (HR, 1.06; 95% CI, 1.05–1.08; P < .01)
were associated with higher risk of 30-day mortality among
cirrhosis/positive patients. Cholestatic liver diseases (HR,
0.62; 95% CI, 0.42–0.91; P ¼ .02), location in the Midwest
(HR, 0.72; 95% CI, 0.41–0.69; P < .01), location in the South
(HR, 0.72; 95% CI, 0.56–0.94; P ¼ .01), location in the West
(HR, 0.58; 95% CI, 0.42–0.81; P < .01), and other/unknown
locations (HR, 0.51; 95% CI, 0.41–0.63; P < .01) were
associated with lower hazards of mortality in univariate
analyses.

In multivariate analyses, age (aHR, 1.04 per year; 95%
CI, 1.03–1.04; P < .01), other/unknown race (aHR, 1.43;
95% CI, 1.10–1.85; P < .01), AALD as etiology (aHR, 1.22;
95% CI, 1.01–1.46; P ¼ .03), and modified CCI (aHR, 1.04;
95% CI, 1.02–1.06; P < .01) were associated with higher
hazards of 30-day mortality. Cholestatic liver diseases (aHR,
0.63; 95% CI, 0.43–0.93; P ¼ .02), location in the Midwest
(aHR, 0.60; 95% CI, 0.46–0.78; P < .01), location in the West
(aHR, 0.71; 95% CI, 0.51–0.99; P ¼ .04), and other/un-
known location (aHR, 0.53; 95% CI, 0.45–0.71; P < .01)
were associated with lower hazards of 30-day mortality in
multivariate analyses.
Stratified Analyses of Clinical Factors and
Comorbidities Associated With Adverse
Outcomes

Stratified analyses of the contributions of various clinical
factors and comorbidities to associations with 30-day
mortality among patients with cirrhosis are presented in
Table 6. Among patients with compensated cirrhosis
(defined as those without OMOP concept identifiers asso-
ciated with variceal bleeding, ascites, spontaneous bacterial
peritonitis, hepatic encephalopathy, hepatorenal syndrome,
or hepatopulmonary syndrome), SARS-CoV-2 positivity
(cirrhosis/positive) was associated with 5.00 times adjusted
hazard of death within 30 days (aHR, 5.00; 95% CI, 3.92–
6.37; P < .01) compared to cirrhosis/negative patients.
Among patients with decompensated cirrhosis, SARS-CoV-2
positivity (cirrhosis/positive) was associated with 2.20
times adjusted hazard of death within 30 days (aHR, 2.20;
95% CI, 2.01–2.42; P < .01) compared to cirrhosis/negative
patients.



Table 5.Factors Associated With All-Cause 30-Day Mortality Among Patients With Cirrhosis Who Tested Positive for
SARS-Cov-2 Infection (Cirrhosis/Positive Patients Only)

Variable

Univariable Cox regression Multivariable Cox regression

HR 95% CI P value aHR 95% CI P value

Age, y 1.04 1.03–1.04 <.01 1.04 1.03–1.04 <.01

Sex, female 0.98 0.84–1.13 .81 1.04 0.89–1.21 .60

Race/ethnicity
White Ref — — Ref — —

Black/African American 0.97 0.80–1.18 .77 0.94 0.76–1.15 .55
Hispanic 1.14 0.93–1.40 .20 1.16 0.94–1.44 .16
Asian 1.06 0.65–1.72 .82 1.08 0.66–1.77 .76
Unknown/other 1.30 1.00–1.67 .05 1.43 1.10–1.85 <.01

Etiology of liver disease
NAFLD Ref — — Ref — —

Hepatitis C 0.93 0.76–1.14 .48 0.94 0.76–1.16 .56
AALD 1.03 0.87–1.23 .70 1.22 1.01–1.46 .03
Hepatitis B 0.89 0.61–1.29 .53 0.87 0.59–1.27 .47
Cholestatic 0.62 0.42–0.91 .02 0.63 0.43–0.93 .02
Autoimmune 0.95 0.63–1.42 .79 1.05 0.70–1.59 .81

Modified CCIa 1.06 1.05–1.08 <.01 1.04 1.02–1.06 <.01

Region
Northeast Ref — — Ref — —

Midwest 0.53 0.41–0.69 <.01 0.60 0.46–0.78 <.01
South 0.72 0.56–0.94 .02 0.84 0.64–1.10 .20
West 0.58 0.42–0.81 <.01 0.71 0.51–0.99 .04
Other 0.51 0.41–0.63 <.01 0.53 0.45–0.71 <.01

aModified CCI was calculated based on the original CCI score excluding weights for “mild liver disease” and “severe liver
disease.”
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In general, within stratified categories of age, the aHRs of
death within 30 days for cirrhosis/positive compared to
cirrhosis/negative patients increased from aHR of 1.59 (age
30–49 years) to aHR of 3.03 (age 65 years or older). Within
stratified categories of BMI, the aHRs also increased from
aHR of 2.11 (BMI <25 kg/m2) to aHR of 2.74 (BMI �35 kg/
m2). Within stratified categories of MELD-Na scores, how-
ever, the aHRs deceased from aHR of 3.49 (MELD-Na 6–15)
to aHR of 1.36 (MELD-Na �35). A similar trend was also
seen within stratified categories of the Modified CCI: the
aHRs decreased from aHR of 2.57 (score 1–2) to aHR of 2.37
(score �5).

When stratified based on comorbid conditions, the aHRs
of death within 30 days for cirrhosis/positive compared to
cirrhosis/negative patients increased in the presence of
diabetes (aHR, 2.58 vs aHR, 2.28 for no diabetes), heart
failure (aHR, 2.45 vs aHR, 2.34 for no heart failure), and
pulmonary disease (aHR, 2.63 vs aHR, 2.27 for no pulmo-
nary disease). When stratified based on chronic renal dis-
ease, however, the aHRs were lower for those with renal
disease (aHR, 2.34 vs aHR, 2.30 for no renal disease).
Sensitivity Analyses With Model for End-Stage
Liver Disease-Sodium and Serum Albumin

As calculated MELD-Na scores were available for only
17,653 patients (8%) and serum albumin values were
available for 75,267 patients (34%), we conducted
sensitivity analyses to determine the influence of these
variables on the above multivariate models comparing
patients with cirrhosis (Supplementary Table 5). For the
multivariate model evaluating the association of SARS-
CoV-2 infection with death in patients with cirrhosis,
further adjustments for MELD-Na and serum albumin did
not change the significance of the association (aHR, 1.66–
2.38). For the multivariate model evaluating factors
associated with death among cirrhosis/positive patients,
further adjustments for MELD-Na and serum albumin did
not change the significance of the association for age and
death (aHR, 1.02–1.05). These adjustments for MELD-Na
and serum albumin did, however, eliminate the associa-
tions of race/ethnicity (unknown/other), AALD as CLD
etiology, modified CCI with increased hazard of death.
Similarly, these adjustments eliminate the associations of
cholestatic liver disease as CLD etiology and location
(Midwest, West, and other/unknown) with decreased
hazards of death.
Discussion
In this study of nearly 221,000 patients with CLD in the

National COVID Cohort Collaborative, we found that SARS-
CoV-2 infection was associated with 2.38 times hazard of
all-cause mortality within 30 days among patients with



Table 6.Association of SARS-Cov-2 Infection With All-Cause 30-Day Mortality in Patients With Cirrhosis (Cirrhosis/Positive vs
Cirrhosis/Negative) Stratified by Age, Body Mass Index, MELD-Na Score, and Selected Comorbidities

Cirrhosis/positive vs
cirrhosis/negative

Cirrhosis/
negative, n (%)

Death at 30d,
cumulative incidence
rate, % (95% CI)

Cirrhosis/
positive, n (%)

Death at 30d,
cumulative incidence
rate, % (95% CI) aHR (95% CI) P value

All patients 53,476 (100) 3.9 (3.7–4.0) 8941 (100) 8.9 (8.3–9.5) 2.38 (2.18–2.59) <.01
Compensated 16,546 (31) 0.9 (0.8–1.1) 2948 (33) 4.7 (3.9–5.5) 5.00 (3.92–6.37) <.01
Decompensated 36,930 (69) 5.2 (4.9–5.4) 5993 (67) 11.0 (10.1–11.8) 2.20 (2.01–2.41) <.01

Stratified by agea

18–29 y 1431 (3) 2.0 (1.2–2.7) 229 (3) 3.7 (1.1–6.1) 1.84 (0.81–4.16) .14
30–49 y 11,315 (21) 3.2 (2.9–3.5) 1696 (19) 4.8 (3.7–5.9) 1.59 (1.23–2.05) <.01
50–64 y 22,528 (42) 3.8 (3.6–4.1) 3702 (41) 7.6 (6.7–8.4) 2.05 (1.78–2.35) <.01
65 y or older 18,202 (34) 4.4 (3.1–4.7) 3314 (37) 12.9 (11.7–14.1) 3.03 (2.68–3.42) <.01

Stratified by BMI
No BMI data 18,096 (34) 3.9 (3.6–4.1) 4197 (47) 8.4 (7.5–9.3) 2.23 (1.95–2.55) <.01
BMI available 35,380 (66) 3.9 (3.7–4.1) 4744 (53) 9.4 (8.5–10.2) 2.40 (2.15–2.68) <.01
BMI <25 kg/m2 10,143 (19) 4.5 (4.1–4.9) 1107 (12) 10.5 (8.6–12.4) 2.11 (1.70–2.62) <.01
BMI 25–30 kg/m2 10,039 (19) 3.8 (3.4–4.2) 1236 (14) 8.8 (7.1–10.4) 2.30 (1.84–2.87) <.01
BMI 30–35 kg/m2 7429 (14) 3.5 (3.1–3.9) 1048 (12) 8.7 (7.0–10.5) 2.51 (1.96–3.22) <.01
BMI �35 kg/m2 7769 (15) 3.5 (3.1–4.0) 1353 (15) 9.5 (7.9–11.1) 2.74 (2.21–3.40) <.01

Stratified by MELD-Na
No MELD-Na data 44,096 (82) 2.6 (2.4–2.7) 7534 (84) 6.9 (6.3–7.4) 2.75 (2.47–3.07) <.01
MELD-Na available 9380 (18) 9.9 (9.3–10.5) 1407 (16) 19.6 (17.4–21.7) 2.06 (1.79–2.38) <.01
MELD-Na 6–15 4257 (8) 1.8 (1.4–2.2) 581 (6) 6.8 (4.7–8.9) 3.49 (2.32–5.23) <.01
MELD-Na 15–20 1726 (3) 4.1 (3.1–5.0) 284 (3) 13.3 (9.1–17.2) 2.91 (1.92–4.42) <.01
MELD-Na 20–25 1298 (2) 9.6 (8.0–11.2) 233 (3) 22.4 (16.7–27.7) 2.27 (1.61–3.18) <.01
MELD-Na 25–30 827 (2) 20.0 (17.2–22.8) 129 (1) 34.3 (25.2–42.4) 1.68 (1.18–2.40) <.01
MELD-Na 30–35 451 (1) 34.7 (30.0–39.2) 62 (1) 49.9 (34.7–61.6) 1.44 (0.94–2.20) .09
MELD-Na na �35 821 (2) 41.8 (38.2–45.2) 118 (1) 61.1 (50.7–69.3) 1.36 (1.03–1.79) .03

Stratified by modified CCIb

Modified CCI 0 13,728 (26) 3.6 (3.2–3.9) 1936 (22) 7.2 (6.0–8.5) 2.08 (1.70–2.55) <.01
Modified CCI 1–2 15,357 (29) 3.2 (2.9–3.5) 2441 (27) 7.7 (6.6–8.8) 2.57 (2.15–3.06) <.01
Modified CCI 3–4 9291 (17) 3.5 (3.1–3.9) 1550 (17) 8.4 (7.0–9.8) 2.54 (2.06–3.14) <.01
Modified CCI �5 15,100 (28) 5.0 (4.6–5.3) 3014 (34) 11.2 (10.0–12.4) 2.37 (2.08–2.71) <.01

Stratified by comorbidities
No diabetes 32,522 (61) 3.9 (3.7–4.1) 4602 (51) 8.5 (7.6–9.3) 2.28 (2.02–2.56) <.01
Diabetes 20,954 (39) 3.8 (3.6–4.1) 4339 (49) 9.4 (8.5–10.3) 2.58 (2.28–2.92) <.01
No renal disease 43,241 (81) 3.5 (3.3–3.6) 6713 (75) 7.9 (7.2–8.6) 2.39 (2.15–2.65) <.01
Renal disease 10,235 (19) 5.5 (5.1–6.0) 2228 (25) 12.0 (10.6–13.4) 2.30 (1.98–2.67) <.01
No heart failure 43,241 (81) 3.5 (3.3–3.7) 6897 (77) 7.9 (7.2–8.5) 2.34 (2.12–2.60) <.01
Heart failure 10,235 (19) 5.4 (4.9–5.8) 2044 (23) 12.5 (11.0–13.9) 2.45 (2.10–2.85) <.01
No pulmonary disease 37,205 (70) 3.9 (3.7–4.1) 6082 (68) 8.5 (7.8–9.3) 2.27 (2.04–2.52) <.01
Pulmonary disease 16,271 (30) 3.8 (3.5–4.1) 2859 (32) 9.7 (8.6–10.8) 2.63 (2.27–3.05) <.01

NOTE. Categorical variables are presented as n (%). Unless otherwise noted, aHRs are reported from multivariable model
adjusting for age, sex, race/ethnicity, etiology of liver disease, modified CCI, and region.
aAdjusted HRs for stratified age group analyses are reported from multivariable model adjusting for sex, race/ethnicity, etiology
of liver disease, modified CCI, and region.
bModified CCI was calculated based on the original CCI score, excluding weights for “mild liver disease” and “severe liver
disease.” Adjusted HRs are reported from multivariable model adjusting for age, sex, race/ethnicity, etiology of liver disease,
and region.
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cirrhosis. Among all patients with CLD (with and without
cirrhosis) who tested SARS-CoV-2–positive, the presence of
cirrhosis was associated with 3.31 times hazard of all-
cause mortality within 30 days. Our results are consis-
tent with previous studies of patients with CLD with and
without cirrhosis, but our use of the N3C Data Enclave has
several unique features that enhance the generalizability of
our results and advance our understanding of SARS-CoV-2
infection in patients with CLD. The number of clinical sites
included in this study (harmonized data from 57 as of July
1, 2021) confers a major strength to this study in terms of
the number of patients, national scope, and demographic
representation. Notably, 51% of the participants were
women and 32% were racial/ethnic minorities: 16%
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identified as Black/African American, 13% Hispanic, and
3% Asian.

In addition, compared to previous studies, which only
included data in the early phases of the COVID-19 pandemic,
this study covers a longer duration up to July 2021 and
reflects changes in treatment and therapy advances. For
example, we found a lower cumulative incidence of all-cause
30-day mortality at 8.9% for cirrhosis/positive patients
compared to previous studies with estimates up to 17%.12

Consistent with previous studies, we also found compara-
tively higher hospitalization rates in SARS-CoV-2 negative
groups (noncirrhosis/negative and cirrhosis/negative)
likely due to changes in healthcare delivery during the
COVID-19 pandemic as standardized testing before hospital
admissions and procedures became widespread.33,34

With regard to demographic and clinical factors associ-
ated with adverse outcomes in SARS-CoV-2 infection, our
findings were also consistent with existing literature. We
found female sex was associated with a lower hazard of
death (aHR, 0.84; 95% CI, 0.74–0.95; P < .01) among all
Patients with CLD with SARS-CoV-2 infection (Table 4). This
sex association, however, did not remain once we stratified
to only cirrhosis/positive. Consistent with extensive racial/
ethnic disparities described,35,36 we found an increased
hazard of mortality for those who identified as Hispanic
(aHR, 1.20; 95% CI, 1.02–1.42; P ¼ .03) and those who
identified as other/unknown (aHR, 1.25; 95% CI, 1.01–1.55;
P ¼ .04) among Patients with CLD with positive SARS-CoV-2
test (Table 4). When we stratified to only cirrhosis/positive
patients, we found that this association between Hispanic
ethnicity and mortality was no longer significant. The rea-
sons for this are likely multifactorial and reflect present
disparities in differential rates of SARS-CoV-2 infection,35,36

and longstanding disparities in access to treatment for liver
diseases in the United States.37–39 The broader questions
regarding sex and racial/ethnic disparities during the
COVID-19 pandemic are active areas of exploration among
several N3C teams.12–14

To further understand risk factors and patterns associ-
ated with adverse outcomes in SARS-CoV-2 infection, we
conducted stratified analyses comparing mortality between
cirrhosis/positive and cirrhosis/negative patients (Table 6).
Consistent with previous literature,40–43 we found that age,
obesity, and comorbid conditions (ie, diabetes, heart failure,
and pulmonary disease) were significant cofactors in
increasing the mortality risk for patients with cirrhosis
when infected with SARS-CoV-2. For instance, among pa-
tients with cirrhosis between the ages of 30 and 49 years,
the adjusted hazard of 30-day mortality associated with
SARS-CoV-2 infection was 1.59; this adjusted hazard
increased to 3.03 among those who were older than 65
years. Similarly, among patients with cirrhosis with BMIs
<25 kg/m2, the adjusted hazard of 30-day mortality asso-
ciated SARS-CoV-2 infection was 2.11; this adjusted hazard
increased to 2.74 among patients with cirrhosis with BMIs
�35 kg/m2. Interestingly, we found that the aHRs of 30-day
mortality decreased when we stratified by MELD-Na score
categories. This is likely due to high baseline mortality rates
seen among patients with more severe liver disease
regardless of SARS-CoV-2 infection, for example, cumulative
incidence of death at 30 days of 41.8% among cirrhosis/
negative patients with MELD-Na score �35. A similar phe-
nomenon was seen with increasing modified CCI scores, in
which the aHRs decreased when we stratified by higher
score categories. This is also likely due to a higher baseline
mortality rate among cirrhosis/negative patients with
higher comorbidity scores. We did not include smoking
status in our stratified analyses, as there have been data
ascertainment issues (as missingness was only suggestive of
non-smoking status) per discussions with central N3C
teams.

Due to the methodology by which we derived our SARS-
CoV-2–negative comparison populations (noncirrhosis/
negative and cirrhosis/negative), we likely introduced se-
lection bias, as these cohorts were more likely to undergo
procedures or be hospitalized. These comparison pop-
ulations, therefore, do not reflect baseline populations of
patients with CLD with and without cirrhosis. As such, the
aHRs for 30-day mortality associated with SARS-CoV-2
infection among patients with cirrhosis and various co-
morbidity categories calculated in this study may be an
underestimate of the true HR, as our comparison pop-
ulations were more clinically ill.

We acknowledge the following limitations. First, N3C is
a collaboration among multiple NCATS-supported Clinical
and Translational Science Awards program hubs and,
therefore, has an overrepresentation of tertiary academic
medical centers as data partners, which limits the gener-
alizability of the study. Moreover, there is substantial
oversampling of data from certain states—notably North
Carolina, New York, Illinois, and Colorado. The national
scope and sex/demographic characteristics of our study
population, however, are unique strengths of this study
compared to previous research. Second, as data were
aggregated from many sites, there is systematic missingness
of certain variables. In our study, this is most apparent in
that we were only able to calculate the MELD-Na scores for
17,653 patients. We accounted for this by conducting
sensitivity analyses that showed our main findings did not
change. In addition, our sensitivity analyses revealed that
certain geographic and CLD etiology associations with
mortality were eliminated once adjustments were made in
cirrhosis/positive patients. This most likely reflected not-at-
random data missingness in N3C. Third, although N3C has
standardized protocols for data curation and harmoniza-
tion, there likely remains variations in terminology and
ontology between sites. The use of the OMOP common data
model, however, decreases such differences and enforces a
degree of standardization.15,16,44

Fourth, due to date-shifting employed in the process of
de-identification in the N3C Data Enclave and differences in
data harmonization times between data partner sites, there
may be a delay in ascertainment of outcomes. There may be
misclassification of outcomes if the date of SARS-CoV-2
testing was close to the latest known date of records
(“maximum data date”) for that site. To account for these
issues, we employed 2 methods: 1. We attempted to maxi-
mize follow-up for each patient by defining last follow-up as
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any encounters or records (visit occurrence, procedure,
measurement, observation, or condition occurrence) in the
OMOP data model. 2. We excluded patients whose date of
SARS-CoV-2 testing was within 90 days of the maximum
data date—this exclusion criterion affected only 1% of po-
tential patients to be included in the analytical sample.

Fifth, we used the deidentified version of the N3C Data
Enclave to conduct our analyses. To protect patient privacy,
date shifting was uniformly applied. This means that our
analyses could not investigate temporal trends with each
COVID-19 surge in the United States. Lastly, there is likely
misclassification between patients with AALD and NAFLD
given the nonspecific nature of OMOP concept identifier
4059290 “steatosis of the liver” (corresponding to ICD-10
code K76.0). This is most apparent in only 6% of patients
with CLD without cirrhosis who were classified to have
AALD, while 33% of patients with cirrhosis were classified
with AALD (due to more specific ICD-10 codes for cirrhosis
due to AALD).

Despite these limitations, our study is one of the largest
studies of outcomes of SARS-CoV-2 infection in patients with
CLDs with and without cirrhosis to date. Our results are
consistent with those from previous studies and show that
SARS-CoV-2 infection is associated with an increased risk of
all-cause mortality among patients with cirrhosis. This study
provides an additional impetus for increasing vaccine up-
take among patients with cirrhosis.45 In addition, as patients
with advanced liver diseases have well-recognized immune
dysfunction with attenuated immune responses to other
vaccines,46–49 further research is urgently needed regarding
immune responses to COVID-19 vaccines in patients with
CLD to guide public health recommendations. Given the
continued expansion of N3C and ongoing acquisition of
longitudinal data, our study in the N3C Data Enclave lays the
foundation for studying future potential clinical questions,
such as clinical responses to vaccinations, which affect liver
disease patients as the COVID-19 pandemic continues to
evolve.50
Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at http://doi.org/10.1053/
j.gastro.2021.07.010.
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Supplementary Figure 1. Isolation of patients with CLD with and without cirrhosis from the main N3C cohort.
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Supplementary Figure 2.Geographic distributions of CLD
patients and CLD patients with positive SARS-CoV-2 testing
in analytic sample.
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Supplementary Table 1.Standard Observational Medical Outcomes Partnership Concept Identifiers for Severe Acute
Respiratory Syndrome Coronavirus 2 Testing Per National COVID Cohort Collaborative Shared Logic
Sets

SARS-CoV-2 test type OMOP concept identifiers

Culture 586516

Nucleic acid amplification 586517, 586518, 586519, 586520, 586523, 586526, 706154, 706155, 706156, 706157, 706158,
706159, 706160, 706161, 706163, 706165, 706166, 706167, 706168, 706169, 706170, 706171,
706172, 706173, 706174, 706175, 715260, 715261, 715262, 757677, 757678

Supplementary Table 2.Standard Observational Medical Outcomes Partnership Concept Identifiers for Chronic Liver Disease
Etiologies, Alcohol Use and its Complications, and Cirrhosis and its Complications

Etiology of chronic liver disease or
complication of cirrhosis Validated ICD-10-CM codes OMOP concept identifier

Nonalcoholic fatty liver disease19,20,26 K76.0 without an associated alcohol use
ICD10-CM or OMOP code,a K75.81

4059290 without an associated alcohol use
concept ID,a 40484532

Chronic hepatitis C19,20 B17.1, B18.2, B19.2 192242, 198964, 197494

Alcohol-associated liver
disease19,20,24–26,51

K70.0, K70.1, K70.2, K70.3, K70.4, K70.9,
and K76.0 with an associated alcohol
use ICD 10-CM or OMOP Codea

4340383, 4340385, 196463, 4340386,
201612, and 4059290 with an associated
alcohol use concept IDa

Chronic hepatitis B19,20 B16.X, B17,0, B18.0, B18.1, B19.1 197795, 197493, 192240, 439674, 4281232

Cholestatic liver disease21 K74.3, K74.4, K74.5, K83.01 4135822, 4046123, 192675, 4058821

Autoimmune hepatitis22 K73.2, K75.4 4026125, 200762

Cirrhosis K70.30, K74.69, K74.60, E83.11, K71.7,
K72.1, K74.3, K74.4, K74.5

196463, 4064161, 4163735, 4026136,
4340390, 4135822, 4046123, 192675

Varices, not bleeding I85.00, I86.4, I85.1 22340, 24966, 4237824, 4111998

Varices, bleeding I85.01, I86.41, I85.11 28779, 4087310, 4112183,

Ascites K70.31, K70.11, K71.51, R18.8 46269816, 46269835, 46273476, 200528

Spontaneous bacterial peritonitis K65.2 199863

Hepatic encephalopathy K72.91, G93.40, K72.11, K70.41, K71.11,
K72.01, B19.0, B19.11, B19.21

4245975, 377604, 372887, 46269836,
46269818, 377604, 196029, 200031,
439672

Hepatorenal syndrome K76.7 196455

Hepatopulmonary syndrome K76.81 4159144

aAlcohol use ICD10-CM codes (F10.X, G62.1, G31.2, G72.1, I42.6, K29.2, K85.2, K86.0) or OMOP codes (376383, 378421,
36714559, 4078688, 318773, 195300, 4340493, 4340964, 432456, 283761, 37814).24–26,51
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Supplementary Table 3.Modified Charlson Comorbidity Index Excluding Weights for Liver-Related Comorbidities

Original Charlson Comorbidity Index29,30 Modified Charlson Index

Assigned weights Conditions Assigned weights Conditions

1 Myocardial infarct 1 Myocardial infarct

1 Congestive heart failure 1 Congestive heart failure

1 Peripheral vascular disease 1 Peripheral vascular disease

1 Stroke or cerebrovascular disease 1 Stroke or cerebrovascular disease

1 Dementia 1 Dementia

1 Chronic pulmonary disease 1 Chronic pulmonary disease

1 Connective tissue disease 1 Connective tissue disease

1 Peptic ulcer disease 1 Peptic ulcer disease

1 Mild liver disease 0 Mild liver disease

1 Diabetes 1 Diabetes

2 Hemiplegia or paralysis 2 Hemiplegia or paralysis

2 Chronic renal disease 2 Chronic renal disease

2 Complicated diabetes (with end organ
damage)

2 Complicated diabetes (with end organ
damage)

2 Malignancy/leukemia/lymphoma 2 Malignancy/leukemia/lymphoma

3 Severe liver disease 0 Severe liver disease

6 Metastatic malignancy 6 Metastatic malignancy

6 HIV/AIDS 6 HIV/AIDS

Supplementary Table 4.Standard Observational Medical Outcomes Partnership Concept Identifiers for International
Normalized Ratio

OMOP concept identifiers Concept names

3039326 INR in platelet poor plasma by coagulation assay, post heparin neutralization

3022217 INR in platelet poor plasma by coagulation assay

3051593 INR in capillary blood by coagulation assay

3032080 INR in blood by coagulation assay

3042605 INR in platelet poor plasma or blood by coagulation assay

4261078 Calculation of international normalized ratio

INR, international normalized ratio.
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Supplementary Table 5.Sensitivity Analyses of Cox Regressions Involving Patients With Cirrhosis

Model Evaluated n aHR 95% CI P Value

SARS-CoV-2 infection among patients with cirrhosis
(cirrhosis/positive vs cirrhosis/negative)
MV 62,403 2.38 2.18–2.59 <.01
MV þ MELD-Na 10,785 2.05 1.78–2.37 <.01
MV þ serum albumin 28,348 1.66 1.50–1.85 <.01
MV þ MELD-Na þ serum albumin 9853 1.76 1.51–2.04 <.01

Age in factors associated with death among cirrhosis-positive
patients
MV 8939 1.04 1.03–1.04 <.01
MV þ MELD-Na 1407 1.05 1.03–1.06 <.01
MV þ serum albumin 4098 1.02 1.02–1.03 <.01
MV þ MELD–Na þ serum albumin 1311 1.04 1.03-1.05 <.01

Unknown/other race (reference White) in factors associated
with death among cirrhosis-positive patients
MV 8939 1.65 1.27–2.15 <.01
MV þ MELD-Na 1407 1.18 0.77–1.82 .44
MV þ serum albumin 4098 1.61 1.17–2.20 <.01
MV þ MELD-Na þ serum albumin 1311 1.31 0.85–2.04 .22

Alcohol-associated liver disease (reference NAFLD) in factors
associated with death among cirrhosis-positive patients
MV 8939 1.22 1.01–1.46 .03
MV þ MELD-Na 1407 0.80 0.59–1.10 .17
MV þ serum albumin 4098 0.87 0.70–1.08 .21
MV þ MELD-Na þ serum albumin 1311 0.77 0.56–1.06 .11

Cholestatic liver disease (reference NAFLD) in factors
associated with death among cirrhosis-positive patients
MV 8939 0.63 0.43–0.93 .02
MV þ MELD-Na 1407 0.61 0.30–1.20 .15
MV þ serum albumin 4098 0.61 0.38–0.99 .04
MV þ MELD-Na þ serum albumin 1311 0.74 0.37–1.47 .39

Modified CCIa in factors associated with death among
cirrhosis/positive patients
MV 8939 1.04 1.02–1.06 <.01
MV þ MELD-Na 1407 1.01 0.97–1.05 .59
MV þ serum albumin 4098 1.04 1.01–1.06 <.01
MV þ MELD-Na þ serum albumin 1311 1.04 1.00–1.07 .06

Midwest location (reference Northeast) as etiology in factors
associated with death among cirrhosis-positive patients
MV 8939 0.60 0.46–0.78 <.01
MV þ MELD-Na 1407 0.84 0.54–1.32 .45
MV þ serum albumin 4098 0.94 0.68–1.30 .69
MV þ MELD-Na þ serum albumin 1311 1.06 0.67–1.70 .79

West location (reference Northeast) as etiology in factors
associated with death among cirrhosis-positive patients
MV 8939 0.71 0.51–0.99 .04
MV þ MELD-Na 1407 1.08 0.60–1.95 .79
MV þ serum albumin 4098 1.21 0.82–1.80 .34
MV þ MELD-Na þ serum albumin 1311 1.25 0.68–2.28 .48

Other location (reference Northeast) as etiology in factors
associated with death among cirrhosis/positive patients
MV 8939 0.56 0.45–0.71 <.01
MV þ MELD-Na 1407 0.94 0.65–1.36 .73
MV þ serum albumin 4098 0.75 0.57–0.98 .03
MV þ MELD-Na þ serum albumin 1311 1.03 0.71–1.50 .86

MV, multivariate.
aModified CCI was calculated based on the original CCI score, excluding weights for “mild liver disease” and “severe liver
disease.”
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