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Abstract: Free fatty acid receptor 1 (FFA1) stimulates insulin secretion in pancreatic β-cells. An
advantage of therapies that target FFA1 is their reduced risk of hypoglycemia relative to common
type 2 diabetes treatments. In this work, quantitative structure–activity relationship (QSAR) approach
was used to construct models to identify possible FFA1 agonists by applying four different machine-
learning algorithms. The best model (M2) meets the Tropsha’s test requirements and has the statistics
parameters R2 = 0.843, Q2

CV = 0.785, and Q2
ext = 0.855. Also, coverage of 100% of the test set based

on the applicability domain analysis was obtained. Furthermore, a deep analysis based on the
ADME predictions, molecular docking, and molecular dynamics simulations was performed. The
lipophilicity and the residue interactions were used as relevant criteria for selecting a candidate from
the screening of the DiaNat and DrugBank databases. Finally, the FDA-approved drugs bilastine,
bromfenac, and fenofibric acid are suggested as potential and lead FFA1 agonists.

Keywords: free fatty acid receptor 1; type 2 diabetes; molecular dynamics; molecular docking;
agonits of FFA1

1. Introduction

Diabetes mellitus affected approximately 463 million people worldwide (~9.3% of the
population) in 2019, with numbers expecting to rise to 578 million (~10%) by 2030 and
700 million (~11%) by 2045 [1]. Type 2 Diabetes Mellitus (T2DM) is the most common
type of diabetes, representing 80% of all the cases [2]. T2DM is characterized by reduced
secretion of insulin from β-cells and resulting hyperglycemia associated with cardiovascular
complications such as cardiac ischemia and stroke [3,4]. Current methods to control blood
sugar, including controlled diet, metformin, sulfonylurea, and insulin [5], have limited
efficacy and are associated with potential health problems such as hypoglycemia, weight
gain, and lack of sustained efficacy [6–8].

Free Fatty Acid Receptor 1 (FFA1), a protein expressed in pancreatic β-cell, has become
a target of interest since FFA1 activation through ligand-receptor binding induces insulin
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secretion [7]. Unlike specific diet, metformin, and sulfonylurea, induction of insulin in
response to FFA1 agonists is attenuated when blood glucose levels are excessive, providing
negative feedback that reduces the risk of hypoglycemia [9].

The orthosteric drug TAK-875 is the most explored FFA1 agonist, showing a po-
tent antidiabetic effect in early-stage clinical trials, with a lower propensity to cause
hypoglycemia [10]. Unfortunately, the development of TAK-875 treatment was termi-
nated in phase III clinical trials due to its hepatotoxicity [11]. Other FFA1 agonists
have high lipophilicity, leading to poor pharmacokinetics, metabolic instability, toxic-
ity, and off-target effects [12–16]. In 2008, Christiansen et al. discovered a series of
4-phenethynyldihydrocinnamic acid FFA1 agonists, the most potent being TUG-424; how-
ever, TUG-424 was too lipophilic to be a viable drug candidate [17]. This group subse-
quently synthesized several FFA1 agonists with relatively low lipophilicity, inspired by the
molecular structure of TUG-424 and TAK-875 with varying levels of agonist activity [18–20].
While these studies provide important information, they lack a systematic analysis to relate
agonist characteristics with their potency.

In silico analysis is an economic strategy for the exploration of new compounds [21,22].
Quantitative structure–activity relationship (QSAR) reveals relationships between struc-
tural descriptors and biological activities of chemical compounds. In this regard, a report
of a multiple linear regression QSAR model to improve the FFA1 agonist activity was
reported [23]. The biological activity was used as the logarithm of the half-maximal effec-
tive concentration (pEC50), and the best model was statistically well-validated in terms of
leave-one-out cross validation. Furthermore, the X-ray crystallographic structure of the
binding mode in the FFA1 was elucidated [24], and molecular dynamics simulation [8] and
experimental studies [25] clarify the activation mechanism of FFA1 to treat diabetes. Strong
hydrogen bond interactions with Tyr-91, Arg-183, Asn-244, and Arg-258 are linked with
higher agonist potency on the activation of FFA1 [26]. Also, molecular dynamics were used
to get insights in selectivity [27,28] and allosteric activation [29,30] to design new molecules
to treat T2DM. These reports lay out valuable information to be used for in silico studies to
find a possible FFA1 agonist.

In this article, new FFA1 agonists are proposed based on an in silico analysis. Lipophilicity
and interaction with FFA1 of the suggested drugs were studied using QSAR, molecular
docking, and molecular dynamics simulation. In this sense, a diverse dataset of 93 FFA1
agonists reported by Christiansen et al. [17–20] was used to build a model. The pIC50 of
the molecules of the dataset, DiaNat [27], and DrugBank 5.1.7 (https://www.drugbank.ca/
(accessed on 18 February 2021)) [28] databases were predicted. In addition, a computational
analysis of absorption, distribution, metabolism, and excretion (ADME) parameters was
performed to explore lipophilicity, the effectiveness of the drug, and the affinity to reach the
target site [29]. Finally, the crystal structure of FFA1 was used (PDB: 4PHU) for molecular
docking and molecular dynamic simulations [30,31].

2. Materials and Methods

The step-by-step process of this study is shown in Scheme 1.

Scheme 1. Flow chart of the step-by-step process applied in this study (Created with BioRender.com).

https://www.drugbank.ca/
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2.1. Dataset

The molecular structure and experimental pEC50 values of 93 FFA1 agonists were
collected from reports by Christiansen et al. [32]. The 3D structures of these molecules were
further optimized based on Universal Force Field (UFF) molecular mechanics theory [32]
with RDKit software (https://www.rdkit.org/ (accessed on 18 February 2021)) imple-
mented in QuBiLs-MIDAS software v2.0. The simplified molecular-input line-entry system
(SMILES) and pEC50 values of each compound are available in supporting information
(Table S1). Topographic 3D molecular descriptors suggested for cheminformatics studies
such as QSAR were calculated using QuBiLs-MIDAS [33]. A total of 3031 3D molecular
descriptors were estimated based on many algebraic operations that consider linear, bi-
linear, and quadratic indexes for all molecules in the dataset [34]. Next, two subsets were
obtained for the modelling process. The first subset with 1213 descriptors (SS_1213) was
selected by applying Shannon entropy of 0.7 and Spearman coefficient of 0.7 as cutoffs.
The Shannon entropy cutoff was used to identify descriptors to be removed when more
than 30% of compounds have the same descriptor value, and the Spearman coefficient
cutoff establishes the maximum allowable correlation between two descriptors. The second
subset with 1393 descriptors (CSE_1393) was obtained by applying the attribute evaluator
CfsSubsetEval implemented in Weka 3.8 [35], which evaluates the predictive ability of each
descriptor in a supervised way for the response variable (i.e., pEC50). The compounds in
the dataset were divided into training (75%) and test (25%) based on the Ward’s method of
clustering to minimize the error of the sum of squares within clusters [36]; Ward’s method
is a hierarchical cluster analysis for a rational split of the molecules into training and test
set [37].

2.2. Variable Selection

Variable selection for the modelling process avoids overfitting, redundancy, and
irrelevancy when models are constructed with few descriptors [38]. Variable selection was
performed on Weka 3.8 with the wrapper method and the following machine learning
techniques: multilinear regression (MLR), random forest, instance-based learning with
parameter k (IBK), and Smola and Scholkopf’s algorithm for solving regression problem
(SMOreg) [39]. The wrapper method uses a classifier to find a good set of descriptors
by searching through the descriptor space and wraps a classifier in a cross-validation
loop [40]. The aforementioned machine-learning techniques are more accurate than filter
methods that evaluate the relevance of features based on high or low scores [41]. Then,
the group of selected descriptors was assessed as possible models based on the statistical
parameters obtained.

2.3. Applicability Domain

Applicability domain (AD) analysis is commonly performed to increase the confidence
and reliability in predictions on QSAR models and is now considered a requirement for
this type of modelling [42]. AD is the physicochemical, structural, biological space, or
information on which the training set was developed and defines the space for reliable
prediction of new drugs [43]. The AD in the current study was defined by the consen-
sus strategy suggested in AMBIT discovery (http://ambit.sourceforge.net/ (accessed on
18 February 2021)). The AD methods used for the consensus are principal component
analysis (PCA), range-based, probability density, Euclidean, and city block distance. The
consensus score determines if a compound is inside or outside of the AD [44]. If three or
more methods consider a compound as an outlier (score ≤ 0.25), that molecule is excluded
from further dataset analysis.

2.4. Model Performance

Model performance was validated using well-known statistical parameters: coefficient
of determination (R2), 5-fold cross-validation coefficient (Q2

CV), the external validation
coefficient (Q2

ext), bootstrapping coefficient (Q2
boot), Y-scrambling analysis, and Tropsha’s

https://www.rdkit.org/
http://ambit.sourceforge.net/
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test [45] (available at www.oecd.org (accessed on 18 February 2021)). The functions of these
statistical parameters are shown in Table 1. Also, the collinearity between the descriptors
expressed as the Pearson’s correlation coefficient was evaluated.

Table 1. Statistical parameters to evaluate the performance of the models.

Parameter Function

R2 Global evaluator of the model.
Q2

CV, and Q2
ext Evaluators of the predictability of the model.

(Q2
boot)

Evaluate the randomly generating training sets with 5000 sample
repetition, and the predicted response of each sample is obtained.

Y-scrambling analysis A random perturbation of the response variable.

2.5. Screening of the DrugBank 5.1.7 and DiaNat Databases

The QSAR model was employed to screen the DiaNat [27] and DrugBank 5.1.7 [28]
databases in order to identify possible FFA1 agonists. DiaNat is composed of 336 natural
products extracted from different medicinal plants. The antidiabetic activity of these natural
products was tested either in vivo or in vitro. DrugBank 5.1.7 comprises 2636 approved
drugs, 6127 experimental compounds, 118 nutraceutical compounds, and 245 withdrawn
compounds. The candidates’ molecular structures were evaluated in detail and compared
with dataset’s molecule structures.

2.6. Absorption, Distribution, Metabolism, and Excretion (ADME) Predictions

ADME parameters are routinely used to analyze the drug-likeliness and pharma-
cokinetics of potential drugs. In this study, SwissADME (http://www.swissadme.ch
(accessed on 18 February 2021)) was used to predict ADME parameters for the identified
FFA1 agonists. SwissADME canonicalizes, processes the SMILES of each molecule, adding
hydrogens, neutralizing, and obtaining the Kekulé’s 3D structure.

Lipophilicity, the drug’s affinity for a lipid environment, is a key property in the design
of possible FFA1 agonists, since high lipophilicity renders a drug candidate unsuitable [17].
Lipophilicity is typically expressed by the partition coefficient between n-octanol and water
(log Po/w). A consensus log Po/w was computed from the average values of five lipophilicity
parameters: iLogP [46], XLogP3 [47], WLogP [48], MLogP [49], and SILICOS-IT [50]. The
lipophilicity value obtained from an atomistic method on the fragmental system of Wildman
and Crippen (WLOGP) and the topological polar surface area (TPSA) were used to construct
the BOILED-Egg depictive model, which shows the drug probability of human intestinal
absorption (HIA) and blood-brain barrier (BBB) permeation [51].

2.7. Molecular Docking

To gain insight into how the studied compounds fit into the target pocket and which
amino acids are involved in the receptor–ligand interactions, a molecular docking anal-
ysis was performed targeting the orthosteric site of FFA1 based on its elucidated three-
dimensional X-ray crystallographic structure (PDB:4PHU) [24]. The FFA1 structure was pre-
pared by removing water molecules, ligands, and other external residues using Pymol [52].
AutoDockTools [53] was used to add polar hydrogens and rotatable bonds in the ligand.
The centered coordinates for the grid box were obtained from the retrieved protein using
Discovery Studio Visualizer V20.1.0 [54] (Xc = −50.057, Yc = −2.660, Zc = 57.856). Docking
calculations were performed using AutoDock Vina using a grid box size of 24 × 18 × 18 (X, Y,
Z, respectively), with default exhaustiveness, full ligand flexibility, and a 1 Å spacing [55].

2.8. Molecular Dynamics

Molecular dynamics simulations were performed on the most promising agonist
candidates to gain insight into the protein–ligand interactions, including hydrogen bond
formation and evaluating the stability of ligand-binding within the orthostatic site of FFA1.
The conformations obtained from the docking calculation were used as the starting point to

www.oecd.org
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run the dynamic simulations using Gromacs 2019 [56]. First, the protein topology was built
using AMBER99SB-ILDN [57] implemented in Gromacs 2019. Next, the ligands topology
was built using antechamber python parser interface (ACPYPE) server and the Generalized
Amber Force Field (GAFF) [58]. Finally, the system was solvated in a cube shape using
the three-point water model (TIP3) and neutralized by adding sodium or chlorine atoms
as required. Before the simulation, the system was relaxed and equilibrated. In the
first equilibration, a constant number of particles, volume, and temperature (NVT) was
chosen, and in the second equilibration, the number of particles, pressure, and temperature
(NPT) was maintained constant. Equilibrations were done for 100 ps at 300 K using the
Berendsen thermostat temperature coupling [59]. Then, the production of the trajectory of
the molecular dynamic simulation was performed for 200 ns; the pressure coupling was set
to 1 Barr and the thermostat coupling to 300 K [60].

2.9. Free Energy Calculations

The Molecular Mechanics Poisson–Boltzmann Surface Area (MM-PBSA) method was
used to calculate the binding free energy of each candidate molecule to the FFA1 orthostatic
binding pocket. The binding free energy was estimated using the g_mmpbsa tool [61] and
Equation (1),

GX = EMM + Gpolar + Gnonpolar, (1)

where X is the ligand, receptor, or complex; EMM is the vacuum molecular mechanics
potential energy obtained for bonded and non-bonded interactions estimated using MM
force field parameters; Gpolar is the polar solvation energy calculated solving the Poisson–
Boltzmann equation; Gnonpolar is the non-polar solvation energy obtained using the solvent-
accessible surface area (SASA) model. These energies were obtained for the protein, ligand,
and complex. The trajectory between 10 and 200 ns was used, taking snapshots every 5 ns.

3. Results and Discussion
3.1. Dataset and Variable Selection

Descriptors extracted from the 3D structures of the 93 compounds reported by
Christiansen et al. [17–20] were used to generate predictive models of agonist activity; the
descriptors of the best model were used to split the data into training and test sets. The
pEC50 values cover more than 3 log activity distributions (from 4.79 to 8.04), which facilitates
identification of descriptors that correlate with high agonist activity. The predictive models
were obtained and evaluated with IBK, MLR, and Random Forest regression techniques
based on the values of statistical parameters R2 and Q2

CV (see Table S2). Models 1 and 2
(M1 and M2), obtained with MLR, have the highest R2 and Q2

CV. Therefore, M1 (with
10 descriptors, Table S3) and M2 (with 11 descriptors, Table S3) were chosen for further
analysis. A rational division of the molecules into training and test set was performed by
applying the Ward’s method’s cluster analysis. The molecules were grouped into 10 clusters
and approximately 25% were selected as a test set (Figure 1).

3.2. Applicability Domain

To detect outliers on the test set and provide reliable and accurate predictions, the
applicability domain analysis was used. The applicability domain analysis used in this
study is based on a consensus score of four methods. The score represents the fraction of
the four methods that indicate a molecule is considered inside the applicability domain,
with scores ranging from zero (molecule is identified as an outlier by all four methods) to
one (molecule is inside the AD for all four methods) [21,62]. A score greater than 0.25 was
used as the criteria for identifying compounds inside the AD. In M1, compounds 46 and 67
were identified as outside the AD and were removed from further analysis (Figure S1a).
In contrast, all molecules in M2 met the criteria (Figure S1b).
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Figure 1. The dataset was divided in 10 clusters employing Ward’s method to split into blue bars
(training 74%) and red bars (test set 26%).

3.3. Model Validation

The outliers were removed from the test set to evaluate the performance of M1 and M2.
The performance of M1 and M2 was evaluated using R2, Q2

CV, Q2
ext, and mean absolute

error (MAE) values. Values close to one for the statistic parameters R2, Q2
CV, and Q2

ext
indicate the models’ goodness-of-fit and predictability (Figure 2a). In addition, a reliable
prediction is considered if the value of MAE is smaller than 0.1 times the training set range
in logarithm units (MAE < 0.1× (pEC50-max − pEC50-min)). The MAE values of both models
are smaller than 0.3, meeting the criteria for a reliable prediction [63] (Figure 2b).

Figure 2. M1 and M2 obtained from SS_1213 and CSE_1393 set of descriptors. (a) presents the R2,
Q2

CV, and Q2
EXT values; (b) MAE values; and (c) is the frequency of the physicochemical properties

within the descriptors for M1 and M2.

The descriptors were calculated using physicochemical properties, which are largely
used to understand the nature of the compound for drug development. The descriptors
of M1 and M2 contain the following physicochemical properties: AlogP (a), Charge (c),
Electronegativity (e), Hardness (h), Polarizability (p), topological polar surface (psa), Re-
fractivity (r), and Van der Waals volume (v). Figure 2c shows the number of times that
property appears in M1 and M2 descriptors. AlogP, present in both models, quantifies
molecular lipophilicity, which is crucial for developing FFA1 agonists [17–20]. On the other
hand, the frequencies for the physicochemical properties “e”, “p”, and “v” are substantially
higher in M2 than in M1.

Additional statistical parameters demonstrate proper fitting of the models. Models M1
and M2 are presented in Equations (2) and (3), respectively. Q2

boot is the pEC50 prediction
obtained by a based perturbation. The values of Q2

boot > 0.7 suggest that the dataset’s
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correlation fitting does not affect the perturbation. a(R2) and a(Q2) were obtained from
Y-scrambling analysis and their small values suggest the pEC50 prediction does not occur
by chance. M1 and M2 are well-fitted models based on the high value of the Fisher’s
statistical test (F > 27), the slight standard deviation (s < 0.334), and the correlation between
predicted and experimental pEC50 (Figure 3).

pEC50-M1 = 0.518 X3D1 − 0.132 X3D2 − 0.325 X3D3 + 0.002 X3D4 + 0.038 X3D5 − 0.024 X3D6 + 162.563 X3D7

+ 7.409 X3D8 + 0.045 X3D9 + 0.222 X3D10 + 3.3864
(2)

R2 = 0.872, Q2
boot = 0.792, F = 39.47, s = 0.298, a(R2) = 0.112, and a(Q2) = −0.269

pEC50-M2 = −0.858 Y3D1 + 0.056 Y3D2 + 0.090 Y3D3 + 31.113 Y3D4 + 0.175 Y3D5 − 1.512 Y3D6 − 0.009 Y3D7

+ 0.620 Y3D8 − 4.26 Y3D9 − 0.069 Y3D1O − 0.059 Y3D11 − 32.983
(3)

R2 = 0.843, Q2
boot = 0.740, F = 27.74, s = 0.334, a(R2) = 0.130, and a(Q2) = −0.302

Figure 3. pEC50 calculated with M1 (a) and M2 (b) versus pEC50 experimental.

To analyze the collinearity of the descriptors, Pearson’s coefficients were calculated
for pairwise comparisons of the descriptors in M1 and M2 and are available in supporting
information (Tables S4 and S5). The Pearson’s coefficients for M1 (from −0.501 to 0.408)
and M2 (from −0.330 to 0.453) suggest non-collinearity between the models’ descriptors.

In addition, Tropsha’s test (available at www.oecd.org (accessed on 18 February 2021))
validates the accuracy of the prediction of pEC50 values for both models. M1 and M2 met
all the test requirements, suggesting an accurate prediction (Table 2). The model that will be
considered for further analysis is based on the coverage and predictability of the external
test set. Therefore, based on the 100% coverage on the AD, M2 will be considered to predict
the pEC50 for the screening databases.

3.4. Screening of the DrugBank 5.1.7 and DiaNat Databases

With the aim to find new drug candidates for treating T2DM, molecules from rele-
vant databases DiaNat [27] and DrugBank 5.1.7 [28] were screened using M2. A total of
31 compounds from DiaNat-DB met our criteria for the applicability domain with pEC50
values estimated to be from 5.5 to 8.0. pEC50 values and the SMILES are available in Table
S6. The molecules with highest predicted affinity for FFA1 (pEC50 > 7.5) are nuciferine,
γ-mangostin, morolic acid, curcumin, and 3-O-acetyloleanolic acid.

www.oecd.org
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Table 2. Validation based on the Tropsha’s test for M1 and M2. Val is the abbreviation of validation.

M1 Cross-Validation External Validation

Criterion Result Assessment Result Assessment

R2 > 0.6 0.872 PASS 0.872 PASS
Q2

Val > 0.5 0.816 PASS 0.752 PASS
(Q2

Val − R0
2)/Q2

Val < 0.1 0.001 PASS 0.023 PASS
(Q2

Val − R0
′2)/Q2

Val < 0.1 0.037 PASS 0.024 PASS
abs(R0

2 − R0
′2) < 0.1 0.030 PASS 0.001 PASS

0.85 < k < 1.15 0.999 PASS 0.998 PASS
0.85 < k′ < 1.15 0.998 PASS 0.998 PASS

M2 Cross-Validation External Validation

Criterion Result Assessment Result Assessment

R2 > 0.6 0.843 PASS 0.843 PASS
Q2

Val> 0.5 0.778 PASS 0.850 PASS
(Q2

Val − R0
2)/Q2

Val < 0.1 0.002 PASS 0.037 PASS
(Q2

Val − R0
′2)/Q2

Val < 0.1 0.054 PASS 0.001 PASS
abs(R0

2 − R0
′2) < 0.1 0.041 PASS 0.032 PASS

0.85 < k < 1.15 0.998 PASS 1.005 PASS
0.85 < k′ < 1.15 0.999 PASS 0.993 PASS

A total of 282 compounds from DrugBank 5.1.7 met our criteria for the applicability
domain. Their predicted pEC50 values are from 3.77 to 9.35, and SMILES are available in
Table S7. It is important to note that 40 compounds of the DrugBank database have pEC50
values greater than 8, with the antipsychotic Haloperidol (DB00502), Vitamin K1 (DB01022),
and carotenoid Zeaxanthin (DB11176) having the most significant values.

Further results about ADME predictions, molecular docking, molecular dynamics
simulations of the most suitable FFA1 agonist candidates of the dataset (training/test set),
and screening (DiaNat, and DrugBank) databases, are presented in the following sections.

3.5. Absorption, Distribution, Metabolism, and Excretion (ADME) Predictions

SwissADME (http://www.swissadme.ch (accessed on 18 February 2021)) was used
to calculate physicochemical properties, lipophilicity, water-solubility, pharmacokinetics,
drug-likeness, medicinal chemistry properties, and bioavailability score of the molecules.
Bioavailability is a fast screening in the compounds to evaluate the possibility to be consid-
ered an oral drug [64]. All the compounds have a high bioavailability score of 0.85 in the
dataset. The lipophilicity obtained from Wildman and Crippen method (WLOGP) and the
topological polar surface area (TPSA) were used to construct the BOILED-Egg (Figure 4).
The Boiled egg is a plot of WLOGP vs. TPSA and predicts the gastrointestinal absorption
(HIA) and brain penetration (BBB). The four molecules (46, 50, 51, and 53) in the grey region
are predicted to have poor intestinal absorption and brain penetration. P-glycoprotein sub-
strates (Pg-p) is a restrictive barrier to maintain homeostasis of the brain and is key among
ATP-binding cassette transporters. The red and blue dots are p-glycoprotein substrates
(PGP+) and P-glycoprotein non-substrates (PGP−), respectively [65].

The ADME properties of the eight compounds in the dataset with the highest biological
activity (pEC50 > 7.4), BBB permeation, and high HIA, are shown in Table 3 along with
solubility and lipophilicity properties. The searching of possible FFA1 agonists with low
lipophilicity has been highlighted by Christiansen et al., who focused on derivatives
of TUG-424 (Molecule 15) [20]. Lipophilicity and water solubility have been shown to
facilitate drug formulation and handling [66]. In this regard, Molecules considered for
further analysis must have a log Po/w value smaller than 3.83. Molecules 15, 52, 49, 48, and
47 are discarded for further investigation to be too lipophilic (Consensus Log Po/w > 3.83).
Water solubility was evaluated by three models, the first was ESOL [67]; the second was
adapted from Ali et al. [68]; the third was developed by SILICOS-IT [66]. The qualitative

http://www.swissadme.ch
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scale to estimate water solubility is based on the log S scale: highly soluble > 0 > very
soluble > −2 > soluble > −4 > moderately soluble > −6 > poorly soluble > −10 > insoluble.
Compounds 91 (test set), 92 (training set), and 93 (training set) are either moderately soluble
or soluble in at least two solubility methods. These compounds have smaller lipophilicity
attributed to the incorporation of polar methoxy (compound 92) or cyanide (compounds 91
and 93) groups.

Figure 4. BOILED-EGG plot showing the probability of human intestinal absorption (HIA) and
blood–brain barrier (BBB) permeation of the studied molecules.

Table 3. Properties calculated from ADME, solubility (S = Soluble, Ms = Moderately soluble,
Ps = Poorly soluble), and log Po/w consensus.

Molecule pEC50 ESOL Class Ali Class Silicos-IT Class Consensus Log Po/w

52 8.03 Ms Ps Ps 4.93
49 7.75 Ms Ps Ps 5.24
48 7.73 Ms Ms Ps 4.59
47 7.63 Ms Ps Ps 5.22
15 7.49 Ms Ms Ms 3.83
93 7.45 S Ms Ms 3.37
92 7.42 Ms Ms Ms 3.51
91 7.4 Ms Ms Ms 3.57

Regarding the compounds from the screening database, approximately 90.5% of the
screened molecules are BBB permeable and have high HIA. Same as mentioned above
for the dataset, the molecules in the screening to be considered for further analysis must
meet high activity (pEC50 ≥ 7.4) and low lipophilicity (Consensus log Po/w ≤ 3.83). Conse-
quently, 25 compounds from the Drugbank and 1 compound from the DiaNat database
met these requirements and were considered for further analysis.

3.6. Molecular Docking

Molecular docking was used to characterize the binding mode and steric fit of the
ligands into the orthosteric site of FFA1, as well as to gain insights into protein–ligand
interactions involved. Negative docking scores of the database compounds, ranging from
−8.1 to −11.0 kcal/mol (Table S1), suggest a favorable fit into the active site. The docking
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scores of the most potent compounds, i.e., 91 (−9.4 kcal/mol), 92 (−9.2 kcal/mol), and
93 (−10.3 kcal/mol), are comparable to the positive controls TAK-875 (−9.9 kcal/mol) and
15 (−10.2 kcal/mol).

The experimental configuration of TAK-875 bound to FFA1 (PDB: 4PHU) and the pre-
dicted docked configuration obtained in this work for the same compound were compared
(Figure 5a). The molecular structure of the experimental structure is mostly superimposed
with the docked configuration (RMSD = 1.90 Å), except at the methylsulfonyl tail of the
molecule after the ether group that differs substantially. However, this is unlikely to be
of consequence since the tail is very flexible and lies outside the orthosteric pocket, so it
would not affect the activation occurring inside the active site. On the other end of the
molecule, it is observed that the carboxylic acid of the docked structure presents a small
shift compared to the experimental one.

Figure 5. (a) Experimental (yellow) and docked (green) configurations of TAK-875 bound to FFA1.
(b) 2D graphic of the interaction between TAK-875 and FFA1.

The interactions of the positive controls occur mainly with Ala-83, Val-84, Tyr-91,
Leu-138, Phe-142, Leu-171, and Arg-183. The interactions of TAK-875 and compound 15
with FFA1 are shown in Figure 5b and Figure S2a, respectively. The carboxylic group in
TAK-875 forms hydrogen bonds (HBs) with Tyr-91, Arg-183, and Arg-258. Arg183 and
Arg-258 were reported in the literature as essential to anchor ligands containing carboxylate
groups, while Tyr91 was reported to produce aromatic/hydrophobic interactions with the
ligand [26].

Molecular docking was also performed on the 26 compounds resulting from the
screening. The docking scores are presented in Table S8. Seventeen compounds were
taken out from the study because they stay outside the active site. Furthermore, supro-
fen and carbocromen were also removed due to their severe side effect leading to their
market withdrawal. The docking scores of the remaining seven compounds (−8.5 to
−10.3 kcal/mol) suggest favorable FFA1-ligand interactions (Figure S3). These compounds
are anileridine (DB00913), a synthetic opioid; bromfenac (DB00963), a non-steroidal anti-
inflammatory; bilastine (DB11591), an antihistamine drug; sulfinpyrazone (DB01138), an uri-
cosuric; fenofibric acid (DB13873), a lipid-lowering agent conditions including hypertriglyc-
eridemia, mixed dyslipidemia, and primary hyperlipidemia [69]; indacaterol (DB05039)
used in situations such as asthma and chronic obstructive pulmonary diseases [70]; and
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curcumin (DBDB11672), an antioxidant, hypoglycemic, wound-healing, and antimicrobial
compound [71].

The interactions between ligands and amino acids linked to FFA1 activation, high
potency, and stabilization are shown in Figure 6. HBs are essential in the stabilization
of the ligand–protein complex and FFA1 activation. Tyr-91, Arg-183, and Arg-258 were
reported as relevant residues for the activation of the FFA1 [26]. Tyr-91 forms HB with
compound 15, TAK-875, bilastine, and bromfenac. Arg-183 forms HBs with all compounds
from the dataset and fenofibric acid. Arg-258 form HBs with compound 91, 92, TAK-875,
and fenofibric acid. Interestingly, compounds 91, 92, and 93, the most actives compounds
in the dataset, do not form hydrogen bonds with Tyr-91. On the other hand, Val-84 and
Leu-138 seem to play an essential role during binding as they form π interactions with most
of the compounds shown in Figure 6.

Figure 6. Interactions between FFA1 and selected molecules of the database and screening (created
with BioRender.com).

3.7. Molecular Dynamic Simulations

Molecular dynamics simulations were run for 200 ns to explore the trajectory of the
binding process of five compounds from the dataset (15, 91, 92, 93, and TAK-875) and
the seven compounds selected from the screening. To determine the reliability of the
calculation along the trajectory, the changes in the potential energy, density, pressure,
volume, temperature, and box size plots were analyzed.

The root-mean-square deviation (RMSD) was analyzed to explore the stability of the
FFA1-ligand complex during the trajectory. Both the RMSD of the FFA1 (Figure 7) and the
ligands (Figure 8) are expected to change during the simulation as the protein and the ligand
reach a stable complex conformation. When the system reaches a stable configuration,
fluctuations in the RMSD should decrease, meaning equilibrium is achieved. FFA1 reaches
equilibrium in most of the FFA1-ligand complexes after 60 ns. The FFA1-TAK-875 complex
was taken from experimental data and started from the equilibrium. The lowest RMSD
values in the FFA1-TAK-875 complex validate the feasibility of the simulations.
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Figure 7. RMSD of (top) FFA1 in complex with the ligands of the dataset (top) and of the screening
(bottom) during the 200 ns of MD simulation.

Figure 8. RMSD of the ligands of the dataset (top) and the screening (bottom) during the 200 ns
MD simulation.
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The RMSD values of the ligands below the threshold (dotted line 0.30 nm) mean the
optimized structures found on the docking analysis were appropriate (Figure 8). The RMSD
of the ligands suggests the stability of the system during the trajectory. TAK-875 RMSD
“jumps” between 50–100 ns and 185–190 ns due to a fluctuation on the methylsulfonyl
tail. Curcumin RMSD goes above the threshold moving outside the active site during the
simulation. Therefore, curcumin was taken out for further analysis.

Potent agonists showed interactions with amino acids that might be essential for the
activation of FFA1. The number of hydrogen bonds (HBs) in the FFA1-ligand complex
was analyzed along with the occupancy (number of times that a HB appears during the
simulation) with residues Tyr-91, Arg-183, Asn-244, and Arg-258. Most of the compounds
form between 1 to 6 HBs (Figure 9). Sulfinpyrazone comprises the highest number of
HBs (24), and compound 92 forms the least. The occupancies confirm similar HB formation
to the molecular docking study. Most of the compounds form interactions with Tyr-91,
which is related to the activation of FFA1 and higher potency of the ligand [26]. However,
compound 93, one of the most potent compounds tested in vitro, did not interact with
Tyr-91. This compound has the highest occupancy with Arg-183 (63.0%). Asn-244 was
reported to be important in anchoring the carboxylic acid [26]. Asn-244 did not appear
in the docking study but presents important occupancies with compounds 15 (40%) and
93 (17%). Therefore, Arg-183 and Asn-244 may have an essential role in FFA1 activation.

Figure 9. (a) Occupancies and (b) number of hydrogen bonds between FFA1 and the studied compounds
during the 200 ns simulation.
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Lennard-Jones energy and short-range Coulomb potential quantify the interaction
energy of the protein–ligand complex (Figures S4 and S5). The short-range Lennard-Jones
energy profile for all the models (−55 to −35 kcal/mol) indicates a similar interaction
between the ligands and FFA1. Bilastine presented a −45 kcal/mol value during the first
half and a value of −60 kcal/mol in the second half of the simulation, which suggests a
more stable interaction was achieved in the second half. The ligands present a short-range
Coulomb potential in accordance with the HBs formation during the dynamics. In this
sense, compound 92 and indacaterol have the highest values, while compound 93 and
bromfenac are the lowest. According to short-range Lennard-Jones energy and short-range
Coulomb potential, all the compounds managed to interact favorably with FFA1, being
possible agonist candidates.

The ligand–protein interaction was analyzed applying the MMPBSA approach [61], in
which it is possible to estimate the free binding energy based on van der Waals, electrostatic,
and solvent accessible surface area (SASA) energies (Table 4). The negative values found for
the four energies agree that there is a favorable interaction between FFA1 and the ligands.
Similar binding energy values were obtained for all the datasets’ systems, being TAK-875,
the compound with the highest affinity (−30.88 kcal/mol). For the ligands of the screening,
the range of the binding energy goes from −15 kcal/mol in bromfenac to −37 kcal/mol
in bilastine. Although bromfenac presents the lowest binding energy value, its predicted
pEC50 is the highest, comparing to TAK-875 (8.47 vs. 8.45).

Table 4. Van der Waals, electrostatic, SASA, and binding energy (BE) (in kcal/mol) of the
studied compounds.

Compound Van der Waals
Energy

Electrostatic
Energy

SASA
Energy

Binding
Energy

pEC50
Pred.

TAK-875 −55.80 −9.78 −5.28 −30.88 8.45
15 −38.75 −5.40 −3.97 −25.15 6.88
91 −42.97 −8.39 −4.07 −26.96 6.84
92 −40.11 −2.14 −4.00 −28.70 7.53
93 −43.84 −18.10 −4.29 −28.61 7.37

Anileridine −50.91 −7.76 −4.92 −32.69 7.82
Bromfenac −38.08 −32.20 −3.80 −15.22 8.47

Sulfinpyrazone −53.32 −5.75 −5.14 −24.49 7.55
Indacaterol −43.90 −0.91 −4.43 −28.63 7.41
Bilastine −59.13 −16.58 −5.83 −36.97 7.57

Fenofibric acid −35.25 −4.67 −3.70 −20.70 7.92

The structures of the six compounds were compared to the TAK-875 structure to
spot similarities and differences that could be essential for interaction at the active site
(Figure 10). Interestingly, the carboxylic group in TAK-875 is also present in bromfenac,
bilastine, and fenofibric acid. In anileridine, if a carboxyl group replaces the ester group,
it may produce HBs, enhancing FFA1 activation. The TAK-875 benzene ring in the dihy-
drobenzofuran group interacts with Ala-83, Leu-138, and Leu-171 (Figure 5b). The benzene
ring near the carboxyl group in bromfenac, bilastine, and fenofibric acid may produce the
same interactions with those amino acids. Furthermore, anileridine, sulfinpyrazone, and
indacaterol also present cyclic motifs in their structure that interact with Ala-83, Leu-138,
and Leu-171. Finally, Val-84 that interacts with the second benzene ring in TAK-875 can
interact with any cyclic structures on the left side of the six studies compounds.
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Figure 10. 2D structure of TAK-875 and the best compounds resulted from the screening.

Based on these results, bilastine presents the best characteristics, including the lowest
binding energy (−36.97 kcal/mol), good lipophilicity (3.76), and a strong HB with Tyr-91
(71.9% occupancy) to be considered for in vitro analysis as an FFA1 agonist or as a lead
compound to develop next-generation drugs against T2DM. Bromfenac is also an excellent
option as a lead molecule due to its highest predicted pEC50 value. Bilastine and bromfenac
are drugs of interest to treat diabetes-related diseases [72,73]. In vivo studies suggested
bilastine as therapy for diabetic nephropathy, a common microvascular complication in
patients diagnosed with diabetes mellitus [72]. Clinical trials reported the long-term benefits
of bromfenac treating diabetic macular edema, a cause of loss of vision in patients with
diabetes [73]. Finally, fenofibric acid is an interesting lead as changes may be introduced
to produce tighter interactions with the FFA1 active site, developing a dual-target drug to
treat T2DM and hypertriglyceridemia.

4. Conclusions

A dataset containing 93 compounds was split into training and test set and modelled
employing different machine-learning techniques. M1 and M2 models, evaluated with
MLR, showed the best statistical parameters: R2 = 0.872, Q2

CV = 0.812, and Q2
ext = 0.751, for

M1; and R2 = 0.843, Q2
CV = 0.875, and Q2

ext = 0.850, for M2. Both models comply with the
Tropsha’s test validation. M2 present the best coverage in the applicability domain analysis
for the test set (100%). Therefore, it was employed for the screening of two relevant datasets
(DiaNat and DrugBank). Based on a high activity (pEC50 ≥ 7.4) and low lipophilicity
(Consensus log Po/w ≤ 3.83) criterion, 26 compounds were selected as promising drugs.
An exhaustive analysis on the protein–ligand interaction was done in the training, test set,
and screened compounds using molecular docking and molecular dynamics tools. It was
found that the interactions with Tyr-91, Leu-138, Leu-171, Arg-183, Ala-83, Val-84, Asn-244,
and Arg-258 are crucial for FFA1 activation. The structure of the possible candidates
presents different cores, which can be further explored to find new FFA1 agonists. These
candidates are FDA-approved drugs, and future studies can explore their biological activity
as FFA1 agonists.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14020232/s1, Table S1. Name of the molecule,
SMILES, pEC50 value, docking scores, and training/set label, Table S2. Statistics of the whole and
split dataset for the best 10 subsets without the consideration of the applicability domain, Table S3.
Descriptors names of M1 and M2, Figure S1. Applicability domain analysis for the test set of M1 (a)
and M2 (b). A compound is considered an outlier if the consensus domain score is smaller or equal
than 0.25 (red zone), Table S4. Pearson’s coefficient for M1 descriptors, Table S5. Pearson’s coefficient
for M2 descriptors, Table S6. Name of DiaNat molecule, pEC50 predicted value and SMILES of
molecules inside the applicability domain, Table S7. Name of DrugBank 5.1.7 molecules, pEC50
predicted value, and SMILES of molecules inside the applicability domain, Figure S2. 3D graphic
of the interaction between FFA1 and compound 15 (a), 91 (b), 92 (c), and 93 (d), Table S8. Docking
scores (kcal/mol) for the 26 compounds derived from the screening databases, Figure S3. 2D graphic
of the interaction between FFA1 and anileridine (a), bromfenac (b), sulfinpyrazone (c), indacaterol
(d), bilastine (e), curcumin (f), and fenofibric acid (g), Figure S4. Coulomb (blue) and Lennard-Jones
(red) interaction energies between FFA1 and compound 15 (a), 91 (b), 92 (c), 93 (d), and TAK-875 (e)
during the 200 ns simulation, Figure S5. Coulomb (blue) and Lennard-Jones (red) interaction energies
between FFA1 and anileridine (a), bromfenac (b), sulfinpyrazone (c), indacaterol (d), bilastine (e), and
fenofibric acid (f) during the 200 ns simulation.
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