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Abstract
Background: The relative preference of nucleosomes to form on individual DNA sequences plays
a major role in genome packaging. A wide variety of DNA sequence features are believed to
influence nucleosome formation, including periodic dinucleotide signals, poly-A stretches and other
short motifs, and sequence properties that influence DNA structure, including base content. It was
recently shown by Kaplan et al. that a probabilistic model using composition of all 5-mers within a
nucleosome-sized tiling window accurately predicts intrinsic nucleosome occupancy across an
entire genome in vitro. However, the model is complicated, and it is not clear which specific DNA
sequence properties are most important for intrinsic nucleosome-forming preferences.

Results: We find that a simple linear combination of only 14 simple DNA sequence attributes
(G+C content, two transformations of dinucleotide composition, and the frequency of eleven 4-bp
sequences) explains nucleosome occupancy in vitro and in vivo in a manner comparable to the Kaplan
model. G+C content and frequency of AAAA are the most important features. G+C content is
dominant, alone explaining ~50% of the variation in nucleosome occupancy in vitro.

Conclusions: Our findings provide a dramatically simplified means to predict and understand
intrinsic nucleosome occupancy. G+C content may dominate because it both reduces frequency of
poly-A-like stretches and correlates with many other DNA structural characteristics. Since G+C
content is enriched or depleted at many types of features in diverse eukaryotic genomes, our
results suggest that variation in nucleotide composition may have a widespread and direct influence
on chromatin structure.

Background
The genomes of eukaryotes are packaged into nucleo-
somes, comprised of approximately 147 base pairs of
double-stranded DNA wrapped around an octamer of the
highly conserved histone subunits[1]. Histones are the
most abundant DNA binding proteins in the cell, and
occupy ~80% of the yeast genome in vivo[2]. In the past
few decades, it has become clear that the biological roles
of nucleosomes extend far beyond simple DNA packag-

ing, to include replication, DNA repair, recombination,
and transcriptional regulation[3,4]. Active regulatory
sequences are often depleted of nucleosomes[5-7], pre-
sumably due to steric hindrance constraints between
nucleosomes and binding of most other DNA-binding
proteins. The interplay between histones, DNA, and other
DNA-binding proteins is therefore critical to the orches-
tration of transcription and other functions of the
genome.
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In S. cerevisiae, studies examining the relative incorpora-
tion of yeast genomic DNA into nucleosomes in vitro have
demonstrated that nucleosome depletion at promoters is
to a large extent programmed into the DNA
sequence[8,9]. These experiments were conducted using
chicken[8] or human[9] histones, which, when assembled
onto yeast genomic DNA, adopted a configuration that
closely resembles that of yeast nucleosomes in vivo. There-
fore these results also indicate that the sequence prefer-
ences of nucleosomes are likely to be broadly conserved
across eukarya.

To fully understand the function and evolution of gene
regulation and genome packaging, it will be essential to
understand the sequence preferences of nucleosomes. A
variety of sequence cues have been shown to influence
nucleosome sequence preference. These include nucleo-
some positioning[10,11] and excluding[12-15]
sequences, as well as many local structural features that
describe the overall deformability, curvature and flexibil-
ity of double stranded DNA[16-19] that could affect
nucleosome occupancy and arrangement at particular
sites in the genome. Methods to predict nucleosome posi-
tioning and occupancy from sequence have often relied
on periodic dinucleotide patterns found in collections of
nucleosomal sequences from both in vivo and in vitro
experiments[20,21] and these patterns can explain a frac-
tion of nucleosome positions in vivo[22,23]. However,
analyses of sequences highly enriched in nucleosome-
occupied and nucleosome-depleted regions in genome-
scale and genome-wide data sets have highlighted the
importance of nucleosome-excluding sequences, in par-
ticular poly-dA/dT tracts[2,8,24-27], and incorporation of
these features into models of nucleosome occupancy has
markedly improved prediction accuracy [2,24-26]. Some
of these studies have also noted that the observed nucleo-
some occupancy in vivo correlates with and can be pre-
dicted by base composition (G+C content)[2,25,28] and
other structural features of DNA [2,29], many of which,
on their own, correlate with base composition. However,
these observations were based on in vivo nucleosome
occupancy, and did not directly demonstrate intrinsic
nucleosome sequence preference.

Kaplan et al.[8] showed recently that a probabilistic
model (hereafter referred to as the "Kaplan model") using
the composition of all 5-mers within a 147-base tiling
window accurately predicts nucleosome occupancy across
an entire genome in vitro. The Kaplan model should inher-
ently capture the effects of both base composition and
aspects of large-scale structural properties which are
thought to depend primarily on dinucleotide content[19].
However, the relative contributions of individual
sequence features and properties are not readily apparent
from the Kaplan model, which contained over 2,294

parameters. To our knowledge, there currently exists no
systematic assessment of the impact of individual nucleo-
some excluding/attracting sequences on intrinsic nucleo-
some preference on a genomic scale, nor an examination
of which features are redundant or dispensable in a com-
bined model.

Here we used Lasso[30], a linear regression algorithm, to
derive a greatly-simplified model for intrinsic nucleosome
sequence preference. We used Lasso because: (1) Model
generation is fast for large data sets (compared to other
machine-learning approaches, such as SVM), (2) Lasso
does subset selection, such that if given a set of highly cor-
related features, it will weight those that have the greatest
impact, setting other feature weights to 0, thereby reduc-
ing the number of features in the final model, and (3) The
end result is a simple linear equation, containing a set of
easily interpreted weights for each feature. In our analysis,
we obtained very similar models regardless of training/
test divisions of the yeast genome, and we selected for fur-
ther analysis one model that contains only 14 features and
has predictive capacity nearly identical to the Kaplan
model. While the 14 feature model is trained on the Kap-
lan in vitro data, it performs comparably or better than the
best previous models on in vivo data in both yeast and C.
elegans. The 14 feature model is heavily dependent on
G+C and poly-A content, with G+C having the highest
independent correlation with measured nucleosome
occupancy. We suggest possible explanations and impli-
cations of the strong association between G+C content
and intrinsic nucleosome occupancy.

Results and Discussion
We first performed a feature selection step to identify
which sequence features known or believed to influence
nucleosome occupancy or positioning correlate with or
are strongly associated with the in vitro nucleosome data
of Kaplan et al.[8]. Table S1 (Additional File 1) lists the
171 features tested and the results of the tests. The features
included: (a) mononucleotide frequency (i.e. G+C con-
tent); (b) predicted DNA structural characteristics (each
calculated from the dinucleotide content using a simple
linear formula[19]); (c) nucleosome positioning and
excluding sequences from the literature[10-15]; and (d)
the frequency of 4-bp sequences over a 150-bp window.
We used 4-mers instead of 5-mers (as in the Kaplan
model) in order to limit the number of features, and to
obtain inputs that correlate independently with nucleo-
some occupancy (since each 4-mer occurs more fre-
quently than nucleosomes, on average). We identified
130 features that we deemed to be associated with in vitro
nucleosome occupancy across the yeast genome (see
Methods), including representatives of all categories (a-d)
above (Table S1 [Additional File 1]).
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We then used Lasso to learn linear models that relate these
130 features to the Kaplan et al. data. We created eleven
different models, using eleven different random samples
of 1,000,000 genomic positions selected from subsets of
the yeast genome as training data, each with 10-fold inter-
nal cross-validation (Lasso itself chooses the number of
coefficients using a cross-validation procedure within the
training data). In each case, Lasso assigned nonzero
weights to a similar set of features (Figures 1 and S1-3
[Additional File 1]), each of which yielded a roughly com-
parable correlation to test data. This result indicates that
the model chosen is not strongly dependent on the subset
of the data used for training. From among the models, we
chose the model trained on chromosomes 1-9 for further
analysis, on the basis that (a) it was an arbitrary selection,
being the first model sorted numerically, and (b) it has 14
features, which is the median number among the eleven
runs. Hereafter, we refer to this model as the "14 feature
model", the formula for which is given in the Methods
section.

The 14 feature model explains a large majority of the var-
iation in nucleosome occupancy over the yeast genome in
the Kaplan et al. in vitro data[8] (R = 0.86 over the test set)
(Figure 2A, B). This correlation is near the level of experi-
mental reproducibility reported by Kaplan et al. (R =
0.92), and similar to that of the Kaplan model that
learned 2,294 parameters (R = 0.89)[8]. We note that our
models with substantially more than 14 features have cor-
relations with the in vitro data as high as 0.88 (Figure 1
and S1 [Additional File 1]). The 14 feature model also cor-
relates significantly with in vivo nucleosome occupancy in
yeast (grown in glucose)[8] (Figure 2C) (R = 0.72, Spear-
man P < 2.2 × 10-308). The Kaplan model has a correlation
coefficient of 0.74 over the same test data. Thus, the 14
feature model encapsulates the vast majority of the infor-
mation in the Kaplan model. Indeed, the correlation
between the 14 feature model and the Kaplan model over
the entire yeast genome is 0.88 (Figure 2D).

In order to further benchmark our model, we compared
the performance of the 14 feature model with published
models[2,8,22-26,29,31,32] on other in vitro and in vivo
nucleosome occupancy data sets, using Pearson correla-
tion between predicted and actual data. These results are
summarized in Table 1. In all cases, the 14 feature model
has performance comparable to the Kaplan model and to
another model (the Field model) from the same lab with
a similar number of parameters as the Kaplan
model[8,24]. Since the 14 feature model is trained on Illu-
mina/Solexa sequencing data, which may have inherent
biases[33], it is important to note that it also correlates
well with an in vivo nucleosome organization from a tiling
array study in yeast[2] and a sequencing-based study in C.
elegans that was normalized using naked genomic DNA

processed in the same fashion as the nucleosomal
DNA[34], performing the best out of all models tested on
the latter data set. Thus, our model is comparable to the
Kaplan model on multiple data sets, including those gen-
erated in vivo, using other methods, and/or in an organism
distantly related to yeast.

The results from this comparison also confirm that mod-
els that combine aperiodic signals perform much better at
predicting nucleosome occupancy than models based pri-
marily on periodic dinucleotide signals[22,23]. The one
exception is the model of Yuan and Liu[26], which is
based on periodic dinucleotide signals in nucleosomal
and linker sequences identified using wavelet analysis. We
note, however, that the dinucleotide features with most
predictive power and the highest regression coefficients in
the Yuan and Liu model have frequencies at the single
base scale (i.e. have a length scale of 1)[26], suggesting
that aperiodic dinucleotide composition is, perhaps unin-
tentionally, a major component.

The most critical features in the 14 feature model are G+C
content and frequency of AAAA, on the basis of two crite-
ria. First, these two features correlate highly with nucleo-
some occupancy in vitro (R = 0.71 and 0.63, respectively),
independently of all other features (Figure 3A-C). Second,
a procedure in which we iteratively removed the least crit-
ical feature(s) of the model (i.e. those with the least influ-
ence on the basis of re-trained model performance after
their removal) resulted in AAAA and G+C being the last
two components removed (data not shown). A two-fea-
ture linear model (trained on G+C and AAAA) retained a
correlation on test data of 0.72, only a marginal improve-
ment over G+C alone (Figure 3D). From this analysis, we
conclude that G+C content independently accounts for
approximately half of the variation in intrinsic nucleo-
some occupancy (R2 = 0.712 = 0.50). We note that the Kap-
lan model weights for individual 5-mers also scale highly
with G+C content (R = 0.78, Spearman P = 3.33 × 10-284;
data not shown) and that the scores assigned by the Kap-
lan model to 147-base windows across the yeast genome
correlate highly with G+C content (R = 0.87, Figure 3E).
Table 1 shows that other models that correlate highly with
G+C content (Table 1, last column) perform well at pre-
dicting nucleosome occupancy in vitro and in vivo, and
that G+C content itself is a good predictor in all data sets
(Table 1): in all data sets examined, %G+C had a higher
correlation that the majority of published models tested at
predicting nucleosome occupancy.

We next sought to understand why these 14 features are
repeatedly retained in linear models (Figure 1). Manual
inspection of the components of the 14 feature model
suggests a small number of overarching themes. All 11 of
the 4-mers are A/T rich (eight are entirely A/T), and mod-
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els of DNA structure suggest that they should retain some
of the structural character of poly-A sequences (data not
shown). Poly-A stretches are believed to exclude nucleo-
somes because they are both rigid and bent, making them
less compatible with the extreme bending required for
nucleosome formation, regardless of their local sequence
context[14,27,35]. Sequences high in G+C will tend to
lack these (and related) sequences, which may partly
explain why G+C content has high overall predictive
value; however, it is possible for sequences to be both
G+C rich and contain small nucleosome excluding
sequences, which would negatively impact nucleosome
formation, explaining why a variety of poly-A-like 4-mers
are retained in the model.

The importance of G+C may also be explained by the fact
that this single parameter affects virtually all aspects of

DNA structure. Indeed, the two overall DNA structural
properties selected (propeller twist, which describes angu-
lar displacement of bases in a pair relative to each other,
and slide, which describes lateral translation of base pairs
relative to each other), both correlate well with G+C con-
tent when calculated as an average over a tiling window
using dinucleotide tables[19] (data not shown). These
and the majority of other DNA structural properties also
correlate either positively or negatively with both G+C
content and nucleosome occupancy in vitro and in vivo
(Figure 4 and data not shown). Thus, the 14 feature model
is also likely to be dominated by G+C because this param-
eter influences a large number of structural attributes of
DNA, perhaps most critically propeller twist and slide,
which may also be sufficiently important that their devia-
tions from simple G+C content cause them to be retained
in the Lasso regression. There is prior evidence for the
importance of one of these features in nucleosome forma-
tion: Poly-A and related sequences are rigid and bent pre-
cisely because they are high in propeller twist, resulting in
a continuous network of bifurcated hydrogen bonds[36].

To gain more direct evidence for separability between
G+C content and poly-A sequences as determinants of
intrinsic nucleosome occupancy, we examined G+C con-
tent and poly-A sequences in an independent data set in
the Kaplan et al. paper, in which nucleosomes were
assembled with synthetic 150-mer sequences designed to
have a broader range of unusual sequence attributes than
are present in the yeast genome. Since the synthetic 150-
mer nucleosome occupancy data was described by Kaplan
et al. as noisier than the yeast genomic DNA occupancy
data[8], due to two rounds of PCR required in the experi-
ment, we first confirmed that the synthetic 150-mer data
set displays the same global trends with respect to DNA
structural parameters as does yeast genomic DNA, both in
vitro or in vivo (Figure 4). We then asked whether G+C
content and poly-A sequences act independently by exam-
ining the effect of one variable while holding the other
within a narrow range. Figure 5A and 5B show that these
parameters do act independently to a considerable degree;
G+C has a major effect even if there are no poly-A tracts of
length greater than three, and poly-A tracts have a clear
effect even if placed in a 150-mer with neutral G+C con-
tent. We note that the behaviour at the extremes of G+C
content in Figure 5A is inconsistent with the dependence
of G+C shown in Figure 3B; however, there are very few
data points at the extremes (Figure 5A). The in vivo rele-
vance of these extremes may be very small: there are no
nucleosome-sized sequence windows in yeast that are
greater than 80% or less than 20% G+C, and the same is
nearly true in much larger genomes (e.g. human; Figure
5A). Even human CpG islands are only 66% G+C on aver-
age. CpG-like sequences[37] among the ~27,000 oligonu-
cleotides in this analysis[8] do have high intrinsic

Model feature weights selected by Lasso for eleven different training data setsFigure 1
Model feature weights selected by Lasso for eleven 
different training data sets. Chromosomes from which 
1,000,000 random nucleotide positions were taken are given 
at bottom. Correlation coefficients are given in the middle, 
using a test set that does not include any of the random 
nucleotide positions used in the training set. The top panel is 
a zoom-in of the 16 features that were weighted in more 
than half of the eleven runs. Weights do not directly reflect 
importance or proportion of the data that a feature explains, 
because features are unit-normalized prior to analysis, and 
can have dissimilar distributions.
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nucleosome occupancy overall, even if they contain poly-
A sequence (Figure 5C).

Our model confirms and extends previous indications
that G+C content is a major determinant of nucleosome
sequence preference, demonstrating the importance of
G+C content on intrinsic nucleosome occupancy. We pro-
pose that it represents a "summary feature" that both
biases against poly-A-like tracts and encapsulates multiple
DNA structural attributes. The 14 feature model we derive
provides an extremely simple means to assess the intrinsic
preference for nucleosomes to form on a given segment of
DNA. Moreover, it can be used to evaluate why the seg-
ment has an intrinsic preference, in comparison to other
sequences; the expected distribution of values for all of the
model features in random sequence or across a genome is

easily determined. We note that the 14 feature model does
not contain any periodic component; Kaplan et al. also
found that periodic signal added little to the probabilistic
model[8]. We previously proposed that the predominant
role of this signal may be to reinforce local translational
or rotational settings[2], and we emphasize that our 14
feature model does not explicitly predict either nucleo-
some positioning or translational settings, nor does it
account for steric effects. Nonetheless, the model scores
closely mirror actual in vitro occupancy data obtained for
the entire yeast genome, and also have strong correlations
to in vivo nucleosome occupancy in yeast and C. elegans as
shown in Figure 2 and Table 1 similarly or more strongly
than any previous model or algorithm, and much higher
than most previous approaches, particularly those that
rely solely on periodic signals.

Performance of a 14 feature linear model of intrinsic nucleosome sequence preferenceFigure 2
Performance of a 14 feature linear model of intrinsic nucleosome sequence preference. (A) Scatter plot vs. test 
set (yeast chromosomes 10-16), shown as a heat-map. Axis values are log2 normalized nucleosome occupancy (see Methods). 
(B) Model scores (probabilistic[8] and linear) and in vivo and in vitro nucleosome occupancy[8] within a 20 kb region of chromo-
some 14. (C) and (D) Correlation of the 14 feature model score with measured in vivo nucleosome occupancy in yeast (C) and 
with the Kaplan model across chr10-16 (test set) (D).
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Table 1: Comparison of nucleosome occupancy prediction models on different data sets

Model Summary Performance (Pearson R)

Synthetic 
oligonucleotides 
(Microarray) [8]

Synthetic 
oligonucleotides 
(Sequencing) [8]

Yeast in vitro [8] Yeast in vivo [2] C. eleg
adjust

nucleoso
coverage

Kaplan et al., 
2009[8]

Probabilistic model 
based on in vitro 5-
mer preferences 
and periodic 
dinucleotide signal.

0.51* 0.45* 0.89* 0.34 0.47*

Lasso model (this 
study)

See Methods. 0.44 0.41 0.86* 0.38* 0.49*

Field et al., 
2008[24]

Probabilistic model 
based on 5-mer 
preferences 
measured in vivo 
(yeast) and 
periodic 
dinucleotide 
signals.

0.47* 0.45* 0.74 0.39* 0.46*

%G+C The percentage of 
guanine and 
cytosine bases in a 
DNA sequence.

0.53* 0.49* 0.78* 0.25 0.42

Lasso model[2] Linear regression 
model trained on 
in vivo nucleosome 
occupancy data. 
Uses DNA 
structural 
parameters, 
excluding 
sequences and 
transcription 
factor binding sites 
(ABF1, REB1, and 
STB2) as inputs.

0.23 0.22 0.63 0.45* 0.38



Pa
ge

 7
 o

f 1
3

(p
ag

e 
nu

m
be

r n
ot

 fo
r c

ita
tio

n 
pu

rp
os

es
)

0.33 0.57

0.48 0.30

0.25 0.49

0.05 0.07
B
M

C
 B

io
in

fo
rm

at
ic

s 
20

09
, 1

0:
44

2
ht

tp
://

w
w

w
.b

io
m

ed
ce

nt
ra

l.c
om

/1
47

1-
21

05
/1

0/
44

2

Peckham et al., 
2007[25]

SVM classifier 
trained on 
overrepresented 
k-mers (k = 1-6) 
found in 
nucleosome 
occupied and 
depleted 
sequences 
determined in vivo 
yeast data.

0.43 0.39 0.48 0.22 0.29

Yuan and Liu, 
2008[26]

Computes 
predicted 
nucleosome 
occupancy based 
on periodic 
dinucleotide signals 
found in 
nucleosomal and 
linker DNA 
sequences 
determined from in 
vitro and in vivo 
experiments in 
yeast

0.02 0.05 0.35 0.27 0.36

Miele et al., 
2008[29]

Computes free 
energy landscape 
of nucleosome 
formation using an 
estimation of 
dinucleotide-
dependent DNA 
flexibility and 
intrinsic curvature.

0.32 0.26 0.38 0.22 0.21

Segal et al., 
2006[23]
Downloaded 
January 2007

Probabilistic model 
trained on yeast 
data, using a 
position specific 
scoring matrix 
derived from a 
collection of 
nucleosome-bound 
sequences 
obtained from in 
vitro selection 
experiments.

NaN NaN 0.05 0.09 0.05

Table 1: Comparison of nucleosome occupancy prediction models on different data sets (Continued)
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Ioshikhes et al., 
2006[22]

Computes the 
correlation of 
periodic AA/TT 
dinucleotide motifs 
in a given sequence 
with those found in 
a set of 204 
eukaryotic and 
viral nucleosomal 
sequences 
determined 
through in vivo and 
in vitro 
experiments[20].

-0.03 -0.03 0.01 0.07 -0.03

Tolstorukov et al., 
2007,2008[31,32]

Estimates the 
dinucleotide-
dependent cost of 
deformation 
caused by 
threading a given 
sequence on a 
template 
comprising the 
path of DNA found 
on the 
experimentally 
determined 
structure of the 
nucleosome core 
particle.

0.01 0.004 0 -0.001 -0.00

Segal et al., 
2006[23]
Downloaded 
August 2009

Probabilistic model 
trained on yeast 
data, using a 
position specific 
scoring matrix 
derived from a 
collection of 
nucleosome-bound 
sequences 
obtained from in 
vitro selection 
experiments.

NaN NaN -0.2 0.001 -0.06

Pearson correlation is shown as a performance metric. Nucleosome occupancy was predicted in yeast using only sequence from the test set (c
indicates that a score of "0" was obtained for each sequence (since this model[23] requires the sequence be > 150 bp in length). Models are sort
(*) and text in bold denote the top three and top 50% performing models for each data set, respectively.

Table 1: Comparison of nucleosome occupancy prediction models on different data sets (Continued)
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Correlation of each of the 14 features with nucleosome occupancyFigure 3
Correlation of each of the 14 features with nucleosome occupancy. (A) Graphic illustration of the correlation of each 
of the 14 sequence features with nucleosome occupancy in vitro and in vivo across the yeast genome (data from Kaplan et 
al.[8]). (B-D) Scatter plots showing performance of linear models on test set using only G+C content (B), AAAA occurrence 
(C), or both (D) as inputs. (E) Kaplan model score vs. proportion of G+C over all 150 bp tiling windows in the yeast genome.
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Finally, we note that G+C content as a major determinant
of nucleosome occupancy has major implications for
genome organisation. Our analysis indicates that in yeast
simple nucleotide composition plays a direct role in
nucleosome exclusion, and presumably in demarcation of
promoters. Local biases in nucleotide composition have
been reported in other eukaryotes, including CpG
islands[37], isochores[38], and transcription start
sites[39]. It will be of interest to examine how variation in
base content impacts nucleosome occupancy and chro-
matin structure in other genomes, whether there are func-
tional consequences, and how the intrinsic nucleosome
formation signals interact with overlapping regulatory sig-
nals in the genome.

Conclusion
We have constructed a simple predictive model of intrin-
sic nucleosome occupancy in which base composition
(G+C content) is a major component. G+C content may
be a dominant feature because it correlates with many
structural properties of DNA, and also reduces the fre-
quency of poly-A-like stretches. Since local variations in
G+C content occur at many types of features in diverse
eukaryotic genomes, our findings suggest that nucleotide
composition may have a widespread and direct influence
on chromatin structure.

Methods
Data sets
We converted the average nucleosome occupancy meas-
urements from yeast (in vitro and in vivo)[8] to log2 scale.
We also used the in vivo nucleosome occupancy measure-
ments from a tiling array study in yeast[2], and measure-

ments from an in vivo map of nucleosome occupancy in C.
elegans[34] using both the "adjusted nucleosome occu-
pancy" values (in which nucleosomal DNA was normal-
ized with respect to micrococcal-nuclease treated genomic
DNA), and raw nucleosome coverage, applying the same
normalization method found in[8]. For this, we calculate
a "normalized nucleosome occupancy" measure for each
base pair by taking the log2 ratio between the basepair's
total occupancy and the mean genomic average occu-
pancy. Then, we set the genomic average to zero by sub-
tracting the new genome-wide mean from each basepair.

Derivation of linear model
We downloaded a MATLAB version of the Lasso algo-
rithm[30,40]. Given a set of predictors (e.g. sequence fea-
tures), and an outcome measurement (e.g. log2 in vitro
nucleosome occupancy data), Lasso generates a linear
model  = β x1 + β x2 + ... β xn, where the output  is the nucle-
osome occupancy prediction for a given base position,
and β are the weights for each feature (x1..n), calculated at
that position. The Lasso algorithm imposes a constraint
on the sum of the weights, such that only the most impor-
tant features are given non-zero weights. Input features are
listed in Table 1 and were selected following[2] (but
excluding transcription factor binding sequences, which
are not relevant to intrinsic nucleosome sequence prefer-
ences). Briefly, for each base, we calculated the average of
each structural and base composition feature in a 75-base
window centered on this base; here, a 75-base window
was used because it approximates the number of central
basepairs (67-71 bp) bound by the histone-fold domains
of the H32H42 tetramer of the histone octamer[1], which,
in turn, dominates the free energy of histone-DNA inter-

Correlation of DNA structural parameters, calculated as the average over a 150-base window, with nucleosome occupancy in vitro and in vivoFigure 4
Correlation of DNA structural parameters, calculated as the average over a 150-base window, with nucleo-
some occupancy in vitro and in vivo. Calculations were made using dinucleotide and other coefficients obtained from the 
PROPERTY database http://srs6.bionet.nsc.ru/srs6bin/cgi-bin/wgetz?-page+LibInfo+-newId+-lib+PROPERTY. Nucleosome 
occupancy data are from Kaplan et al.[8] and Lee et al.[2]. Pearson correlation is shown.
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Relative nucleosome preference of different subsets of synthetic 150-mersFigure 5
Relative nucleosome preference of different subsets of synthetic 150-mers. (A) and (B) Dependence of relative 
nucleosome preference (as log2(occupancy ratio)) on G+C content (A) and maximum poly-A length (B). Oligonucleotides cat-
egorized as "Neutral %G+C" in (B) are those with 45-55% G+C. Graph below shows the frequency of the selected attribute in 
the oligonucleotides analyzed, and also the human and yeast genomes. (C) Dependence of relative occupancy on poly-A con-
tent and CpG status. Poly-A containing oligonucleotides are defined as containing at least four consecutive adenine bases. CpG 
oligonucleotides are defined as having a G+C content ≥50%, with an observed/expected CpG ratio ≥0.6 (Obs/Exp CpG = 
Number of CpG * N/(num G * num C), where N = length of sequence[37]). The sequencing readout (rather than array read-
out) data from the Kaplan paper was used in this analysis. On all box plots, whiskers indicate 10th and 90th percentiles.
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actions in vitro[41]. The frequency of sequence motifs (4-
mer copy number/frequency, poly-dA/dT tract length, and
nucleosome positioning and excluding sequence occur-
rence) was scored on both strands in 150-base windows
(75 bp on the left, 74 on the right) centered on this base,
because we anticipated that specific sequences would be
nucleosome-excluding, and would have such an activity
over the full length of the nucleosomal DNA.

For Lasso, we found that an initial reduction in feature
space (to ~130 features) resulted in more stable results.
We therefore selected input features as follows: for 4-mer
frequency and nucleosome excluding/positioning motifs,
the AUROC (area under the receiver operating curve)
≤0.45 and AUROC > 0.54. To calculate the AUROC for
each sequence motif, we first sorted each 150-base
sequence by in vitro occupancy, and used the presence or
absence of the sequence feature to define positive and
negative instances. For the base composition and dinucle-
otide feature models, we calculated the Pearson correla-
tion to the measured in vitro nucleosome occupancy, and
retained those with correlation > |0.10|. We then ran
Lasso on the selected sequence features, training on
1,000,000 randomly selected data points from chromo-
somes 1-9 (or other sets of chromosomes as indicated)
which had been standardized to have mean zero and unit
variance (for mathematical reasons and numerical stabil-
ity) and selected the optimal weights by means of 10-fold
internal cross validation. The 14 feature linear model is as
follows (note that these values are different from those
shown in Figure 1 because we have compensated for the
unit-normalization step that Lasso incorporates; Figure
S2-3 (Additional File 1) show the equivalent of Figure 1
and S1 (Additional File 1) but with unit-normalization
removed):

Intrinsic sequence preference = 1.67175 × G+C content +
0.145742 × propeller twist + 1.31928 × slide - 0.10549 ×
freqAAAA - 0.07628 × freqAAAT - 0.03006 × freqAAGT -
0.05055 × freqAATA - 0.02564 × freqAATT - 0.02154 ×
freqAGAA - 0.03949 × freqATAA - 0.02354 × freqATAT -
0.03214 × freqATTA - 0.03314 × freqGAAA - 0.0334 ×
freqTATA + 1.788022

Where 4-mer occurrence is calculated in 150 bp windows,
and G+C content, propeller twist and slide are calculated
in 75 bp windows as described above. Propeller twist and
slide were calculated as averages over all dinucleotides
from tables found in[19]:

Where S(i) is the structural feature (propeller twist, slide)
score for the dinucleotide at position i.

For propeller twist and slide, the full equations are (from
the PROPERTY database[19]http://srs6.bionet.nsc.ru/
srs6bin/cgi-bin/wgetz?-page+LibInfo+-newId+-
lib+PROPERTY:

Average propeller twist = (-17.3 × freqAA - 6.7 × freqAC -
14.3 × freqAG - 16.9 × freqAT - 8.6 × freqCA - 12.8 ×
freqCC - 11.2 × freqCG - 14.3 × freqCT - 15.1 × freqGA -
11.7 × freqGC - 12.8 × freqGG - 6.7 × freqGT - 11.1 ×
freqTA - 15.1 × freqTC - 8.6 × freqTG - 17.3 × freqTT)/75

Average slide = (-0.03 × freqAA - 0.13 × freqAC + 0.47 ×
freqAG - 0.37 × freqAT + 1.46 × freqCA + 0.6 × freqCC +
0.63 × freqCG + 0.47 × freqCT - 0.07 × freqGA + 0.29 ×
freqGC + 0.6 × freqGG - 0.13 × freqGT + 0.74 × freqTA -
0.07 × freqTC + 1.46 × freqTG - 0.03 × freqTT)/75

We predicted nucleosome occupancy in yeast and C. ele-
gans genomes using the model scored on 150-base win-
dows surrounding each data point in both in vitro and in
vivo nucleosome maps [8,34] at 1 bp intervals.

Comparison of nucleosome occupancy prediction models
We obtained nucleosome prediction software from the
authors' website http://genie.weizmann.ac.il/software/
nucleo_exe.html[8,23,24], and used the Pocc or "average
occupancy" measure. For other models[2,26,29,31,32],
we requested the code from the authors. An implementa-
tion of the nucleosome positioning sequence scoring met-
ric[22] was obtained from Dr. G.C. Yuan. Scores for the
model described in[25] on all sequence data sets tested
were provided by Yair Field. For all models, with the
exception of the Peckham SVM[25], we predicted nucleo-
some occupancy across the yeast test set used for the Lasso
model derived in this study (chromosomes 10-16), C. ele-
gans chrIII, and synthetic 150-mer oligonucleotides (both
microarray and sequencing data sets)[8], using default
parameters for all models. In the case of the Peckham
SVM[25], which outputs a score to every 50 bp sequence,
scores over a 150-base window were calculated by averag-
ing all contained 50 bp scores for all sequences analyzed.
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