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Background: Osteosarcoma (OS) stands as the prevailing form of primary bone cancer in clinical practice. Lack of effective
treatment options and an overall poor prognosis are caused by the disease’s exceptionally rare occurrence and unclear rationale.
Objective: This study’s goal is to determine diagnostic marker genes involved in the progression of OS and investigate related
pathways and mechanisms with the purpose of offering effective methods for OS diagnostics and therapy.
Methods: The Gene Expression Omnibus database provided the gene microarray data. Core genes were identified through
differential expression analysis and WGCNA. Three techniques for machine learning, random forest, least absolute shrinkage and
selection operator regression, and support vector machine recursive feature elimination, were used to further screen the core genes
and obtain diagnostic marker genes for OS. The specificity and sensitivity of the diagnostic marker genes for OS diagnosis were
evaluated using receiver operating characteristic curves. Western blotting analysis was used for preliminary validation of the
diagnostic marker genes and their related pathways.
Results: Two diagnostic marker genes were identified through screening, including CEP55 and VWF. Receiver operating
characteristic curves have been utilized to assess the diagnostic and therapeutic effects of CEP55 and VWF on OS. Western blotting
analysis preliminarily validated the overexpression of CEP55 in OS and its capacity to control MMP2 and MMP9 levels by activating
the JAK2/STAT3 signaling pathway.
Conclusion: At the first time, this research shows that CEP55 and VWF are more powerful diagnostic and predictive indicators for
OS. CEP55 holds the capacity to activate the JAK2/STAT3 signaling pathway and modulate MMP2 and MMP9 levels, thereby
positioning it as a promising target in OS treatment.
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Introduction

Osteosarcoma (OS), being the prevailing form of primary bone
cancer, has an unusually low incidence rate. According to
incomplete statistics, the disease occurs in approximately 4.4
cases for each million people annually in kids and teens[1].
However, the cause of OS in themajority of affected individuals is
still unknown, leading to a lack of effective treatment options and
a poor overall prognosis[2]. Systemic neoadjuvant chemotherapy
combined with surgical treatment remains the mainstay of ther-
apy, and the necrosis rate of the resected tumor sample is con-
sidered a key prognostic indicator[3]. However, with the

continuous advancement of clinical research, the practicality of
this approach and its indicators in the treatment of OS have
become increasingly controversial. This is because a considerable
number of patients experience local recurrence, metastasis, or
develop strong drug resistance after treatment[4,5]. In the face of
this phenomenon, it is necessary to explore more powerful
diagnostic and predictive indicators[6].

Recently, propelled by the advent of high-throughput
sequencing technologies, research workers’ understanding of
biology and human diversity is undergoing unprecedented
changes[7]. Correspondingly, this has also driven the develop-
ment of bioinformatics analysis in revealing pathogenic genes,
exploring disease mechanisms, and other aspects[8]. The detection
and recognition of diagnostic biomarkers for OS have emerged as
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the central focus of contemporary research. By studying these
diagnostic biomarkers and their related pathways, it is possible to
better predict the progression of patients’ conditions and provide
personalized diagnosis and treatment plans[9–11].

In this work, firstly, we conducted preliminary screening and
processing of samples from four GEO datasets by setting condi-
tions. Then, using three machine learning methods, we obtained
two diagnostic biomarkers including CEP55 and VWF. Finally,
we found that the overexpression of CEP55 in OS prompts the
activation of the JAK2/STAT3 signaling pathway, subsequently
governing the expression of MMP2 and MMP9. These results
demonstrate the diagnostic significance of CEP55 in OS and its
potential as a viable therapeutic target.

Materials and methods

Data source and preprocessing

Collect and download three high-level OS microarray datasets
from the Gene Expression Omnibus (GEO) database, including:
GSE33382-GPL10295, GSE14827-GPL570, GSE21257-GPL
10295, and one normal bone tissue microarray dataset GSE
36001-GPL6102.

Based on the criteria: age less than 25 years old, presence or
absence of metastasis, preliminary screening, and integration of
samples from each high-level OSmicroarray dataset. In total, 117
samples were obtained, comprising 49 instances of primary OS
and 68 instances of metastatic OS. Batch implications were
mitigated through the utilization of the ʻlimmaʼ package and the
ʻSVAʼ package. Standardized fusion of samples from the normal
bone tissue dataset with primary and metastatic samples from the
high-grade OS dataset, respectively, for further analysis[12,13].
The integrated dataset of normal bone tissue samples (HC group)
and primary OS samples (Primary OS group) is named G1, and
the integrated dataset of normal bone tissue samples (HC group)
and metastatic OS samples (Metastatic OS group) is named G2.
For more details on the datasets, please refer to Table 1.

The acquisition of differentially expressed genes and the
construction of co-expression networks

Employ the ʻlimmaʼ package to discern genes with differential
expression between the HC group and the primary OS group, as
well as between the HC group and the metastatic OS group. The

criteria for selection are P<0.05 and |logFC| >1. Visualize the
results using the ʻpheatmapʼ function.

TheWGCNA package was used to construct gene co-expression
networks of primary OS and normal bone tissue expression pro-
files, and metastatic OS and normal bone tissue expression profiles,
respectively. Select an appropriate gene standard deviation value to
filter gene sets for further analysis[14]. Use the ʻgoodSampleGenesʼ
function to ensure that there are no missing values or abnormal
conditions in the dataset. Employ the ʻpickSoftThresholdʼ function
to establish the most suitable soft threshold and transform the gene
expression data matrix into the corresponding adjacency matrix.
Then, identify gene modules using the topological overlap cluster-
ing method. By calculating the module eigengenes and merging
similar modules, a hierarchical clustering dendrogram is further
generated. Evaluate gene significance and module significance
based on the corresponding phenotype data to further demonstrate
the significance between related genes and clinical information, as
well as the correlation between modules and models.

Selection of diagnostic biomarkers and construction of
diagnostic models

In the WGCNA results, modules that are significantly associated
with the disease and have a P-value <0.05 are considered central
modules. Utilize the ʻVennDiagramʼ package to conduct an inter-
section analysis between the genes exhibiting differential expression
and those encompassed within the central modules[15]. Use three
machine learning algorithms, including random forest (RF), sup-
port vector machine recursive feature elimination, and least abso-
lute shrinkage and selection operator (LASSO) regression, to
further filter the genes obtained from the intersection[16–18]. Take
the intersection of the results from the three algorithms as
the diagnostic signature genes for OS. Build a ROC curve and
calculate the area under the ROC curve (AUC) to preliminarily
evaluate the diagnostic significance of the signature genes.

Cell culture and transient transfection

The MG63 human OS cell line and CP-H111 human osteoblast
was purchased fromWuhan Punoise Life Science and Technology
Co., Ltd. in May 2023. The cells underwent relevant cell genetic
testing and identification. The cells were grown inMEMmedium
supplemented with 10% fetal bovine serum, in a humidified
incubator at 37°C and 5% CO2.

The shRNA targeting CEP55, JAK2, and STAT3 were designed
and constructed by China Shanghai Gemma Pharmaceuticals Co.
The recombinant vectors and packaging vectors were co-transfected
into MG63 cells using Lipofectamine 2000 (Invitrogen) to generate
lentiviral particles. MG63 cells were cultured in a six-well plate and
transfected with shCEP55, shJAK2, and shSTAT3 separately.
Transfected cells were cultured for 5 days and the efficiency of target
gene knockdown in this cell line was assessed by Western
blotting analysis. The shRNA targeted sequences were as
follows: (1)CEP55 shRNA：5’-CCAGAAGTACCAAAGATT
TAA-3’. (2) JAK2 shRNA:5’- GCAGAATTAGCAAACCTTATA
-3’. (3) STAT3 shRNA:5’- TGTTCTCTATCAGCACAAT -3’.

Western blotting analyze

The cells were lysed using RIPA lysis buffer supplemented with
protease inhibitors (Beyotime Biotech#P0013B). The proteins
were separated by 6 or 10% SDS-PAGE and transferred onto

Table 1
Vital details of the microarray datasets included in this study.

GEO series Normal Os_primary Os_metastatic
Total number of

samples

GSE33382-
GPL10295

0 16 31 47

GSE14827-
GPL570

0 17 9 26

GSE21257-
GPL10295

0 16 28 44

GSE36001-
GPL6102

4 0 0 4

G1 4 49 0 53
G2 4 0 68 72

Yan et al. Annals of Medicine & Surgery (2024)

191



PVDF membranes. sealing in 5% skimmed milk, the membranes
were incubated with primary antibodies against CEP55 (1:1000,
AB_2836271), STAT 3 (1:1000, AB_2835144), P-STAT 3
(1:1000, AB_2810278), MMP 9 (1:1000, AB_2837714), JAK 2
(1:1000, AB_2834956), P-JAK 2 (1:1000, AB_2834455), MMP
2 (1:1000, AB_2837815), JAK 1 (1:1000, AB_2834933), P-JAK
1 (1:1000, AB_2834437), FOXM1 (1:1000, AB_2838918), and
GAPDH (1:3000, AB_2839421) overnight at 4°C. All antibodies
were rabbit polyclonal antibodies from Affinity Bioreagents. The
membranes were then incubated with secondary antibodies at
37°C for 2 h and the protein bands were visualized using a
microplate chemiluminescence system (Share-BIO, SB-WB012).
Subsequently, the bands were normalized and analyzed for each
purpose using Image J, 1.80v software, using the GAPDH bands
as the standard.

Results

Characterization of DEGs and identification of WGCNA key
modules

Significant differences were observed between the primary OS
group and the HC group, resulting in the identification of a total
of 554 differentially expressed genes (DEGs). Among these, 147
genes exhibited significant downregulation, while 407 genes
displayed significant upregulation (Fig. 1A). The optimal soft
threshold β=4 (scale-free R2=0.9) was selected to construct a
co-expression network between the two groups (Fig. 1E). By
dynamic hybrid cutting, a total of 11 modules of different colors
were obtained (Fig. 1C). The Pearson correlation coefficients and
significance levels between each module and clinical traits were
calculated and presented in a heatmap (Fig. 1G). Key modules
were distinguished, consisting of the brown module comprising
276 genes and the yellow module comprising 220 genes.

Similarly, significant differences were observed between the
metastatic OS group and the HC group, resulting in the identi-
fication of a total of 732DEGs. Among these, 276 genes exhibited
significant downregulation, while 456 genes displayed significant
upregulation (Fig. 1B). The optimal soft thresholding power β=3
(scale-free R2=0.9) was chosen to construct a co-expression
network between the two groups (Fig. 1F). By dynamic hybrid
splicing, a total of 11modules with different colors were obtained
(Fig. 1D). The Pearson correlation coefficients and significance
levels between eachmodule and clinical traits were calculated and
presented as a heatmap (Fig. 1H). Key modules were dis-
tinguished, consisting of the yellow module comprising 206
genes, the magenta module comprising 62 genes, the brown
module comprising 316 genes, the pink module comprising 82
genes, and the red module comprising 120 genes.

The obtained DEGs were intersected with the genes in the key
modules. This yielded a total of 49 core genes intimately linked to
the onset and progression of OS (Fig. 2A).

Screening of diagnostic marker genes and the construction
of diagnostic models

The obtained 49 core genes underwent additional screening
utilizing three machine learning algorithms: RF, LASSO, and
SVM. In the primary OS group and HC group, 13 feature
genes with relative importance greater than 0.25 were
obtained using the RF algorithm (Fig. 2B), including:

TYROBP, CXCL12, CD93, LBP, ITGB2, CEP55, VWF,
PECAM1, ATP8B4, RRAGD, DNASE1L3, HERC5, and
LCP1. In the metastatic OS group and HC group, 12 feature
genes with relative importance greater than 0.2 were obtained
using the RF algorithm (Fig. 2C), including: CEP55, SOX11,
CD93, NECTIN3, VWF, ITGB2, JCHAIN, ATP8B4, HLA.B,
HLA.DRA, RNASE1, and TFF3. Then, the intersection of the
two RF results was obtained, resulting in five intersecting
genes: CD93, ITGB2, CEP55, VWF, and ATP8B4.

In both the primary OS group and the HC group, by
employing the LASSO algorithm and 10-fold cross-validation,
the amount of genes associated with the lowest cross-valida-
tion error (Fig. 2D) was identified as 9, encompassing CD93,
CEP55, DNASE1L3, LBP, LCP1, NECTIN3, RRAGD, TF,
and VWF. Similarly, in the metastatic OS group and HC
group, through the LASSO algorithm (Fig. 2E), a total of 11
feature genes were determined, including ACKR1, ATP8B4,
CEP55, CXCL12, DNASE1L3, LBP, LCP1, RRAGD, TF,
TFF3, and VWF. Subsequently, the intersection of the two
LASSO results yielded seven common genes, including CEP55,
DNASE1L3, LBP, LCP1, RRAGD, TF, and VWF.

In the primary OS group and HC group, through the SVM
algorithm and 10-fold cross-validation, the amount of genes
associated with the lowest cross-validation error (Fig. 2F) was
identified as 8, encompassing RRAGD, LAPTM5, VWF,
JCHAIN, NECTIN3, LCP1, CEP55, and ITGB2. Similarly, in
the metastatic OS group and HC group, through the SVM
algorithm (Fig. 2G), a total of seven feature genes were
determined, including RRAGD, VWF, CEP55, TYROBP,
LAPTM5, AQP1, and LCP1. Subsequently, the intersection of
the two SVM results yielded five common genes, including
RRAGD, LAPTM5, VWF, LCP1, and CEP55. Finally, the
intersection genes of all the algorithms were crossed again
(Fig. 2H) to obtain two diagnostic marker genes, including,
VWF and CEP55.

For the purpose of determining the sensitivity as well as specificity
of VWF and CEP55 in the OS diagnosis, ROC curves, and AUC
values were utilized. It can be seen that the AUC values of the ROC
curves for the two diagnostic marker genes in the primary OS group
and HC group were 0.934, while the AUC values when used indi-
vidually as diagnostic marker genes were 0.908 and 0.898, respec-
tively (Fig. 3C). In the metastatic OS group and HC group, the AUC
values of the ROC curves for the two diagnostic marker genes were
0.941, while the AUC values when used individually as diagnostic
marker genes were 0.952 and 0.873, respectively (Fig. 3D). In
addition, the expression of VWF and CEP55 in the primary OS
group and HC group (Fig. 3A) as well as in the metastatic OS group
and HC group (Fig. 3B) and the corresponding results were
demonstrated with a box plot.

The diagnostic marker gene CEP55 promotes the expression
of MMPs in OS cells

Prior research has demonstrated that CEP55 can expedite the inva-
sion andmetastasis of pancreatic cancer by fostering the upregulation
of MMPs[19]. Based on this, we propose that CEP55, as a diagnostic
marker gene for OS, may also increase its invasion and metastasis
ability by promoting the expression of MMPs in OS. Therefore,
we used Western blot analysis to preliminary validate the expression
of relevant genes in normal bone tissue cells (HC), OS cells, and OS
cells with CEP55 knockdown (shCEP55) (Fig. 4A, B). The findings
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Figure 1. Expression of DEGs andWGCNA analysis. (A, B) Heatmap depicting the expression patterns of DEGs in primary OS and HC, as well as in metastatic OS
andHC. (C) Hierarchical clustering dendrogram of primary OS and HC. (D) Hierarchical clustering dendrogram ofmetastatic OS andHC. (E) Scale-free fitting indices
and average connectivity corresponding to the co-expression networks of primary OS and HC at different soft threshold powers. (F) Scale-free fitting indices and
average connectivity corresponding to the co-expression networks of metastatic OS and HC at different soft threshold powers. (G, H) Heatmap showing the
relationship and importance between clinical features and modules.

Yan et al. Annals of Medicine & Surgery (2024)

193



revealed that in comparison to the HC group, CEP55 expression in
theOS group exhibited a significant increase, aligningwith the earlier
data analysis, andMMP2 andMMP9 expression also demonstrated
corresponding increases. Furthermore, when compared to the OS

group, CEP55 expression in the shCEP55 group exhibited a notable
reduction, confirming the successful functional suppression mediated
by shRNA. Additionally, MMP2 and MMP9 expression were sub-
stantially decreased. These results demonstrate that the diagnostic

Figure 2. Feature gene selection using the RF algorithm, LASSO regression and SVM algorithm. (A) Intersection of DEGs and genes in the WGCNA key modules.
(B, C) Relationship between the number of trees and the error rate, as well as the ranking of gene importance. (D, E) LASSO models and coefficient curves for 10-
fold cross-validation. The vertical dashed line corresponds to the optimal lambda value. (F, G) Accuracy and cross-validation error curves for SVM. (H) Venn diagram
of the three algorithm results.
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marker gene CEP55 can promote MMP2 and MMP9 expression in
OS cells. However, intriguingly, MMP2 and MMP9 expression in
the shCEP55 group remained elevated compared to those in the HC,
suggesting that MMPs expression in OS is also regulated by other
genes or factors.

CEP55 activates the JAK2-STAT3-MMP axis in OS cells

During the course of cancer migration and invasion, a range of
extracellular factors, encompassing cytokines, growth factors, and
interactions with neighboring cells, exert regulatory effects on the

Figure 3. Expression and diagnostic value of CEP55 and VWF in osteosarcoma. (A, C) Expression differences and corresponding ROC curves of CEP55 and VWF in
the primary OS group and HC group. (B, D) Expression differences and corresponding ROC curves of CEP55 and VWF in the metastatic OS group and HC group.
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expression levels of MMPs[20]. Studies have shown that IL-6 can
enhance MMP2 and MMP9 expression through activation of the
JAK/STAT3 signaling pathway[21,22]. Based on this, we speculate
that the reason CEP55 stimulates MMPs expression in OS may be
that CEP55 is involved in the regulation of IL-6 and its downstream
signaling pathways, which has been confirmed in hepatocellular
carcinoma[23]. Subsequently, we used IL-6 as an inducer to pre-
liminarily validate this idea (Fig. 4C). Western blot analysis
revealed that in comparison to the HC, the OS, and the shCEP55
group without IL-6 induction, the application of IL-6 markedly
heightened MMP2, MMP9, and FOXO1 expression through

activation of the JAK/STAT3 signaling pathway. In addition, in the
OS group with high expression of CEP55, regardless of whether IL-
6 induction was used or not, compared with the corresponding
shCEP55 group, we observed that JAK1, P-JAK1, JAK2, STAT3,
and FOXM1 expression were basically consistent between the two
groups. However, P-JAK2, P-STAT3, MMP2, and MMP9
expression in the OS was notably greater compared to that in the
shCEP55 group. These results suggest that the overexpression of
CEP55 promotes the phosphorylation of JAK2 and STAT3,
whereas the suppression of CEP55 inhibits the IL-6-induced
phosphorylation of JAK2 and STAT3. To further validate, we

Figure 4. Stimulation of the JAK2/STAT3 signaling pathway by CEP55 promotes MMPs expression in OS. (A) Western blot analysis of CEP55, MMP2, and MMP9
in HC group, OS group, and shCEP55 group. (B) Quantitative histogram of Western blot analysis.(C) Western blotting analysis of relevant protein expression in the
HC group, OS group, and shCEP55 groupwith or without incubation with 20 ng/ml IL-6 for 30min. (D)Western blotting analysis of relevant protein expression in the
OS group, the shJAK2 group, and the shSTAT3 group.
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suppressed JAK2 and STAT3 expression inOS cells and established
the OS group, the shJAK2 group, and the shSTAT3 group
(Fig. 4D). The findings revealed a marked decrease in JAK2,
P-JAK2, MMP2, and MMP9 expression in the shJAK2 group
compared to the OS group, while STAT3 and P-STAT3 remained
unaffected. Similarly, there was a marked decrease in STAT3,
P-STAT3, MMP2, and MMP9 expression in the shSTAT3 group
compared to the OS group, while JAK2 and P-JAK2 remained
unaffected. All these results indicate that CEP55 regulates MMP2
and MMP9 expression through activation of the JAK2/STAT3
signaling pathway in OS.

Discussion

So far, the causes of OS, the most common primary bone cancer in
clinical practice, are still largely unknown and uncertain. Although
some studies have suggested a higher incidence of OS in genetic cases
with mutations in tumor suppressor genes[24,25], these findings have
not provided novel and effective means for the treatment of OS.
Unfortunately, the traditional and conservative treatment approach
of systemic chemotherapy combined with surgical resection has not
changed consistently for more than three decades[26]. While this
approach has improved survival outcomes at the 5-yearmark to over
65% in patients with localized tumors, the corresponding 5-year
overall survival rate for those with metastatic tumors remains nota-
bly low, standing at less than 25%[27,28]. This suggests that exploring
new treatment modalities for OS and providing personalized diag-
nosis and treatment plans for patients is an inevitable trend. Due to
the advancement of high-throughput sequencing technology and the
increasing diversity of bioinformatics analysismethods, genomic data
can be employed to precisely identify marker genes strongly asso-
ciated with the onset and progression of diseases[29,30]. By studying
these marker genes and their related pathways, personalized treat-
ments can be implemented for different patients.

In this study, considering that OS is more common in the
population under 25-year-old, with a peak incidence at 18-year-
old[28], we selected samples with age less than 25 years from the
GEO dataset for further analysis, which would make the results of
the data analysis more accurate. Based on this, we constructed two
datasets, G1 and G2, according to whether OS had metastasized.
Subsequently, we performed DEGs screening and WGCNA ana-
lysis on the two datasets separately and intersected all the genes
included in the corresponding results, resulting in 49 core genes that
were significantly associated with OS and had differential expres-
sion compared to normal bone tissue. Then, we used three machine
learning algorithms, RF, LASSO, and SVM, to further screen the 49
core genes in the G1 and G2 datasets and intersected all the genes
included in the corresponding results again, resulting in two diag-
nostic marker genes: CEP55 and VWF. It can be seen that in
relation to the HC, CEP55 expression was noticeably rising in the
primary OS group (P=0.0035), and VWF expression was sub-
stantially declining (P=0.0049). Within the metastatic OS, CEP55
expressionwas noticeably rising (P=0.0026), and VWF expression
was substantially declining (P=0.013). This suggests that the
overexpression of CEP55 and the suppression of VWF expression
could contribute to the initiation and progression of OS. To eval-
uate the specificity and sensitivity of VWF and CEP55 in the
diagnosis of OS, we constructed ROC curve models. It can be seen
that in the primary OS group andHC group, the AUC values of the
ROC curves for both genes were 0.934, while the AUC values as

diagnostic marker genes alone were 0.908 and 0.898, respectively.
In the metastatic OS group and HC group, the AUC values of the
ROC curves for both genes were 0.941, while the AUC values as
diagnostic marker genes alone were 0.952 and 0.873, respectively.
These results confirm that VWF and CEP55 are strong diagnostic
and predictive indicators of OS.

In the process of tumor progression, the increased expression of
MMPs plays a crucial role. It can promote tumor angiogenesis,
invasion, and metastasis, leading to a shorter survival time for
patients[31]. Prior research has shown that CEP55 can promote the
expression ofMMPs in pancreatic cancer cells, thereby accelerating
the process of invasion and metastasis[19]. Based on this, we pro-
pose that CEP55may also promote the expression ofMMPs in OS.
Western blotting analysis and quantitative images indicated that
CEP55 expression was noticeably rising in the OS group, with
MMP2 and MMP9 expression also rising accordingly. Within the
shCEP55 group, CEP55 expression experienced a substantial
decline, and MMP2 and MMP9 expression experienced a sub-
stantial decline. These results demonstrate that CEP55 can promote
MMP2 and MMP9 expression in OS. In the process of cancer cell
migration and invasion, the expression of MMPs is regulated by
various extracellular factors, among which IL-6 can enhance
MMP2 and MMP9 expression through activation of the JAK/
STAT3 signaling pathway[21,22]. So, we speculate that the reason
CEP55 stimulates MMPs expression in OS may be that CEP55 is
involved in the regulation of IL-6 and its downstream signaling
pathways. Subsequently, we conducted preliminary verification of
this idea using IL-6 as an inducer. Western blot analysis revealed
that in comparison to the HC, the OS, and the shCEP55 group
without IL-6 induction, the application of IL-6 markedly heigh-
tened MMP2, MMP9, and FOXO1 expression through activation
of the JAK/STAT3 signaling pathway. In the OS group with high
expression of CEP55, regardless of whether IL-6 induction was
used or not, compared with the corresponding shCEP55 group.
However, P-JAK2, P-STAT3, MMP2, and MMP9 expression in
the OS was notably greater compared to that in the shCEP55
group. These results suggest that the overexpression of CEP55
promotes the phosphorylation of JAK2 and STAT3, whereas the
suppression of CEP55 inhibits the IL-6-induced phosphorylation of
JAK2 and STAT3. Furthermore, FOXM1 expression in the HC
showed a substantial decline compared to the other two groups,
and it seemed to be unaffected by CEP55 expression. Next, we
knocked down JAK2 and STAT3 expression in OS and monitored
MMP expression. Western blotting analysis revealed a marked
decrease in JAK2, P-JAK2, MMP2, and MMP9 expression in the
shJAK2 group compared to the OS group, while STAT3 and
P-STAT3 remained unaffected. Similarly, in shSTAT3, STAT3,
P-STAT3, MMP2, and MMP9 expression were in substantial
decline, while JAK2 and P-JAK2 were unaffected. All these results
indicate that CEP55 regulates MMP2 and MMP9 expression
through activation of the JAK2/STAT3 signaling pathway in OS.
Hence, directing attention towards CEP55 might present a fresh
avenue for suppressing the JAK2/STAT3 axis. Nevertheless, addi-
tional investigations are warranted to unveil the precise mechan-
isms through which CEP55 triggers associated molecules in vivo.

Conclusion

Within this investigation, we discovered two diagnostic marker
genes for OS, CEP55, and VWF. Additionally, we demonstrated
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for the first time that CEP55 in OS can regulate MMP2 and
MMP9 expression through activation of the JAK2/STAT3 sig-
naling pathway. This suggests that CEP55may be associatedwith
the advancement of the disease and an unfavorable prognosis in
OS patients. Moreover, this underscores the significance of
CEP55 as a potential target for clinical intervention.
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