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The development of cataract is associated with some lipid changes in human lens fibers, especially with increased accumulation and
redistribution of cholesterol inside these cells. Some direct and indirect lines of evidence, also suggest an involvement of cholesterol
oxide derivatives (also named oxysterols) in the development of cataract. Oxysterol formation can result either from nonenzymatic
or enzymatic processes, and some oxysterols can induce a wide range of cytotoxic effects (overproduction of reactive oxygen species
(ROS); phospholipidosis) which might contribute to the initiation and progression of cataract. Thus, the conception of molecules
capable of regulating cholesterol homeostasia and oxysterol levels in human lens fibers can have some interests and constitute an
alternative to surgery at least at early stages of the disease.

1. Cholesterol Oxidation Products (Oxysterols):
Definition and Biosynthesis

Oxysterols are 27-carbon-atom cholesterol oxidation prod-
ucts [1]. They can be produced endogenously by enzymatic
reactions or by autoxidation. They also can be provided by
food [1]. The enzymatic pathways can form both B-ring
and side-chain hydroxylated oxysterols depending on the
enzyme and the tissue, while the nonenzymatic pathways
form mainly B-ring oxysterols.

By the enzymatic pathway, oxysterols can be generated
by a wide number of CYP450 enzymes [2]. Some of them
are tissue specific. Thus, CYP46A1 (or 24-hydroxylase)
leading to the formation of 24-hydroxycholesterol has been
identified in the brain [3] and retina [4]. CYP7A1 which
catalyzes the formation of 7α-hydroxycholesterol is present
in the liver, and involved in bile acid synthesis [5]. At
the opposite, some other CYP450 enzymes are widely

expressed. Thus, CYP27A1 (or 27-hydroxylase), which cat-
alyzes the addition of a hydroxyl group on cholesterol to
produce 27-hydroxycholesterol, is found in most tissues [6].
Cholesterol 25-hydroxylase, leading to the formation of 25-
hydroxycholesterol, is a nonheme iron protein enzyme, also
present in many tissues [7].

Oxysterols can also be generated within tissues by
nonenzymatic oxidative reactions involving different chem-
ical and/or physical agents: reactive oxygen species (ROS),
ozone, ultra violet light, metal ions, ferritin, and/or other
iron-carrying proteins, and so forth. These autoxidation
processes generate 7α- or 7β-hydroperoxyde, 7α- or 7β-
hydroxycholesterol, and 7-ketocholesterol, 5α, 6α- or 5β, 6β-
epoxycholesterol, as well as cholesterol 3β, 5α, 6β triol or
cholesterol 3β, 5α, 6α triol depending on pH conditions
(Figure 1) [8–10]. In certain conditions, 7-ketocholesterol
can be produced from 7β-hydroxycholesterol and vice versa
by a converting enzyme [11].
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Figure 1: Cholesterol autoxidation. Autoxidation of cholesterol can generate 7α- or 7β-hydroperoxyde, 7α- or 7β-hydroxycholesterol,
7-ketocholesterol, 5α, 6α- or 5β, 6β-epoxycholesterol, as well as cholesterol 3β, 5α, 6β triol or cholesterol 3β, 5α, 6α triol depending on
pH conditions.

Currently, in humans, the involvement of oxysterols is
suspected in the Smith-Lemli-Opitz syndrome [12, 13], and
in numerous eye diseases (age-related macular degeneration,
diabetic retinopathy,) [14, 15], and could contribute to the
development of cataract [16].

2. Cholesterol and Oxysterols:
Which Roles in Cataract?

Cataract, which is a term referring to the clouding of the eye’s
natural lens, is the dominant cause of blindness worldwide
[17]. This disease develops as early as the fourth of fifth
decade of life in the crystalline lens of the eye or in its
envelope, varying in degree from slight to complete opacity
and obstructing the passage of light. Symptoms include
blurred vision, glare, halos, dull colors, and cloudy vision.
Whereas the most important factor in cataract formation is
increasing age, it is well admitted that cataract formation
is a multifactorial disease associated with additional factors
such as smoking, diabetes, and excessive exposure to sunlight
which are known to activate oxidative stress [17]. Currently,
surgical intervention is the most frequent and efficient treat-
ment to restore vision in patients with cataract. However,
the cure for cataract surgery is not equally available to all,
and the surgery which is available does not produce equal
outcomes. In addition, readily available surgical services
capable of delivering good vision rehabilitation are not
always acceptable and accessible to all in need. Therefore,
a better knowledge of the physiopathology of cataract is
required in order to attempt to develop, if not curative, at
least preventive treatments.

The concept suggesting a possible involvement of lipids
in human cataract is based on the description of lipoidal
material in the crystalline lens reported by Berzelius in
1825 [18]. Since this early discovery, some investigators
have studied the lenticular lipids leading to lens opacity.
In 1965, by using one and two dimensional thin layer
chromatography, Feldman GL and Felman LS show higher
amounts of cholesterol, cephalins, lecithin, and shingomyelin
in cataractous human lens when compared to normal lens,
and they also show that cholesterol is constitutively present
in large amount in normal lens [16]. Therefore, cholesterol
representing approximately 40% of the total lipids of human
lens fibers [19], intrinsic or extrinsic factors modifying its
level and/or repartition, may alter optical lens properties.
Some cholesterols can be present as crystals, which have
been found in plasma membranes isolated from the
lens [20, 21], and which may play functional roles in
normal and pathological lens [22]. The formation of these
crystals is related to the lipid composition of the lens, and
seems to depend on the presence of sphingomyelin and
dihydrosphingomyelin [23]. The part taken by cholesterol
in the development of cataract is also supported by
observations performed in various pathologies associated
with defects in cholesterol metabolism. Thus, patients
with Smith-Lemli-Opitz syndrome, mevalonic aciduria, or
cerebrotendinous xanthomatosis characterized by mutations
in enzymes of cholesterol metabolism (7-dehydrocholesterol
reductase, mevanolate kinase, and CYP27A1, resp.) often
develop cataract [24]. In addition, established models of
rodent cataracts are based on treatment with inhibitors
of cholesterol biosynthesis, and some statins can produce
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cataracts in dogs [24]. Moreover, with regards to oxidative
damages, as the lipid lens composition is devoid of oxidizable
polyunsaturated fatty acids, and as there is a high content
of dihydrosphingomyelin that is less prone to oxidation, this
particular lipid composition favors cholesterol autoxidation.
Thus, as human lens membrane contains the highest
cholesterol levels of any known biological membranes, and
as human lens is continuously in a strong photoxidative
environment, a chronic exposure to UV light, and ozone can
lead to the formation of some cholesterol oxide derivatives
(also named oxysterols) [25–30] which might contribute to
disrupt cholesterol repartition and homeostasia in human
lens fibers. Noteworthy, on human cataracts obtained by rou-
tine extracellular surgery, some oxysterols characterized by
gas chromatography were identified (7β-hydroxycholesterol,
7-ketocholesterol, 5α, 6α-epoxycholestanol, 20α-hydroxy-
cholesterol, and 25-hydroxycholesterol) whereas clear lens
contained no detectable amounts of cholesterol oxides [31].
These data favor the hypothesis that oxysterols may be
involved in cataract development. Moreoever, as 7-keto-
cholesterol has been described to modify Na/K ATPase
activity [32], and intracellular lipid homeostasia [33], this
oxysterol might constitute an important risk factor in the
physiopathology of cataract. Indeed, it has been described
that Na/K ATPase activity is fundamental to the maintenance
of ionic concentration gradients and transparency of the
lens [34], and that unusual lipid composition modify lens
membrane fluidity [35].

Some indirect arguments also support potential involve-
ment of cholesterol and oxidative stress, mainly able to
favor the formation of oxysterols oxidized at C7 [11], in the
development of cataract: decrease paraoxanase 1 activity and
higher levels of oxidized LDL in diabetic and senile subjects
suffering from cataract [36], low level of HDL cholesterol
and high LDL : HDL ratios in dyslipidaemic subjects with
lenticular opacities [37], low serum concentrations of the
antioxidant vitamins alpha tocopherol and beta carotene
in end age senile cataract [38], and significant decrease
of glutathione reductase activity in patients with cortical
cataract [39]. In addition, as some oxysterols are known
to interact with cellular membranes [40–42] and to induce
changes in cholesterol and phospholipids content [43, 44],
they could also modify the distribution of cholesterol in
human lens fibers to contribute to lens opacity [45–49].

3. Alternative Pharmacological Treatments to
Cataract Surgery

Phacoemulsification developed by Kelman in 1967 [50]
is nowadays the preferred technique in most types of
cataract. It results in less postoperative inflammation and
astigmatism, more rapid visual rehabilitation and, with
modern foldable lenses, a lower incidence of capsulotomy
than with the outdated extracapsular surgery [50]. However,
whereas surgical treatment with intraocular lens implan-
tation remains the only proven treatment, it is associated
with significant cost and is not readily available especially in
the developing countries where the prevalence of cataract is
the highest [51]. Therefore, nonsurgical preventive actions

have been proposed to interact at the level of altered
lens metabolism: Aldose-Reductase inhibitors (to block
the metabolic pathways of glucose responsible for dia-
betic vascular dysfunction); nonsteroidal anti-inflammatory
drugs (as prophylactic anticataract agents); agents enhancing
reduced glutathione levels; Vitamins (Vitamin C plays an
important part in lens biology, both as an antioxidant,
and as a UV filter); minerals (zinc, copper, selenium);
antioxidants (carotenoids, curcumin, stobadine, etc), and
herbal drugs [52, 53]. However, the long-term efficiency of
these alternative pharmacological treatments of cataract is
far to be established. Therefore, within this framework, the
research for molecules that can act at the level of choles-
terol or oxysterols metabolism and/or synthesis could be
promising.

Currently, due to a better knowledge of the cholesterol-
metabolic pathway and of its regulation through various
tightly regulated cellular systems involving various nuclear
receptors [54], some molecules capable of regulating choles-
terol levels have been identified and are available [55–57].
It can therefore be envisaged to modulate cholesterol levels
in various cells, including lens fiber cells. On the other
hand, due to the improvement of biochemical methods of
analyses, especially mass-chromatography, some oxysterols
can be measured and identified in various biological samples
which usually contain a 103 fold excess of cholesterol [58–
60]. As some oxysterols with specific structural motifs have
been shown to inhibit cholesterol synthesis by interacting
with proteins involved in regulation of transcription of
genes encoding enzymes of the cholesterol synthesis pathway
[61] and to be ligands of the liver X receptors (LXRs)
[62, 63] acting as regulators of the expression of genes
important for lipid homeostasis, a better knowledge of
oxysterols-associated metabolic profiles has some interests in
various pathologies resulting from lipid disorders, and could
therefore have some pharmacological applications, especially
for the treatment of cataract.

Thus, at the opposite of micronutrient and vitamin sup-
plementation which can contribute more or less efficiently
to prevent the development of cataract, it is tempting to
speculate that the development of drugs capable of acting
on well-defined targets of cholesterol metabolism, and on
enzymatic and/or nonenzymatic formation of oxysterols
might be efficient to preserve cholesterol homeostasia and
distribution in human lens fibers, and to control oxysterol
formation and activities. Such drugs could therefore consti-
tute an alternative to surgery at least at the early stage of the
disease.

4. Conclusion

Thus, based on numerous data and comparatively to other
degenerative diseases [64, 65], it is tempting to speculate
that cholesterol and some oxysterols probably play impor-
tant roles in the physiopathology of cataract. Therefore,
molecules allowing to control cholesterol and oxysterol levels
in the lens might have some interests to prevent cataract and
constitute an alternative treatment to surgery, at least at early
stages of the disease.
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