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Key activities in genomics and proteomics are
related to the use of classifications (ontologies).
The three main activities are:

1. Annotation of gene function after large-scale
genome sequencing projects or in protein data-
bases.

2. Annotation of the possible function common to
sets of genes with similar expression profiles
(determined after DNA array experiments).

3. Annotation of the characteristic functions of
groups of proteins, protein complexes and bio-
logical pathways (determined by proteomics
approaches).

The process of annotation requires the work
of human experts who, by reading the available
literature and using their expert knowledge, are
able to generate abstractions regarding the common
function of genes and proteins.

This process is extremely demanding and time
consuming and usually has to be repeated many
times (e.g. for every different clustering process
applied to the same DNA array experiment). In
addition, the pointers to the evidence used by
the annotators must be recorded (the experimental
evidence should be linked to the annotations).

The GO ontology [2] has become a de facto stan-
dard that helps to solve some of these problems,

providing fast access to the annotations of various
functional characteristics (metabolic, chemistry,
localization). However, a number of the require-
ments described above are still not addressed,
including the need to keep pointers to the underly-
ing information up to date and the need to pro-
vide reproducible evidence (e.g. why this group
of sequences was assigned to that function). Fur-
thermore, the annotation of functions at levels that
differ from the ones represented in GO, or genomes
not yet included, also remains to be solved.

Statistical information extraction is a field with
a long history that has only recently been applied
to biology. One of the best-known applications
has been integrated into PubMed to enhance the
search functionality for Medline queries [21,22].
Special applications were dedicated to knowledge
base construction [7,14], analysis of DNA micro-
array data [13,19] and improvements of the search
capabilities in document collections [16].

Systems for the annotation of groups of
genes (gene products)

These methods were developed for the functional
annotation of protein families, results of DNA array
expression experiments, and data from proteomics.

Copyright  2003 John Wiley & Sons, Ltd.



76 C. Blaschke and A. Valencia

They are based on statistical information extrac-
tion techniques that basically use term frequencies
and their distribution in the text to characterize a
given text corpus. Here the criterion is whether
a term appears more frequently in a given doc-
ument set than in other comparable documents.
Terms will have high (statistical significance) val-
ues if they are frequent in the documents under
consideration and not frequent in the rest of the
groups.

These systems extract (from a set of documents)
specific terms that are related to a number of genes
or proteins of interest, detect highly informative
sentences in the text and rank the documents
according to their information content, and thus
reduce the number of documents that have to be
reviewed for a set of genes or proteins.

Specific applications related to the
annotation of protein families and gene
clusters

This basic engine has been adapted for the analy-
sis of protein families [1,3], clusters of genes from
DNA array experiments [4,15] and protein com-
plexes (not published), e.g. for functionally related
proteins implicated in vacuolar ATP synthesis, the
system extracts terms such as vacuolar acidifi-
cation, vacuolar ATPase or proton-translocating
ATPase; for proteins related to the cell cycle, terms
such as microtubule, spindle pole or kinesin-related
(showing the strong relationship between cell divi-
sion and the cytoskeleton) are extracted.

The main result of expression array experiments
is the discovery of sets of genes with similar
expression patterns (expression-based gene clus-
ters). The underlying assumption is that these
clusters are related by their participation in com-
mon biological processes. These similarities are
reflected in the individual publications about the
genes in a given cluster and can be detected by
our methods.

We analysed gene expression data, including the
experiments in yeast published by Eisen et al. [9].
These experiments monitored the expression of
yeast cells in 79 separate experiments, including
diauxic shift, mitotic cell cycle, sporulation, and
temperature and reducing shocks. The system was
applied to the 254 genes that showed significant
changes in gene expression, corresponding to 10

clusters. Figure 1 shows part of the results gener-
ated by the system.

The results obtained for a cluster containing
genes related to DNA replication initiation and
entrance into the cell cycle, including cell divi-
sion control (CDC) genes such as cdc47 and
cdc54, genes related to minichromosome main-
tenance (mcm2 and mcm3), and dbf2, a protein
kinase related to cell division, illustrate the qual-
ity of the terms extracted by the system. The
terms extracted were related to minichromosome
maintenance (mcm2, mcm3, mcm4, mcm5, cdc46,
mcm proteins, mcm family, mcm genes, minichro-
mosome maintenance, maintenance mcm, mis5,
chromosome loss), DNA synthesis (licensing fac-
tor, replicate, replication licensing, replication ori-
gins, autonomously replicating, DNA replication,
DNA synthesis, S-phase), phosphorylation (protein
kinase, dbf2, phosphorylate) and cell cycle (cdc46,
cdc47, cdc21, cdc54, cell cycle).

Problems with gene and protein names

The main challenge is still the correct iden-
tification of all the pertinent text, i.e. all the
documents (abstracts) related to the genes (or
gene products) under analysis. Using current tech-
niques it is not difficult to identify the enti-
ties in the text (this is the part of the analysis
called ‘named entity recognition’ in the context
of information extraction) but, because of ambi-
guities in the names of biological objects and
the absence of a strict nomenclature for gene
and protein names, these entities are difficult to
classify.

The problem is related to the different ways in
which the same gene (or gene product) can be
referred to in text. Our previous evaluation shows
that even in well-annotated, manually curated
databases a substantial number of records contain
protein names that cannot be identified in the liter-
ature [5].

A number of groups have addressed this prob-
lem using different technologies [11,17,20] and
Franzén et al. recently reported some improve-
ments [10]. Still, no perfect solution is at hand. The
problem is not only due to the number of ways
in which gene and protein names can be written
(e.g. IL6, IL-6 or IL 6, for interleukin 6); other
issues are that names can be part of other names
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Figure 1. Results of an analysis of a DNA array expression experiment. The figure shows extracted keywords for each
cluster (on the left) and the corresponding expression profiles (middle). This output was produced with an implementation
of the methods described in the publications mentioned above by Alma Bioinformatica S.L. (www.almabioinfo.com)
under the name AlmaTextMiner

(e.g. Cdc7 and Cdc7 protein kinase), that they can
include non-protein name parts (e.g. RNA in RNA
polymerase II), and that they can refer to classes of
proteins rather than a specific protein (e.g. Fus3p
and Kss1p are MAP kinases, CLN1 and CLN2
are G1/S cyclins). Furthermore, a protein can be
referred to by its specific name or by its general
class name (cyclin B or ‘this cyclin’), and gene
and protein names can easily be confused with the
names of other biological entities (e.g. drugs).

Creation of ontologies for the specific
annotation of protein function

Following the initial methodology for the extrac-
tion of information for the functional annotation
of genes and proteins, we implemented a system
that would detect similarities between genes based
on the literature published about them [6]. These
similarities were then used to cluster genes and
to construct tree-like structures with genes at the
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leaves and concepts (terms) at the nodes of the
tree, each one of them weighted by its statistical
significance.

The system produces similar annotations to those
given by GO, particularly for aspects related to
biochemical function. Additionally, the terms and
document links that justify the proposed relations
are provided, to assist human experts in building
the ontologies.

For example, the system associated a number of
genes implicated in cell cycle regulation, e.g. G1
and G2 cyclins, the protein kinases cdc28 and cdc7,
and DNA polymerases, because they all shared a
number of significant terms (e.g. G1 cyclin, cell
cycle, s-phase) that indicate that they are implicated
in similar processes. Figure 2 shows an example
of the results for a number of genes that are all
implicated in DNA repair in yeast.

Figure 2. Part of the gene structure constructed by the
system. These genes were clustered close together because
of their common implication in DNA repair

The system includes facilities for: (a) the use
of large repositories of published knowledge to
enrich the information associated with the exist-
ing ontologies; (b) the automatic suggestion of the
classification of new entities; and (c) the introduc-
tion of possible new pointers to the corresponding
literature. The process has the advantage of produc-
ing annotations that can be directly related to the
corresponding sentences and documents, providing
additional words and concepts to supplement those
provided in the human-driven ontologies.

The utility of automatic classification systems
may be particularly relevant for database annota-
tors during the construction of ontologies for new
organisms. Normally, sequence similarity is used
to assist in the classification of new genes and/or
the extension of classifications to other organisms.
Unfortunately, it is now clear that the operations
of functional transfer based on sequence similari-
ties tend to produce a large number of erroneous
annotations [8], precluding the automatic construc-
tion of functional ontologies from the simple study
of sequence relations. Therefore, the extension of
the ontologies to new sequences requires exten-
sive consultation of bibliographic information. This
process can be facilitated and streamlined by appli-
cations such as the one presented here. For another
recent publication addressing similar problems,
see [18].

Evaluation of information extraction
systems

In the natural language processing (NLP) field there
exists a long tradition of evaluating information
extraction systems in public competitions (e.g. in
the so-called Message Understanding Conferences
held since the 1980s [12]). This requires a con-
siderable organizational effort to define a common
goal that is both tractable and of practical value
(i.e. a problem that is of real world interest and
that reflects, at least to some extent, to what point
the current techniques are ‘useful’), and to prepare
annotated training and test corpora, and to evaluate
the results.

No competition like these has yet been carried
out for biology. Each system is applied to different
datasets (text corpora), is of different scope, and
is evaluated in a different way. This explains
why precision/recall evaluations of text mining
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systems in this field are only comparable to a very
limited extent.
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