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Abstract: Soil organic matter (SOM) and pH are essential soil fertility indictors of paddy soil in the
middle-lower Yangtze Plain. Rapid, non-destructive and accurate determination of SOM and pH is
vital to preventing soil degradation caused by inappropriate land management practices. Visible-near
infrared (vis-NIR) spectroscopy with multivariate calibration can be used to effectively estimate soil
properties. In this study, 523 soil samples were collected from paddy fields in the Yangtze Plain, China.
Four machine learning approaches—partial least squares regression (PLSR), least squares-support
vector machines (LS-SVM), extreme learning machines (ELM) and the Cubist regression model
(Cubist)—were used to compare the prediction accuracy based on vis-NIR full bands and bands
reduced using the genetic algorithm (GA). The coefficient of determination (R2), root mean square
error (RMSE), and ratio of performance to inter-quartile distance (RPIQ) were used to assess the
prediction accuracy. The ELM with GA reduced bands was the best model for SOM (SOM: R2 = 0.81,
RMSE = 5.17, RPIQ = 2.87) and pH (R2 = 0.76, RMSE = 0.43, RPIQ = 2.15). The performance of
the LS-SVM for pH prediction did not differ significantly between the model with GA (R2 = 0.75,
RMSE = 0.44, RPIQ = 2.08) and without GA (R2 = 0.74, RMSE = 0.45, RPIQ = 2.07). Although a slight
increase was observed when ELM were used for prediction of SOM and pH using reduced bands
(SOM: R2 = 0.81, RMSE = 5.17, RPIQ = 2.87; pH: R2 = 0.76, RMSE = 0.43, RPIQ = 2.15) compared with
full bands (R2 = 0.81, RMSE = 5.18, RPIQ = 2.83; pH: R2 = 0.76, RMSE = 0.45, RPIQ = 2.07), the number
of wavelengths was greatly reduced (SOM: 201 to 44; pH: 201 to 32). Thus, the ELM coupled with
reduced bands by GA is recommended for prediction of properties of paddy soil (SOM and pH) in
the middle-lower Yangtze Plain.

Keywords: machine learning approaches; vis-NIR spectra; paddy soil; soil organic matter; pH

1. Introduction

As a major soil type, paddy soils are widely distributed in China, with an area of about 30 million
hm2. This accounts for 29% of the cultivated land in China, especially in the Yangtze River Delta and
southern China [1]. Therefore, it is of great importance to evaluate and monitor the quality of paddy
soils. In southern China, soil organic matter (SOM) and pH are important components in soil quality
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assessment as the former is directly related to crop yield and the latter to food security. Therefore,
rapid, accurate and non-destructive assessment of SOM and pH is vital to soil fertility evaluation and
monitoring under conventional cropping systems in large areas [1]. However, conventional laboratory
measurement of soil properties is time-consuming, tedious and cannot be applied to large areas.

Visible near-infrared spectroscopy (vis-NIR) has become increasingly popular as an alternative to
conventional laboratory analyses because it is rapid, non-destructive, cost-effective, does not require
hazardous chemicals, and enables several soil properties to be simultaneously estimated from a single
spectrum [2]. When vis-NIR radiation interacts with a soil sample, we can detect the overtones and
combinations of fundamental molecular vibrations, such as O–H, C–H, N–H and C=O groups [3].
Vis-NIR has been used to predict soil chemical and physical properties, particularly for SOM, texture,
and clay mineralogy [4].

However, soil vis-NIR spectra are largely nonspecific because of the overlapping absorption of
soil constituents. Complex absorption patterns generated from soil constituents and quartz need
to be mathematically extracted from the spectra [4]. Partial least squares regression (PLSR) is a
commonly used linear model; however, there are many nonlinear relationships between spectral
data and target soil characteristics in nature [5,6]. Therefore, some non-linear machine learning
techniques, including artificial neural networks (ANN), support vector machine regression (SVMR),
least square-support vector machines (LS-SVM), random forest and the Cubist regression model
(Cubist) have been used [7–13]. Moreover, soil is a complex mixture that consists of water, air, and
organic and inorganic mineral matter of variable origins, so it is difficult to achieve universal acceptance
with the same calibration techniques. Some researchers [9,10,14] have shown that machine learning
techniques lead to satisfactory results for the prediction of soil organic carbon (SOC) and pH in a
large range area. Extreme learning machines (ELMs), the emergent machine learning technique put
forward by Huang et al. [15], have been used extensively over the past several years because of their
good generalization performance and extremely fast learning speed. In addition, the large number of
spectral variables in most data sets need to eliminate unrelated variables to provide insight into the
important wavelengths related to soil properties and enable their use in prediction of soil properties.

Therefore, this study was conducted to investigate paddy fields in the Yangtze Plain, China.
The specific goals of this study were to: (i) explore the important wavelengths of vis-NIR in SOM and
pH predictions; (ii) compare the performance of linear (PLSR) and non-linear (least square-support
vector machines, LS-SVM; extreme learning machines, ELM; Cubist regression model, Cubist) models
for predicting SOM and pH.

2. Materials and Methods

2.1. Study Area and Soil Sampling

The study was conducted in the middle-lower Yangtze Plain, which includes Jiangsu, Zhejiang,
Jiangxi and Hunan. The parent material of the soils is alluvial deposits from the Yangtze River and
its tributaries and the main soil type of the study area is paddy soil, which is a kind of Anthrosol
in Chinese Soil Taxonomy. We selected 57 paddy fields with an area of more than 0.6 km2, and
8–10 sampling sites for each field were selected, with a total of 523 soil samples ultimately being
collected (Figure 1). The soil type of samples and the parent material can be seen in Table 1. These
soil samples were air-dried, ground and sieved to less than 2 mm. Stones and plant residues were
removed. Each sample was divided by the quartering method into two portions, one for laboratory
chemical analysis and the other one for spectral measurements. The SOM content was measured by
the potassium dichromate volumetric method, soil pH was determined in a slurry of soil and water at
a ratio of 1:2.5 using an electronic pH meter.
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Figure 1. Location of sampling sites.

Table 1. Basic properties of the soil samples in the middle-lower Yangtze plain.

Texture Sample Number Crop Parent Material

Clay 83 Idle field, Silkworm Acidic crystalline
Clay loam 220 Rice Alluvial deposit

Loam 120 Rice Alluvial deposit
Sandy loam 100 Grass, Idle field Red sandstone

2.2. Spectroscopic Measurement and Pre-Processing of Spectra

The vis-NIR spectra were measured with an ASD FieldSpec® Pro FR spectrometer (Analytical
Spectral Devices Inc., Boulder, CO, USA) using a high-intensity contact probe with a spectral range
of 350 to 2500 nm and a spectral resolution of 1 nm. Each sample was placed in a petri dish (10 cm
diameter and 1.5 cm depth), after which the spectrometer was calibrated using a Spectralon® panel
with 99% reflectance. We measured three replicates of spectra for each sample and each replicate
consisted of 10 internal scans. The resulting 30 spectra were averaged into one to represent each sample.

A spectral range of 400 to 2400 nm was used because the spectra outside this range had a
lot of noise. The reflectance spectra (R) were transformed to absorbance (A = log10(1/R)), then
resampled to 10 nm to reduce dimensionality. The spectra of 523 samples were split into calibration
(350 samples) and validation (173 samples) sets using the Kennard–Stone algorithm [16]. We used the
continuum-removed spectrum [17] of the mean of all samples to help interpret the main absorption
features in the spectra.

We used the genetic algorithm (GA) to select an optimal subset of spectral bands in the calibration
process. Many studies [18–20] have demonstrated the importance of GA wavelength selection in the
calibration step to avoid the selection of random correlation and irrelevant variables. Wavelength
selection using GA can improve the robustness of multivariate calibrations without loss of prediction
capacity, and furthermore, provides useful information about the chemical system [11]. We used the
method of genetic algorithm (GA) and partial least squares regression (GA–PLS) for feature selection.
In this study, the parameter values of the GA were set as follows based on Leardi et al. [21] and
Shi et al. [22]: max generation of 100, population size of 64, mutation rate of 0.01 and replicate run of
10. The fitness function was determined according to the root mean square error of cross-validation
(RMSECV) of the partial least squares. For this we used the PLS_Toolbox 8.5.1 (Eigenvector Research
Inc., Wenatchee, WA, USA) in MatLab (R2016A, The MathWorks Inc., Natick, MA, USA).
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2.3. Multivariate Regression Models

2.3.1. Partial Least Squares Regression (PLSR)

Partial least squares regression (PLSR) is a linear regression model widely used in the quantitative
analysis of diffuse reflectance spectra in soil [23]. This method uses a latent variable approach to
model covariance structures in two projected spaces of the predicted and observed variables [24].
The optimum number of latent variables would be the number that yields the minimum prediction
error sum of squares using cross-validation of the calibration set. For PLSR we used the R package
‘pls’ [25] of R 3.3.3 [26].

2.3.2. Least Squares-Support Vector Machines (LS-SVM)

The LS-SVM method employs classification and regression analysis to solve linear and nonlinear
multivariate problems [27]. The LS-SVM method uses linear equations instead of convex quadratic
programming for classical SVMs. Additionally, the LS-SVM uses a Kernel function of Gaussian radial
basis function (RBF). We used a systematic grid search method to optimize the parameters C and γ of
the RBF. The optimal model parameters were determined by the lowest RMSE in the calibration set by
leave-one-out cross-validation. This was done with MatLab.

2.3.3. Cubist Regression Model

The Cubist model is a data mining technique and an extension of the M5 model tree developed
by Quinlan [28]. Cubist is a rule-based regression where a model tree is first created and then reduced
to a series of rules. These rules partition samples according to their spectra, and a unique linear model
is then applied to predict the target variable. In addition, Cubist can utilise boosting (committees)
and adjust its predictions using neighbours from within the training data set (neigbours). More
details on Cubist and its implementation can be found in Viscarra Rossel and Webster and Minasny
and McBratney [9,29]. The committees and neighbours were determined by the lowest RMSE in the
calibration set by leave-one-out cross-validation. For Cubist we used the R package ‘Cubist’ [30] of R
3.3.3 [26].

2.3.4. Extreme Learning Machine

The extreme learning machine (ELM) is a generalized single-hidden layer feedforward network
(SLFN) with a weight and hidden layer threshold in the first layer that are randomly assigned and a
weight in the output layer that is calculated directly by the least-squares method. The entire learning
process is completed in one round, with no iterations required; therefore, this algorithm performs at
extremely fast learning speed. The simplified scheme can be found in Figure 2.

Algorithm ELM: For N distinct samples (xi, ti), where xi = [xi1, xi2, . . . , xin]
T ∈ Rn, xi were soil

spectra, while ti were the observed values of either SOM or pH.
Given a hidden node number N̂, the activation function is defined as follows:

g(x) =
N̂

∑
j=1

β jgj(xi) =
N̂

∑
j=1

β jg(wj·xi + bj) = oi, i = 1.2, . . . , N; j = 1, 2, . . . N̂ (1)

where wj ∈ Rn is the weight vector connecting the input nodes to the jth hidden node and bj ∈ R is the
threshold of the jth hidden node, βj ∈ R represents the weight vector connecting the jth hidden node
and the output nodes. To approach the real results of the training data infinitely, the prediction result
oi must be consistent with the real result ti, in which case ∑N̂

i=1 ‖oi − ti‖ = 0. Under these conditions,
Equation (1) can be expressed as follows: ∑N

i=1 β jg(wj·xi + bj) = ti which is represented by a matrix:

Hβ = T (2)



Sensors 2019, 19, 263 5 of 14

where:

H =

 g(w1·x1 + b1) · · · g
(
wN̂·x1 + bN̂

)
... . . .

...
g(w1·xN + b1) · · · g

(
wN̂·xN + bN̂

)


N×N̂

,β =

 β1
...

βN̂


N̂×1

and T =

 t1
...

tN


T

(3)

when input weight wj ∈ Rn and bias bj ∈ R are randomly assigned, the output matrix H in the hidden
layer can be calculated by ELM, after which the output weight β is calculated by β̂ = H†T where H†

is the Mosse-Penrose generalized inverse of H.
The ELM regression ability varies significantly with the number of initial hidden neurons. To select

the number of hidden neurons, we conducted an experiment by varying the number of hidden neurons
from 1 to 120 in steps of 1. The optimum number of initial hidden neurons would be the number
that produced the minimum prediction error sum of squares for cross-validation of the calibration set.
This was done in MatLab.
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2.4. Model Evaluation

We compared the measured values vs. the predicted values of the cross-validation in the
calibration and validation data sets using simple linear regression. The predictability of the different
calibration models was evaluated by the coefficient of determination (R2), mean error (ME), root mean
square error (RMSE) and ratio of performance to inter-quartile distance (RPIQ), which were suggested
for assessing vis-NIR model performance by Bellon-Maurel et al. [31]. Generally, larger values of R2

and RPIQ and smaller RMSE indicate better model performance.

3. Results

3.1. Descriptive Statistics of the Soil Properties

Table 2 shows a summary of statistics describing the SOM and pH for the total, calibration, and
validation datasets. The SOM ranged from 2.44 to 60.50 g kg−1 and the pH ranged from 3.92 to 8.60
for the whole dataset. The coefficient of variation (CV) of SOM was high (>35%), whereas the CV for
pH was moderate (around 15%) according to the Wilding categorized standard [32]. These findings
indicated that the soil properties had wide ranges and were spatially variable within the research
area to obtain high spectroscopy calibration accuracy and thus good predictive performance [33].
The similarity of summary statistics (e.g., mean, SD, and CV) from the calibration and validation sets
showed that they were both able to represent the entire data set.
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Table 2. Statistics describing organic matter content (SOM, g/kg) and pH measured in the laboratory.

Properties Dataset N Range Mean Median SD CV Skewness Kurtosis

SOM
All 523 2.44–60.50 25.97 24.90 10.92 42.05% 0.44 0.14

Calibration 350 2.44–60.50 25.43 24.67 10.56 41.53% 0.36 −0.01
validation 173 4.96–60.50 27.07 25.5 11.57 42.74% 0.53 0.24

pH
All 523 3.92–8.60 5.52 5.25 0.86 15.40% 1.54 2.20

Calibration 350 4.32–8.60 5.53 5.23 0.84 15.22% 1.64 2.50
validation 173 3.92–8.32 5.52 5.32 0.87 15.81% 1.37 1.75

N, sample size; SD, standard deviation; CV, coefficient of variation (%).

3.2. Soil Spectral Characterization

The averaged spectra of 350 calibration samples measured in the laboratory are shown in Figure 3.
Five apparent absorption regions can be seen in the absorbance spectra and their continuum-removal
spectra. Absorptions near 600 and 900 nm are primarily associated with some minerals containing
hematite and goethite [34], while those near 600 nm also result from chromophores and the darkness
of organic matter [4].

Sensors 2019, 19, x FOR PEER REVIEW 6 of 13 

removal spectra. Absorptions near 600 and 900 nm are primarily associated with some minerals 
containing hematite and goethite [34], while those near 600 nm also result from chromophores and 
the darkness of organic matter [4]. 

 
Figure 3. Mean absorbance spectra and their continuum-removal spectra and GA selected bands of 
SOM and pH in the calibration dataset. 

Two prominent absorption features at about 1400 and 1900 nm were caused by the O-H 
functional group of the free water region [35]. The absorption features at about 1400 nm (1395 to 1415 
nm) are due to overtones of the O–H stretch vibration near 2778 nm, while those near 1900 nm reflect 
a combination of O–H stretching and H–O–H bending in water molecules trapped in the crystal 
lattice [36]. The apparent absorption near 2200 nm is caused by Al–OH bending plus O–H stretch 
combinations [4]. 

The best variables selected by GA on the basis of the RMSECV of pH and SOM used as a fitness 
function in GA analyses can be seen in Figure 4. The lowest values of the RMSECV of pH and SOM 
were 0.62 and 5.20 when 32 and 42 variables (circle) were selected, respectively. These optimal 
variables were used to build four models (Figure 4). These models were also used to compare the 
model that used the full bands to find the best machine learning methods for predicting pH and SOM. 

 
Figure 4. Fitness (RMSECV) versus number of variables used by each individual from genetic 
algorithm (GA) 10 times. 

3.3. Predictive Accuracy of the Machine Learning Models 

Full spectral bands and bands selected by GA were used to calibrate and validate against the 
measured SOM and pH using PLSR, LS-SVM, ELM and Cubist models. The descriptive regression 
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SOM and pH in the calibration dataset.

Two prominent absorption features at about 1400 and 1900 nm were caused by the O-H functional
group of the free water region [35]. The absorption features at about 1400 nm (1395 to 1415 nm)
are due to overtones of the O–H stretch vibration near 2778 nm, while those near 1900 nm reflect
a combination of O–H stretching and H–O–H bending in water molecules trapped in the crystal
lattice [36]. The apparent absorption near 2200 nm is caused by Al–OH bending plus O–H stretch
combinations [4].

The best variables selected by GA on the basis of the RMSECV of pH and SOM used as a fitness
function in GA analyses can be seen in Figure 4. The lowest values of the RMSECV of pH and SOM
were 0.62 and 5.20 when 32 and 42 variables (circle) were selected, respectively. These optimal variables
were used to build four models (Figure 4). These models were also used to compare the model that
used the full bands to find the best machine learning methods for predicting pH and SOM.
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3.3. Predictive Accuracy of the Machine Learning Models

Full spectral bands and bands selected by GA were used to calibrate and validate against the
measured SOM and pH using PLSR, LS-SVM, ELM and Cubist models. The descriptive regression
statistics of the predicted vs. measured soil properties are provided in Table 3 and the scatterplots of
the predicted vs. measured soil properties for the different models are illustrated in Figures 5–8. When
using full spectral bands, the best prediction for SOM was obtained using the ELM model for both
cross validation (R2 of 0.87 and RMSE of 3.78) and independent (R2 of 0.81; RMSE = 5.18; RPIQ = 2.83).
With other methods using the full bands, the RMSE of the prediction in validation in ELM model was
reduced by 18–21%. The PLSR and Cubist had similar prediction accuracy (RMSE = 6.27 and 6.29,
RPIQ = 2.33 and 2.32).

Table 3. Accuracy of different methods for prediction of SOM and pH based on full bands and GA
selection bands in the calibration datasets and validation datasets.

Properties Methods Bands
Calibration • Validation

R2 RMSECV R2 RMSE ME RPIQ

SOM

PLSR
full 0.79 4.81 0.72 6.27 −0.40 2.33
GA 0.76 5.20 0.71 6.52 −0.63 2.24

LS-SVM
full 0.83 4.43 0.76 6.14 −0.66 2.39
GA 0.86 3.91 0.77 5.71 −0.59 2.56

ELM
full 0.87 3.78 0.81 5.18 −0.36 2.83
GA 0.89 3.71 0.81 5.17 −0.28 2.87

Cubist
full 0.76 5.07 0.74 6.29 −0.39 2.32
GA 0.78 5.08 0.76 6.25 −0.33 2.33

pH

PLSR
full 0.67 0.48 0.57 0.58 0.04 1.61
GA 0.46 0.62 0.48 0.64 0.09 1.46

LS-SVM
full 0.82 0.36 0.74 0.45 0.03 2.07
GA 0.74 0.43 0.75 0.44 0.02 2.08

ELM
full 0.85 0.33 0.74 0.45 0.03 2.07
GA 0.72 0.45 0.76 0.43 0.01 2.15

Cubist
full 0.70 0.49 0.72 0.47 0.03 1.98
GA 0.64 0.57 0.62 0.54 0.05 1.71

• R2 and RMSECV are result of the cross validation in calibration.
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The results of four models of SOM with the selected bands obtained by GA algorithm are listed
in Table 3. The GA algorithm reduced the number of wavelengths greatly from the original 201 to
42. The prediction performance of the Cubist, ELM and LS-SVM methods based on GA selected
bands was slightly improved (RMSE was reduced by 0.64%, 0.19% and 7.53% for Cubist, ELM and
LS-SVM, respectively) relative to models based on full bands, while the models of PLSR based on GA
selected bands were slightly reduced (RMSE was increased by 3.83%). Overall, the models that used
the GA selected bands performed almost as well as those developed with full wavelengths using the
same model.

The pH values predicted using the four models with the full bands and selected bands are
shown in Table 3. Among these models, LS-SVM and ELM using full bands produced similar results
during cross-validation and independent validation. The PLSR had the poorest result in prediction
(RMSE = 0.58, RPIQ = 1.61).

The PLSR and Cubist models based on GA selected bands for pH showed poorer performance
than those based on full bands, as indicated by the RMSE increasing by 9.32% and 10.01%, respectively.
The LS-SVM based on GA selected bands produced similar predicted results, with a RMSE of 0.44.
The ELM using GA selected bands had the best prediction, with a RMSE of 0.43 and RPIQ of 2.15.

3.4. Comparison of Model Performance

As shown in Figures 5–8 and Table 3, the ELM model outperformed the PLSR, LS-SVM and
Cubist models for prediction of SOM, regardless of whether the full bands (R2 = 0.81, RMSE = 5.18,
RPIQ = 2.83) or reduced bands (R2 = 0.81, RMSE = 5.17, RPIQ = 2.87) were used. The LS-SVM and
ELM for pH prediction using the full bands (Table 3) produced similar results (R2 = 0.74, RMSE = 0.45
and PRIQ = 2.07) and outperformed the PLSR and Cubist models. When the reduced bands were used,
ELM had the best accuracy for prediction of pH (R2 = 0.76, RMSE = 0.43, RPIQ = 2.15).

4. Discussion

4.1. GA Selection

When compared with the full bands, GA selected the smallest number of effective variables
(n = 42) as input data matrices of the four models obtained similar prediction accuracy for SOM
(Table 3). These results show that the GA selection method is necessary and that a few chemically
meaningful effective wavelengths can be used to obtain better predictions. Many previous studies
have shown that better predictions could be obtained by GA [2,37]. Nevertheless, when compared
with full bands, the applications of GA with four models did not lead to much better results (Table 3) as
indicated by the poorer results obtained upon cross-validation in the calibration set. When compared
using the full bands, the performance of models using reduced bands became worse in terms of
lower R2 and larger RMSE in calibration (Table 3). These findings could be explained by the fact
that GA tended to remove some useful variables during calibration when operating on the complex
full-spectrum [38]. However, it is interesting to note that there were no significant differences in
the validation, although some differences in the model performance of calibration were observed
when the GA reduced bands were used for pH. Given the prediction results of SOM and pH, use of
the GA selected bands is feasible. This is because reducing large spectral data sets to parsimonious
representations can provide deeper insight into the spectral predictive mechanisms and the most
important can apt to more efficient storage, computation and transmission [39].

4.2. Performance of Models

The four machine learning methods with two variables provided different prediction accuracies
for SOM and pH. Based on the results and the R2, RMSE and RPIQ values in the prediction dataset,
it can be concluded that the nonlinear methods performed better than the linear methods (PLSR).
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Non-linear relationships between the vis-NIR spectral data and soil variables have been demonstrated
in many studies [40–42].

The non-linear ELM method showed the best performance, while the LS-SVM performed slightly
better than the Cubist model. The scatterplots of the predicted vs. measured soil properties illustrated
in Figures 5–8 show that PLSR did not predict the higher and lower values of SOM and pH well when
compared with the LS-SM, ELM and Cubist methods. The Cubist model and LS-SVM succeeded in
predicting the high nonlinearities with the full and selected wavelengths when compared with the
PLSR. The prediction values in the low and middle ranges were more compact; however, the LS-SVM
method showed better prediction performance ability than the Cubist model, which is similar to the
results reported by Morellos et al. [14].

In this study, one obvious feature of the ELM was that it was more accurate at predicting the
higher content of SOM and pH than other models. The successful prediction performance of the ELM
may have resulted from the important characteristics of this technique; namely, the arbitrarily assigned
input weight and bias and the analytical determination of the output weights of the single-hidden
layer feedforward neural networks [43]. This technique can prevent the ELM from being constrained to
extract relevant information using non-linearly connected neurons [44]. The use of fewer user-defined
parameters in the ELM allows it to have better generalization capability; therefore, the ELM can avoid
changes in complex parameters such as learning rates, learning epochs, stopping criteria, and local
optima [45]. Moreover, when used in a limited training set, the ELM can learn N distinct observations
that use almost any nonlinear activation function approximation with most N hidden nodes.

Unlike ordinary neural networks, the ELM is a suite of machine learning techniques with hidden
neurons that do not need to be tuned and there is no need to consider theories such as neural network
generalization, control, matrix and linear system theory [46]. In this study, we selected the apt hidden
neurons by minimizing the RMSE in the training dataset, which minimized the training errors proposed
by Schmidt et al. [47]. The generalization performance of RMSE tends to become worse when too
few or too many nodes are randomly generated. However, the generalization performance of the
ELM is very stable over a wide range of hidden nodes (Figure 3), which is similar to the results
reported by Huang et al. [43]. The ability of ELM’s potential can be used efficiently with generalized
single-hidden-layer feedforward network in this study in prediction the content of SOM and pH. In the
future, some ELM will also be used for multi-hidden-layer feedforward networks or implemented by
various nonlinear activation and kernel functions.

5. Conclusions

In this study, we evaluated the ability of four machine learning techniques (PLSR, LS-SVM, ELM
and Cubist) to predict the contents of SOM and the pH of paddy fields in the laboratory based on
spectroscopy using the full bands and bands reduced by GA. The ELM models with the full bands
and bands reduced by GA outperformed the PLSR, LS-SVM and Cubist models for SOM predictions,
whereas the ELM and LS-SVM with full bands had the same prediction results for pH. The ELM
outperformed other models when using bands reduced by the GA algorithm. Overall, when the same
models used the full bands and reduced bands there were no significant differences in prediction,
while non-linear multivariate models were superior to linear models. The best predictions were
obtained by ELM with bands reduced by GA for SOM (R2 = 0.81, RMSE = 5.17, RPIQ = 2.87) and for
pH (R2 = 0.76, RMSE = 0.43, RPIQ = 2.15). When compared with using the full bands (i.e., ELM for pH:
R2 = 0.72, RMSE = 0.45, RPIQ = 2.07), a minor increase in prediction for SOM and pH was obtained
using the reduced bands (i.e., ELM for pH: RMSE reduced from 0.45 to 0.43); however, the number of
wavelengths was greatly reduced (i.e., ELM for pH:201 to 32). Thus, we recommend adopting the ELM
using reduced bands to predict the soil properties (SOM and pH) of paddy soil in the middle-lower
Yangtze Plain.
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