
materials

Article

Novel Calibration Strategy for Validation of Finite Element
Thermal Analysis of Selective Laser Melting Process Using
Bayesian Optimization

Masahiro Kusano * , Houichi Kitano and Makoto Watanabe

����������
�������

Citation: Kusano, M.; Kitano, H.;

Watanabe, M. Novel Calibration

Strategy for Validation of Finite

Element Thermal Analysis of

Selective Laser Melting Process Using

Bayesian Optimization. Materials

2021, 14, 4948. https://doi.org/

10.3390/ma14174948

Academic Editor: Rubén Paz

Received: 20 July 2021

Accepted: 24 August 2021

Published: 30 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Research Center for Structural Materials, National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba,
Ibaraki 305-0047, Japan; KITANO.Houichi@nims.go.jp (H.K.); WATANABE.Makoto@nims.go.jp (M.W.)
* Correspondence: KUSANO.Masahiro@nims.go.jp

Abstract: Selective laser melting (SLM) produces a near-net-shaped product by scanning a concen-
trated high-power laser beam over a thin layer of metal powder to melt and solidify it. During the
SLM process, the material temperature cyclically and sharply rises and falls. Thermal analyses using
the finite element method help to understand such a complex thermal history to affect the microstruc-
ture, material properties, and performance. This paper proposes a novel calibration strategy for
the heat source model to validate the thermal analysis. First, in-situ temperature measurement by
high-speed thermography was conducted for the absorptivity calibration. Then, the accurate simu-
lation error was defined by processing the cross-sectional bead shape images by the experimental
observations and simulations. In order to minimize the error, the optimal shape parameters of the
heat source model were efficiently found by using Bayesian optimization. Bayesian optimization
allowed us to find the optimal parameters with an error of less than 4% within 50 iterations of the
thermal simulations. It demonstrated that our novel calibration strategy with Bayesian optimization
can be effective to improve the accuracy of predicting the temperature field during the SLM process
and to save the computational costs for the heat source model optimization.

Keywords: selective laser melting; finite element thermal analysis; model calibration; thermographic
image; bead on plate test; Bayesian optimization; nickel-based superalloy

1. Introduction

Selective laser melting (SLM), which is classified into a powder bed fusion type in
additive manufacturing methods, produces a near-net-shaped product by scanning a
concentrated high-power laser beam on a thin layer of metal powder to melt and solidify
it. The cyclic process of spreading a thin layer of powder and scanning the laser beam is
repeated until the product is completed in the form designed by computer-aided design
(CAD) software. Through the process, the material temperature periodically and rapidly
rises and falls with melting and solidification with transformations. Such a thermal history
affects the characteristic microstructure [1,2] and material properties [3,4], and it can also
generate defects such as pores [5] and microcracks [6–8], and can cause distortion [9].

To understand the thermal history (temperature gradient, solidification rate, and
cooling rate) in the SLM process, thermal analysis has been extensively performed using
the finite element method (FEM) [10–16]. The FEM-based simulation solves the governing
equations of heat transfer with boundary conditions, including a moving heat source model
for laser scanning. Such heat source models have been originally studied for many years for
welding processes, and some volumetric heat sources of various shapes and distributions
have been proposed [10,14,17]. A double ellipsoidal power density model, proposed by
Goldak et al. [17], can simulate shallow penetration for arc welding processes and deeper
penetration for laser and electron beam processes by changing shape parameters. Accurate
thermal analysis requires calibration of shape parameters, depending on material and
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process conditions. This model has been also applied to simulate the SLM process. The
shape parameters have been calibrated so that the simulated bead shape (width, depth, and
length) matches the one by the cross-sectional observation [10–14] or by in-situ monitoring
with high-speed imaging [13].

In addition to the shape parameters, absorptivity in the heat source models, which
means the heat efficiency of laser power in the process, depends on the material and
process conditions. In the SLM process, the laser beam is reflected multiple times in the
powder layer [18,19]. It also interacts with keyhole walls, a deep surface in the melting
pool owing to the vapor recoil pressure of excessive laser energy [20]. Boley et al. [18]
studied the absorptivity of a 1-µm-wavelength laser beam on a metal powder layer by
ray-tracing calculations, and empirically measured the value by using direct calorimetric
measurements. They proposed that the absorptivity of the powder layer can be predicted
from that of the flat surface of its bulk metal. Trapp et al. [20] studied the effective
absorptivity of a continuous 1070-nm-wavelength laser beam for some metal powders
during melting. The in-situ direct calorimetric measurements revealed that the absorptivity
considerably depended on laser power and scan speed (e.g., the absorptivity of 316 L
stainless steel varied from 0.3 to 0.7 with the variation of laser power and scan speed). They
have concluded that the measured absorptivities were different from both the one obtained
by the powder layer measurements without melting and that of liquid metals estimated
from the literature. Thus, the calibration of absorptivity is still necessary for the valid
thermal analysis for the SLM process. However, to the best of our knowledge, no such
thermal analysis using a heat source with calibrated absorptivity and shape parameters has
been reported. This could be owing to the experimental difficulty of in-situ temperature
measurements during the process.

Such thermal simulations are computationally expensive, and calibration is an iterative
simulation process that uses different parameters to fit the simulation results with the
experimental ones. Therefore, it is important to improve the efficiency of the calibration
process. In short, the calibration process finds the parameters (explanatory variables x) to
minimize the difference between experiment and simulation (an objective function f(x)).
Bayesian optimization is known as a powerful tool to efficiently find minimum f(x) [21,22].
A Gaussian process model of f(x) is modified by a Bayesian update procedure at each new
evaluation of f(x). One of the features of Bayesian optimization is the use of the acquisition
function to determine the next point x to be evaluated. The acquisition function can balance
between sampling at the points where the modeled objective function is low and exploring
the areas that have not yet been modeled, resulting in efficient parameter optimization.
For example, using Bayesian optimization, Kitano et al. [7,8] have successfully found an
optimal laser irradiation conditions to avoid defects and cracks in SLMed nickel superalloys.
Shiraiwa et al. [23] efficiently determined the heat source parameters in welding simulation
using Bayesian optimization. In order to evaluate the accuracy of the calculation results and
to improve it, the SLM process simulation also needs to be iterated many times to find the
optimal heat source model parameters. Thus, Bayesian optimization could be an effective
technique for the calibration of a heat source model for the SLM process simulation.

This paper proposes a novel calibration strategy for the heat source model of the
FEM-based thermal analysis in the SLM process. The in-situ temperature measurements
were conducted using high-speed thermography to calibrate the absorptivity. The cross-
sectional bead shapes were quantified to calibrate the shape parameters of the heat source
model. The shape parameters were explored using Bayesian optimization, which led
to the smallest difference of the melt pool shape between the FEM calculations and the
experimental measurements. The optimal parameters were compared with the ones of the
grid search. These iterative calibration processes were performed via two-dimensional
(2D) thermal simulations for computational efficiency. Three-dimensional (3D) thermal
analysis with calibrated parameters was also performed and discussed in terms of bead
shape, thermal history, and cooling rate.
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2. Experiments

A two-step calibration strategy for the heat source model of FEM-based thermal
analysis is shown as a flowchart in Figure 1. First, the absorptivity of the heat source model
was calibrated to fit the temperature field by the simulation of multiple beads to the ones
measured by thermography (Section 2.2). Second, Bayesian optimization offered better
shape parameters for the heat source model, minimizing the difference between single
bead simulation and cross-sectional observation results (Section 2.3). Thermal simulation
models and Bayesian optimization are described in Sections 3 and 4, respectively.
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Figure 1. Flowchart of two-step of calibration strategy for the heat source model of FEM-based
thermal analysis.

2.1. SLM Machine and Materials

Multiple and single laser scan tests were conducted using a commercial SLM machine,
SLM 280 HL (SLM Solutions GmbH, Lübeck, Germany, Figure 2a). A thin layer of metal
power on a base plate was scanned by a fiber laser beam with 1070-µm wavelength and
80-µm spot size in the chamber under an argon atmosphere. The laser power, scan velocity,
and hatching space were set to 300 W, 1500 mm/s, and 100 µm, respectively. Nickel-based
superalloy Hastelloy X (HX) powder (AMPERPRINT 0228 by Höganäs AB, Scania, Sweden)
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and 6-mm-thick baseplates (Alloy X by VDM Metals GmbH, Werdohl, Germany) were
used in this study.
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Figure 2. (a) A photo of the selective laser melting (SLM) chamber. Schematic images of in-situ temperature measurement
of Hastelloy X (HX) by thermography: (b) top view and (c) side view.

2.2. Thermographic Measurements

The temperature distribution due to multiple laser scans was measured by a high-
speed thermography camera (FAST M350, Telops Inc., Quebec, Canada) through the silicon
window of the chamber. The schematic image of the experimental setup is shown in
Figure 2b,c. Two rectangular components with a dimension of 10 mm × 10 mm × 0.3 mm
were prefabricated on the baseplate using SLM in advance. After that, when the top
surface temperature was sufficiently lowered to ambient temperature, the platform with
the substrate was lowered by 30 µm, and the additional powder layer was spread on the
top surface. Then, the laser beam scanned in a zigzag pattern while the thermography
camera measured the surface temperature.

The thermography camera has three filters to measure various temperature ranges:
(1) 0–250 ◦C, (2) 106–350 ◦C, and (3) 265–780 ◦C. Thus, the measurements were performed
for each filter. The sampling rate and exposure time of the camera were 345 Hz and 100 µs,
respectively. In the preliminary experiment, the surface radiation of the SLMed HX part
was separately calibrated by comparing the temperature measured by the camera with the
one by a thermocouple in a furnace. The effects of the silicon window on the SLM machine
were also calibrated in advance. Since the camera was mounted on the SLM machine at an
angle of approximately 55◦, the resolutions of images parallel and normal to the laser scan
direction were 76 and 68 µm/pixel, respectively.

2.3. Bead on Plate Test

A single 10-mm-long bead was fabricated by scanning the laser beam on the powder
layer (approximate 50 µm thick) on the baseplate. The single bead was cut perpendicular
to the laser scanning direction, and the three cross sections were polished. Cross-sectional
images of the backscattered electron composition (BEC) mode were taken via a scanning
electron microscope (SEM: JSM-6010 LA, JEOL, Tokyo, Japan).

3. Thermal Analysis

The governing equation of heat transfer of an object with a density ρ, a specific capacity
C, and a thermal conductivity k is as follows:

ρC
∂T
∂t

= ∇(k∇T) + Q (1)
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where T, t, and Q are temperature, time, and heat source, respectively. The double ellip-
soidal power density model [17] was applied to model the heat source by laser beam ql ,
power P, and scan velocity v in the z-direction, as described as follows:

ql(x, y, z, t) =


6
√

3A1P
abc1π

√
π

exp
{
−3
[( x

a
)2

+
( y

b
)2

+
(

z−vt
c1

)2
]}

(z ≥ vt)

6
√

3A2P
abc2π

√
π

exp
{
−3
[( x

a
)2

+
( y

b
)2

+
(

z−vt
c2

)2
]}

(z < vt)
(2)

where A1 and A2 are the absorptivity forward and backward of the laser beam. The
parameters a, b, c1, and c2 determine the shape of the volumetric heat source. In this study,
it is assumed that A1 = A2 = A, c1 = a, and c2 = 2a. These assumptions are common in
the field of welding (e.g., reference [23]) and additive manufacturing (e.g., reference [16]).

Figure 3 shows the 2D models for the single and multiple laser scanning and the 3D
model for the single laser scanning. The models consist of two components corresponding
to a powder layer part of 30 µm thickness and a bulk part (gray and white elements
in Figure 3, respectively). As shown in Figure 1, the absorptivity A was calibrated by
comparing the temperature distributions measured by the thermography camera and
simulated by the 2D multiple scan model (Figure 3b). The model of 1.0 mm × 6.3 mm
corresponded to the center plane of the SLMed part and HX plate in Figure 2b. In order
to realize the zig-zag pattern of the laser scan, the direction of the heat source model
was alternately changed by 180◦ for every 10 mm of movement parallel to the Z-axis,
and its center was shifted in the X direction by the same distance as the hatching space
(100 µm). The simulations with different A were performed up to 0.5 s after the heat source
had passed.
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The 2D single scan model of 500 µm × 530 µm (Figure 3a) was prepared to optimize
the shape parameters a and b by comparing it with the single bead on plate test. The heat
source model with the calibrated parameters was also applied to the 3D single scan model
of 500 µm× 530 µm× 500 µm (Figure 3c). These simulations were performed up to 0.75 ms
after the heat source passed through the model. In order to reduce the computational cost,
the Y-axis for the 2D single scan model (Figure 3a) and the YZ plane for 3D single scan
model (Figure 3c) were used as the symmetry wall, and the center of the heat source model
passed through the point (x, y) = (0, 30). The heat source model directions were indicated
by symbols of � and ⊗ in Figure 3a,b, and by an arrow in Figure 3c. All boundaries except
the top surface were assumed to be adiabatic. Heat loss due to natural convection and
radiation, qc and qr on the top surface are defined as follows:

qc = hc(T − Tamb) (3)

qr = σε
(

T4 − T4
b

)
(4)

where hc, ε, σ, and Tamb are the convection coefficient, emissivity, Stefan-Boltzmann constant
(5.67× 10−8 (W/m2·K4)), and ambient temperature (30 ◦C), respectively.

The material properties used in the simulation are listed in Table 1. As shown in
Figure 4, for the bulk part of HX, Csolid and ksolid depended on temperature [24]. For the
powder part, the density ρpowder and conductivity kpowder were assumed to be 0.5 ρsolid and
0.05 ksolid, respectively. When the temperature exceeded the solidus temperature (Ts) of
HX, the powder turned into the bulk by changing kpowder to ksolid. Additionally, when the
temperature exceeded the liquidus temperature (Tl), the conductivity kliquid was assumed
to be 10 times larger than the one of the solid (10 ksolid, 1260 ◦C = 323 W/(m·K)) to represent
the heat transfer of the melting pool including the effect of fluidity. When the temperature
was between Ts and Tl , the properties of kliquid and Cliquid were defined as follows [25,26]:{

k = ksolid +
(

kliquid − ksolid

)
φ

C = Csolid + (Cliquid − Csolid)φ + L dφ
dT

(5)

where φ represents a phase fraction defined as (T − Ts)/(Tl − Ts).

Table 1. Material properties of Hastelloy X (HX) used for thermal analysis. Adapted from Ref. [24].

Material Properties Value

Density for solid, ρsolid 8240 kg/m3

Density for powder, ρpowder 4120 kg/m3

Heat capacity for liquid, Cliquid 674 J/kg K
Thermal conductivity for liquid, kliquid 323 W/m K

Latent heat, L 276 kJ/kg
Solidus temperature, Ts 1260 ◦C

Liquidus temperature, Tl 1355 ◦C
Heat transfer coefficient, hc 10 W/m2 K

Emissivity, ε 0.3

The thermal simulation was performed using the finite element code ABAQUS
(ABAQUS/CAE 2019, Dassault Systems Simulia Corp., Johnston, RI, USA) with the user
subroutines of the temperature and phase-dependent material properties and the moving
volumetric heat source model. The 2D and 3D simulation used 4-node linear heat trans-
fer quadrilateral and 8-node linear heat transfer brick elements (DC2D4 and DC3D8 in
ABAQUS 2019), respectively. As shown in Figure 3, the mesh size was set to 5.0 µm for the
part where large heat input was given by the moving heat source model, and larger sizes
for other parts to save computational costs.



Materials 2021, 14, 4948 7 of 19

Materials 2021, 14, 4948 7 of 21 
 

subroutines of the temperature and phase-dependent material properties and the moving 
volumetric heat source model. The 2D and 3D simulation used 4-node linear heat transfer 
quadrilateral and 8-node linear heat transfer brick elements (DC2D4 and DC3D8 in 
ABAQUS 2019), respectively. As shown in Figure 3, the mesh size was set to 5.0 µm for 
the part where large heat input was given by the moving heat source model, and larger 
sizes for other parts to save computational costs. 

 
Figure 4. (a) Heat capacity and (b) thermal conductivity of HX (depending on temperature) [24]. 

Table 1. Material properties of Hastelloy X (HX) used for thermal analysis [24]. 

Material Properties Value 
Density for solid, ρsolid 8240 kg/m3 

Density for powder, ρpowder 4120 kg/m3 
Heat capacity for liquid, Cliquid 674 J/kg K 

Thermal conductivity for liquid, kliquid 323 W/m K 
Latent heat, L 276 kJ/kg 

Solidus temperature, Ts 1260 °C 
Liquidus temperature, Tl 1355 °C 

Heat transfer coefficient, hc 10 W/m2 K 
Emissivity, ε 0.3 

4. Bayesian Optimization 
The shape parameters 𝑎 and 𝑏 of the heat source model (Equation (2)) were cali-

brated by comparing the shape of beads by the observation (Section 2.3) and the thermal 
simulation (Section 3). Here, the error between the observation and the simulation was 
evaluated by the following procedure (see Figure 5). First, the area containing the right 
half of the melted zone in the SEM image (100 µm × 150 µm, surrounded by the yellow 
dashed rectangle in Figure 5a) was trimmed and manually binarized so that the grayscale 
of the pixels was set to 1 for the melted zone and 0 for the baseplate (Figure 5b). Second, 
as shown in Figure 5c, the binary image was divided into blocks to match the pixel size 
and simulation mesh size (coarse-graining). Several coarse-grained images were prepared 
for different cross sections and averaged into a single image (Figure 5d). This image is the 
visualized matrix of the melted zone 𝑀𝑍 (𝑥, 𝑦), and its components range is from 0 to 
1. Here, 𝑥 and 𝑦 are the coordinates in the width and depth directions of the melted 
zone, respectively. In the finite element simulation, the melted zone was defined as the 
part whose temperature exceeded 𝑇  during laser scanning. As shown in Figure 5e, the 
melted zone was also outputted as binary values for each integral point of the elements in 
the corresponding area to the SEM image (100 µm × 150 µm), and the average values of 
four integral points in the elements were used to obtain the matrix of the melted zone 

Figure 4. (a) Heat capacity and (b) thermal conductivity of HX (depending on temperature). Adapted from Ref. [24].

4. Bayesian Optimization

The shape parameters a and b of the heat source model (Equation (2)) were calibrated
by comparing the shape of beads by the observation (Section 2.3) and the thermal simulation
(Section 3). Here, the error between the observation and the simulation was evaluated by
the following procedure (see Figure 5). First, the area containing the right half of the melted
zone in the SEM image (100 µm × 150 µm, surrounded by the yellow dashed rectangle in
Figure 5a) was trimmed and manually binarized so that the grayscale of the pixels was set
to 1 for the melted zone and 0 for the baseplate (Figure 5b). Second, as shown in Figure 5c,
the binary image was divided into blocks to match the pixel size and simulation mesh size
(coarse-graining). Several coarse-grained images were prepared for different cross sections
and averaged into a single image (Figure 5d). This image is the visualized matrix of the
melted zone MZobs(x, y), and its components range is from 0 to 1. Here, x and y are the
coordinates in the width and depth directions of the melted zone, respectively. In the finite
element simulation, the melted zone was defined as the part whose temperature exceeded
Ts during laser scanning. As shown in Figure 5e, the melted zone was also outputted as
binary values for each integral point of the elements in the corresponding area to the SEM
image (100 µm × 150 µm), and the average values of four integral points in the elements
were used to obtain the matrix of the melted zone MZsim(x, y). Subtracting the simulated
matrix MZsim(x, y) (Figure 5e) from the observed matrix MZobs(x, y) (Figure 5d) yields a
different matrix (di f f (x, y)) or an image, as shown in Figure 5f. Warm colors indicate that
the simulated melt was smaller than the observed bead shape, and cold colors mean the
opposite. Finally, the simulation error E was defined as follows:

E =
∑|MZobs(x, y)−MZsim(x, y)|

∑ MZobs(x, y)
=

∑|di f f (x, y)|
∑ MZobs(x, y)

(6)

The optimal shape parameters to minimize E were found by Bayesian optimization by
using Statistics and Machine Learning Toolbox in MATLAB (R2020b, MathWorks, Natick,
MA, USA). Bayesian optimization uses a Gaussian process model to find the point x
that minimizes the objective function y = f (x). The Gaussian process model of f (x) is
modified by Bayesian updates each time a new point is acquired. The Gaussian process
is defined as mean µ(x; θ) and covariance kernel function k(x, x′; θ). Here, θ is a vector of
kernel parameters. The kernel function k(x, x′; θ) can significantly affect the quality of a
Gaussian process regression, and the Bayesian optimization in the MATLAB toolbox uses
the automatic relevance determination (ARD) Matérn 5/2 kernel, KM52(x, x′) [22]:

KM52
(

x, x′
)
= θ0

(
1 +
√

5r +
5
3

r2
)

exp
(
−
√

5r
)

(7)
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r2 =
D

∑
d=1

(xd − x′d)
θ2

d
(8)

where hyperparameters θ0 and θ1:D are the covariance amplitude and the length scales,
respectively.
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The next evaluation point is determined by the acquisition function a(x) that evaluates
the “goodness” of the point x based on the posterior distribution Q( f |xi, yi f or i = 1, . . . , t)
of the Gaussian process model. The acquisition function can balance sampling points
around the low objective function (exploitation) and searching for the regions that have not
yet been fully explored (exploration). Thus, the efficiency of parameter retrieval by Bayesian
optimization depends on the acquisition functions. In this study, three acquisition functions
were examined: (1) expected improvement (EI), (2) probability of improvement (PI), and
(3) lower confidence bound (LCB) [21,22,27]. The EI acquisition function evaluates the
expected amount of improvement in the objective function, ignoring values that increase
the objective function. EI is defined as follows:

EI = E
[
max

(
0, µQ(xbest)

)
− f (x)

]
(9)

where E(x) indicates the expected value of x, xbest is the lowest posterior mean point, and
µQ(xbest) is the lowest value of the posterior mean. The PI acquisition function calculates
the probability that the new point x leads to a better objective function value, modified
by the margin parameter m which takes the estimated noise standard deviation of the
Gaussian process model:

PI = CDF
(

µQ(xbest)−m− µQ(x)
σQ(x)

)
(10)
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where CDF indicates the cumulative distribution function of the standard normal distribu-
tion, and σQ(x) is the standard deviation. The LCB function minimizes the curve of 2σQ(x)
at each point:

LCB = 2σQ(x)− µQ(x) (11)

In this study, the search point x corresponds to the heat source shape parameters
a and b, and the objective function y = f (x) is defined as the difference in bead shapes
between simulations and experiments. For further details, see the literature [21,22,27]. The
search areas of a and b were (10, 100 µm) and (50, 200 µm), respectively. The single bead
simulation and newly selected parameters were iterated 50 times. A grid search was also
performed for the same area of shape parameters for comparison. The grid sizes of both
parameters a and b were 5.0 µm.

5. Results
5.1. Absorptivity Calibration

Figure 6a–c show the temperature distributions during multiple laser scans measured
by the thermography camera with different filters. These images show the temperature
distribution when the laser beam scans the middle of the sample. Point C in the figures
indicates the sample center point. Points A and B are 1.6 and 3.2 mm away in the X-
direction from point C, respectively. As shown in Figure 6d, the temperature histories with
different filters were integrated into one for each point. The laser beam scanned through
the sample surface (10 mm × 10 mm) at the speed of 1500 mm/s and the hatching space of
100 µm, so there was a time lag of approximately 0.1 s between the three curves. When the
peak positions are aligned as shown in Figure 6e, the three curves are in good agreement,
indicating that the thermal histories at these points are almost the same.
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Figure 6. Temperature distributions on the top surface measured by thermography during multiple laser scanning:
(a) 0–250 ◦C, (b) 106–350 ◦C, (c) 265–780 ◦C, (d) temperature histories at points A, B, and C, and (e) temperature histories at
points B and C are shifted by a time lag to match the temperature history at point A.

The actual temperature at the laser-irradiated spots should exceed Ts and Tl . Therefore,
another filter for the high-temperature range of 750–2500 ◦C was also examined. However,
such high temperatures could not be measured by the thermography camera. This can be
owing to the temporal and spatial resolution limitations of the camera. Zhirnov et al. [28]
used an advanced thermography camera with a 20,000 frame rate and 3.07 µm/pixel
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resolution to measure sharp laser spots over 1900 ◦C. However, as discussed later, the
temperature variation during cooling period below 500 ◦C was sufficient to calibrate
the absorptivity.

Figure 7a–c show the temperature distribution by the 2D thermal simulation of mul-
tiple laser scans with A = 0.30, 0.50, and 0.70 when the heat source is in the center of
the model. Here, it was assumed that the shape parameters a and b were 50 and 125 µm,
respectively. The part whose temperature exceeds Ts is shown in gray indicating the
melting pool. It was evident that the size of the melting pool increased as the absorptivity
increased. The thermography camera has a spatial resolution of 68 µm, so we averaged the
temperatures of the 14 nodes in the top center (yellow points in Figure 7a–c). Figure 7d,e
show the average thermal histories on various axis scales. Figure 7d shows the cyclic
temperature rise and fall owing to adjacent laser paths. Such heating by adjacent paths
was also recognized from the asymmetry of the melting pool in Figure 7a–c.

Materials 2021, 14, 4948 11 of 21 
 

 
Figure 7. Temperature distributions by thermal simulation of multiple laser scanning with different absorptivities 𝐴: (a) 
0.30, (b) 0.50, (c) 0.70, (d) cyclic thermal histories, and (e) cooling process from maximum temperature. In (a–c), the average 
temperature in the top center of 14 nodes is indicated in yellow. Black lines in (e) represent temperatures measured by the 
thermography camera (Figure 6e). 

Figure 7e shows the cooling process from the maximum temperatures for different 
absorptivity assumptions. The black line in the figure indicates the experimental data 
measured by the thermography camera. The results indicate that “0.50” seems suitable for 
the absorptivity 𝐴 to reproduce the surface temperature variation in the thermal analysis. 
As described in Section 1, the absorptivity of the heat source model includes the effects of 
the powder layer and the surface shape of the melting pool. There is no data available for 
the absorptivity of HX. For the case of 316L stainless steel powder, its absorptivity was 

Figure 7. Temperature distributions by thermal simulation of multiple laser scanning with different absorptivities A:
(a) 0.30, (b) 0.50, (c) 0.70, (d) cyclic thermal histories, and (e) cooling process from maximum temperature. In (a–c), the
average temperature in the top center of 14 nodes is indicated in yellow. Black lines in (e) represent temperatures measured
by the thermography camera (Figure 6e).
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Figure 7e shows the cooling process from the maximum temperatures for different
absorptivity assumptions. The black line in the figure indicates the experimental data
measured by the thermography camera. The results indicate that “0.50” seems suitable for
the absorptivity A to reproduce the surface temperature variation in the thermal analysis.
As described in Section 1, the absorptivity of the heat source model includes the effects
of the powder layer and the surface shape of the melting pool. There is no data available
for the absorptivity of HX. For the case of 316L stainless steel powder, its absorptivity
was reported as in the range from 0.3 to 0.7 for the different laser energy densities [20].
The estimated value, A ~0.50 for HX in the present study was in a similar range and was
considered appropriate.

5.2. Shape Parameter Calibration of Heat Source Model

Figure 8a shows one of cross-sectional SEM images of the single bead using the SLM
process at the power of 300 W and the speed of 1500 mm/s. The mean width and depth
of melted zone at three different cross sections (see Figure 8a) were 60.8 ± 4.79 µm and
69.8 ± 1.22 µm, respectively. Figure 8b shows MZobs(x, y) processed by the procedure
described in Section 4. The gray pixels in the averaged image in Figure 8b were just
observed along the boundary between the melted and non-melted zones. This indicates
that the shapes of the melted zone at the three different cross sections were almost identical.
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Figure 8. (a) Cross-sectional SEM image of the single bead with laser scanning. A yellow rectangle indicates the area to
be processed. (b) The visualization of the melted zone matrix MZobs(x, y). Black and white pixels with binary values
correspond to the bead and baseplate, respectively.

Figure 9a–e show the change of temperature distribution and the formation of melted
zone during the 2D thermal simulation of a single laser scan with A = 0.50, the shape
parameters a = 50 µm, and b = 125 µm. Figure 9f shows the simulated width, depth, and
area of the melted zone over time. In this simulation, the center of volumetric heat source
passed through the XY plane at 0.25 ms so that the melting pool and melted zone became
larger from 0.185 to 0.25 ms (see Figure 9a,b,f). After the heat source passed through, the
melted zone became slightly wider at 0.255 ms (see a yellow circle in Figure 9c). Then, the
melting pool gradually got small as the inputted heat was transferred to the surrounding
area (Figure 9d,e).
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(f) The width, depth, and area of the melted zone with the time. 
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cate the searched parameters. Figure 11a shows the minimum errors through the search 
process with the number of evaluations. Figure 10a also shows the contour map of the 
errors by the grid search with more than 600 times simulations. The search parameters are 
on the grid lines in the figure. All these contour maps show that the error has one local 
minimum point around (55 µm, 170 µm). Instead of reducing the search for larger error 
areas, Bayesian optimization with all acquisition functions better exploited the objective 
functions around the minimum point. As a result, the optimal parameters with errors 
equivalent to those of grid search were achieved within 25 iterations by Bayesian optimi-
zation (Figure 11a). The optimal parameters for the grid search and each acquisition func-
tion are shown in red circles in Figure 10 and are listed in Table 2. Three acquisition func-
tions represented similar shape parameters for minimizing 𝐸. Figure 12 shows the bead 
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Figure 9. Temperature distribution (left) and melted zone (right) simulated by 2D thermal analysis with parameters
a = 25 µm, b = 125 µm, and A = 0.50 at the moment of (a) t = 0.20 ms, (b) 0.25 ms, (c) 0.30 ms, (d), 0.35 ms, and (e) 0.40 ms.
(f) The width, depth, and area of the melted zone with the time.

According to the procedure described in Section 4, the optimal shape parameters a
and b to minimize error E were searched by Bayesian optimization. Figure 10b–d show
contour maps of the errors searched by various acquisition functions. White circles indicate
the searched parameters. Figure 11a shows the minimum errors through the search process
with the number of evaluations. Figure 10a also shows the contour map of the errors by the
grid search with more than 600 times simulations. The search parameters are on the grid
lines in the figure. All these contour maps show that the error has one local minimum point
around (55 µm, 170 µm). Instead of reducing the search for larger error areas, Bayesian
optimization with all acquisition functions better exploited the objective functions around
the minimum point. As a result, the optimal parameters with errors equivalent to those
of grid search were achieved within 25 iterations by Bayesian optimization (Figure 11a).
The optimal parameters for the grid search and each acquisition function are shown in
red circles in Figure 10 and are listed in Table 2. Three acquisition functions represented
similar shape parameters for minimizing E. Figure 12 shows the bead shape by simulation
BSsim(x, y) with the optimal parameters and its difference matrix di f f (x, y). As shown in
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these figures, all the Bayesian optimizations with the three acquisition functions succeeded
in efficiently detecting the shape parameters that fit the shape of the beads.
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Table 2. Optimal parameters found by grid search and Bayesian optimization with different acquisition functions and their
errors.

Search Strategy Acquisition Function a, µm b, µm Error, %

Bayesian optimization
EI 54.0 171.7 3.48
PI 59.3 164.5 3.48

LCB 55.7 169.8 3.68
Grid search - 55.0 170.0 3.48
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Figure 12. Bead shapes by simulation with optimal parameters (a–d) and their differences from the observation (e–g). (a) and
(e) are the grid search and Bayesian optimization with the acquisition function of (b) and (f) EI, (c) and (g) PI, and (d) and
(h) LCB.

The search efficiency of each acquisition function was evaluated by cumulative regret
R, defined as follows [18,20]:

R = ∑
i
(Ei,−Emin) (12)

where Ei is the ith error and Emin is the minimum error. The smaller the cumulative
regret, the more efficient search in the optimization. As shown in Figure 11b, LCB and EI
efficiently searched for the best parameters than PI because of the balance of exploitation
and exploration. In any case, compared to the grid search, which required more than
600 calculations, Bayesian optimization with any acquisition function was much more
efficient in determining optimal shape parameters.

5.3. 3D Thermal Analysis with Calibrated Parameters

The novel two-step calibration proposed above was performed using a 2D FEM-based
thermal simulation model that takes computational costs into account. 3D thermal analysis
requires enormous computational time and resources, as the number of meshes significantly
increases with the length of the model in the Z-direction. Thus, it is not feasible to use
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such a 3D model for the calibration procedure with iterative simulations even though
Bayesian optimization can significantly reduce the number of iterations. However, a
3D thermal analysis can be desirable to understand the temperature distribution better
and combine the results of thermal simulation with other simulations (such as thermal
stress analysis [9], thermal elastoplastic analysis [7,8], and grain growth simulation [2]).
Consequently, a rational process is to use the 2D model to calibrate the parameters and
use the calibrated parameters to simulate the 3D model. Here, the process is validated to
compare 3D and 2D models with parameters calibrated in terms of bead shape, thermal
history, and cooling rate.

Figure 13 shows the 2D and 3D temperature distributions of the single laser scan with
the calibrated absorptivity and the shape parameters [(A, a, b) = (0.5, 54.0, 171.7)]. Figure
13a–d are the results of the 2D calculations and Figure 13e–p are the ones by the 3D analysis
at the different times and for the different viewing angles. The 3D temperature distribution
in Figure 13e–g were shown as a mirror reflection, using the symmetry in the YZ plane.
Comparing Figures 13i–l and 13a–d, the temperature distribution at the XY plane in the 3D
model was almost the same as that in the 2D model. Similar to the calibration procedure
in Section 4, MZsim(x, y) and di f f (x, y) were evaluated at the XY plane in the 3D model.
It is clear from Figure 14 that the melted zone simulated in the 3D model was consistent
with the bead shape on the cross section. The error E of the 3D simulation was 4.73% and
the difference was only 1.25% comparing to the 2D simulation. In most cases, the error
was small enough to justify the 3D simulation with the shape parameters optimized in the
2D model.
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Figure 14. (a) Melted zone 𝑀𝑍 (𝑥, 𝑦) at 𝑍 =  0 µm in the 3D single model, and (b) its difference 𝑑𝑖𝑓𝑓(𝑥, 𝑦) from the observation (Figure 8b). 

Figure 13. Temperature distributions simulated using the 2D single (a–d) and 3D single (e–p) models with calibrated
parameters (A, a, b) = (0.5, 53.95, 171.67) at different time steps t = 0.2, 0.4, 0.6, and 0.8 ms. (i), (j), (k), and (l) are XY planes
at Z = 0.0 µm, and (m), (n), (o), and (p) are YZ planes at X = 0.0 µm. Yellow arrows indicate a laser scanning direction.
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Figure 14. (a) Melted zone MZsim(x, y) at Z = 0 µm in the 3D single model, and (b) its difference di f f (x, y) from the
observation (Figure 8b).

Figure 15a shows thermal histories at Y = 30, 0, −30, and −60 µm and at (X, Z) =
(0.0, 0.0) in the 3D model. For comparison, the dashed lines in the figure represent the
thermal histories of the 2D model at the same coordinate points. The thermal histories of
both models showed almost the same behavior. Red and blue lines in Figure 15a represent
the temperatures of Tl and Ts. The cooling time from Tl to Ts plotted in Figure 15b increased
in the Y direction (as the depth of melting pool decreased). This indicates that shallower
the melting pool, the more slowly it solidifies. The temperature difference between Tl to Ts
divided by the time corresponds to an average cooling rate during the phase transformation
from liquid to solid. The cooling rate decreased from 1.7 × 106 to 3.6 × 105 K/s in the Y
direction. Again, the 3D and 2D models showed the same trends for the cooling rate.
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broken lines indicate the results of single 3D and 2D models, respectively.

6. Discussion

This section discusses the novel calibration strategy for the thermal analysis in the SLM
process in terms of the computational efficiency by 2D model and Bayesian optimization,
the similarity between the 2D and 3D models, the validity and limitation of the calibrated
heat source model, and the advantage of the FEM-based thermal analyses over more
advanced simulations for the SLM process.

In this study, the shape parameters of the heat source model were calibrated using
the 2D thermal simulation models, and it was confirmed that the calibrated parameters
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were also valid for the 3D thermal simulation. The 2D single scan model takes less than
2 min on a desktop personal computer (PC) with an Intel Core i7 CPU (Intel Corporation,
Santa Clara, CA, USA), while the 3D model takes about 2 h. Thus, as well as Bayesian
optimization, the iterative simulations with the 2D single scan model could find the
optimal shape parameters within 2 h (50 iterative simulations). The 3D single laser scan
simulation with the calibrated parameters also showed an error of 4.73% compared to the
cross-sectional observations. Thus, the novel calibration strategy effectively reduces the
computational cost.

As confirmed in Section 5.3, the 2D and 3D single laser scan simulations showed
almost identical melted zone, thermal history, and cooling rate. This implies that the
heat input by the heat source model was mainly transferred in the X and Y directions
(perpendicular to the moving direction of the heat source) rather than in the Z direction in
the 3D model. Note that these simulation models were for the middle part of a sufficiently
long single laser scan. At the ends of single laser scan, the cooling rate in the 2D model will
be slower than in the 3D model and the experiment because the actual input heat transfers
to the surrounding substrate in three dimensions.

The parameters of the double ellipsoidal power density model were calibrated using
both the temperature measured by the thermography camera and the cross-sectional bead
shape observed by SEM. In this study, as a first step, the parameters c1 and c2 in Equation (2)
were assumed to be a function of a as in reference [16,23]. Some researchers reported the
calibration of the shape parameters by observing the top surface of the melting pool during
a laser scan using high-speed imaging [13]. Thus, in-situ observation of such melting
pools helps make thermal simulations more effective. However, studying the shape of
the top bead by FEM-based thermal analysis is not practical. The surface tension of the
melting pool makes the shape of the top bead semi-circular. However, since the current
FEM-based thermal analysis does not take such surface tension into account, the shape
of the top bead becomes unrealistic (see Figure 9). Thus, if the size of the melting pool
observed by high-speed imaging is used for calibration, the effects of surface tension must
be considered by using computational fluid dynamics (CFD).

Absorptivity and bead shape parameters depend on laser scan conditions. As de-
scribed in the Introduction section, the absorptivity is significantly dependent on the laser
power and scanning speed [20]. The authors also studied the shape of a single bead of
HX, which can be deep or shallow depending on the laser power and speed of the SLM
process [7]. Thus, parameters calibrated for the specific laser scan conditions may not be
useful for other conditions. One solution is to define the parameters as a function of laser
scan conditions and calibrate the coefficients of the function by experimental measurements
with various conditions. Suppose such a heat source model is developed as a function
of laser scan conditions. In that case, the thermal simulation applicable to any laser scan
conditions will be significantly useful for other simulations related to SLM processes such
as prediction of microstructure evolution and microcracking.

One might be concerned about the effects of shape parameters on the multiple laser
scan simulation for absorptivity calibration. In Section 5.1, the shape parameters a and
b were assumed to be 50 and 125 µm, respectively. When the same simulations with
some different values of shape parameters within the search area, the surface temperature
differed by only 10 ◦C at most in the time range for the calibration (from 0 to 0.5 s after
laser scanning). This value was sufficiently small compared to the temperature change
(more than 50 ◦C, see Figure 7e) when the absorptivity was varied by 0.1. Thus, the
two-step calibration strategy is reasonable if the first decimal place of absorptivity A is to
be determined.

Fundamentally, such a heat source model with some fitting parameters is necessary
because the current FEM-based thermal simulation does not directly model laser absorption
and reflection in the powder layer and the fluidity of the melting pool. This can be a
drawback compared with more advanced simulations such as ray-tracing simulation of
laser beams on powder particles and thermal analysis with CFD. However, FEM-based
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thermal simulations with such a simplified heat source model can use less computational
costs and resources. Again, the 3D FEM-based thermal simulation takes approximately 2 h
to complete a single bead simulation on the desktop PC. On the other hand, the CFD-based
thermal simulations of comparable scale take even longer, and need to be parallelized.
Thus, FEM-based thermal analysis helps to efficiently understand the large-scale thermal
behavior of multiple laser scans and multiple layers.

7. Conclusions

This study proposed a novel calibration strategy of the heat source model for FEM-
based thermal analysis of the SLM process. Empirical data from in-situ temperature
measurements by high-speed thermography and SEM observation of single bead cross
sections were used to calibrate the heat source model absorptivity and shape parameters.
The findings obtained in this study were as follows:

• Bayesian optimization allowed to efficiently find the optimal parameters with an error
of less than 4% within 50 iterations of the thermal simulations.

• The use of the 2D models for the parameter calibrations significantly reduced the cost
of iterative simulations.

• The 3D single laser scan simulation with the calibrated parameters showed almost the
same results of the 2D simulation in thermal history, melted zone, and cooling rate.

Thus, our novel calibration strategy for thermal analysis is feasible to precisely and
efficiently understand the thermal history of the actual SLM process.
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