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Adult stem cells have a great potential applicability in regenerative medicine and cell-based therapies. However, there are still many
unresolved issues concerning their biology, and the influence of the local microenvironment on properties of stem cells has been
increasingly recognized. Interleukin (IL-) 17, as a cytokine implicated in many physiological and pathological processes, should be
taken into consideration as a part of a regulatory network governing tissue-associated stem cells” fate. This review is focusing on
the published data on the effects of IL-17 on the properties and function of hematopoietic and mesenchymal stem cells and trying
to discuss that IL-17 achieves many of its roles by acting on adult stem cells.

1. Introduction

Adult stem cells are present in virtually all tissues of a
developed organism and are involved in tissue homeostasis
and regeneration. Due to their remarkable properties, adult
stem cells have a great potential applicability in regen-
erative medicine, as a support of hematopoiesis, and in
immunomodulation [1-3]. Some of the adult stem cells, as
hematopoietic stem cells (HSCs), are already in the clinical
use for decades [4], while others are still in preclinical and
clinical trials (https://www.clinicaltrials.gov/). Despite the
significant progress in understanding the nature, functions,
and mechanisms of action of adult stem cells, there are still
many ambiguities and unresolved issues necessary for their
effective and safe application [5, 6]. On the other hand, there
is increasing number of reports showing the role of local stem
cells in numerous diseases, such as inflammatory diseases and
cancer [7, 8]. It is now well established that inflammatory
milieu has major influence on stem cells [9]. Interleukin (IL-
) 17 with its roles in many physiological and pathological
processes, such as inflammation, immune response, and
regulation of hematopoiesis [10], is an appreciable candidate
for a major factor in guiding stem cells’ fate. There is now

considerable amount of data showing the effects of IL-
17 on proliferation and function of adult stem cells. The
purpose of this review is to analyze the published data,
focusing on the impacts of IL-17 on the properties and fate
of hematopoietic and mesenchymal stem cells, and to discuss
that IL-17 accomplishes many of its roles in homeostasis and
diseases by acting on stem cells.

2. Interleukin-17

IL-17 is a prototypic and the most extensively studied member
of the newest cytokine family comprising six members (IL-
17A-F). IL-17 is mainly produced not only by the new subclass
of helper T cells, Thl7, but also by other cells, such as
innate immune cells, CD8" T cells, B cells, and MSCs [11-
14]. A number of cytokines, including TGF-p, IL-1p, IL-6,
IL-21, and IL-23, enable and control Thl7 programming by
activation of RORyt and STATS3 transcription factors [15, 16].

IL-17 receptor family consists of five homologous type
I transmembrane protein receptors: IL-17RA to IL-17RE.
IL-17Rs, and IL-17RA in particular, as being considered a
common signaling subunit of IL-17R family, are ubiquitously
present and their expression is demonstrated in virtually
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all tested cells [17-19]. Upon IL-17A binding, heteromeric
complex of IL-17RA and IL-17RC is formed, triggering the
initiation of downstream signaling events. Activated IL-17RA
through a conserved SEF/IL-17R (SEFIR) domain interacts
with the adaptor molecule Actl to start several downstream
signaling processes. One of them engages TRAF6 and
involves three major downstream pathways: nuclear factor-
xB (NF-«B), mitogen-activated protein kinase (MAPK), and
CCAAT/enhancer-binding protein (C/EBP) pathways. Oth-
ers include IKKi-TRAF2-TRAF5-dependent cascade, PI3K,
and JAK-STAT pathways. Besides SEFIR, a second functional
domain, C/EBPS-activation domain (CBAD), exists on IL-
17RA C-terminal region [19-21].

IL-17 signaling induces the expression of proinflamma-
tory cytokines, chemokines, antimicrobial peptides, growth
factors, tissue remodeling enzymes, and other secondary
mediators in target cells [10]. IL-17 alone often induces weak
response, but it may synergize with other cytokines, like
TNF-«, to enhance and prolong proinflammatory responses
(17, 20-23].

The role of IL-17 and Thl7 pathway in numerous phys-
iological and pathological processes is being increasingly
recognized. IL-17 has its role in the homeostasis, particularly
in the regulation of bone metabolism and hematopoiesis, as
well as in the pathogenesis of numerous autoimmune and
inflammatory diseases [24-29].

3. Stem Cells

Stem cells are primitive, nonspecialized cells with the ability
to self-renew and to differentiate into one or more specialized
cell types [1, 2]. Owing to these key features, stem cells
have been envisaged as a promising tool for regenerative
and cell-based therapies. Stem cells are present during the
entire ontogenesis of an individual, starting from a totipotent
zygote, through pluripotent embryonic stem cells, and con-
tinuing all the way to the adulthood, progressively decreasing
their multilineage differentiation potential to multipotent,
oligopotent, and unipotent adult or somatic stem cells [3].

Although the concept of stem cells was introduced even in
the late 19th century [30], it was not until 1960s that James Till
and Ernest McCulloch described hematopoietic stem cells
in bone marrow and demonstrated the key characteristics
of stem cells, self-renewal and multilineage differentiation
potential [31]. The existence of nonhematopoietic, bone-
forming cells inside bone marrow was first reported in late
1960s and early 1970s by Friedenstein et al. [32, 33]. Later,
other researchers demonstrated the in vitro and in vivo
multilineage differentiation capacities of these cells which
they varyingly dubbed stromal stem cells or mesenchymal
stem cells (MSCs) [34-36].

A great burst of interest in stem cell research was made
after the isolation of stem cells from mouse embryo in
1981 [37] and much later from human blastocyst in 1998
[38]. However, due to ethical issues, along with numerous
technical difficulties in isolating, cultivating, and controlling
in vivo differentiation path of these embryonic stem cells,
adult stem cells came back into the focus of interest. The real
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breakthrough in stem cell research was made in 2006, when
Takahashi and Yamanaka induced pluripotency in somatic
cells by the transduction of four key genes [39]. This not
only brought about the new potential modalities of stem cell
exploitation, but also set a new groundwork for research in
embryology and cell biology.

3.1. Hematopoietic Stem Cells. Hematopoietic stem cell
(HSC) is the first and the most comprehensively studied
model of an adult stem cell [1, 40]. HSCs are multipotent
adult stem cells that give rise to all the hematopoietic lineages.
They are able to undergo self-renewing divisions for a lifetime
of an individual. A single HSC can reconstitute the entire
hematopoietic system of a lethally irradiated mouse [41]. By
further differentiation, HSCs give rise to more and more
specialized progenitors. At the same time, HSCs keep the
constant stem cell pool by asymmetric division, whereby
HSC produces one identical daughter stem cell and one that
follows differentiation path. In case of need (e.g., during
development or injury), HSCs can divide by symmetrical
division, to produce only identical HSCs, and thus replenish
stem cell pool [42]. HSCs reside in endosteal niche in bone
marrow where they receive informative cues by cell-to-cell
contacts, cell-matrix interactions, and soluble factors that are
necessary for their survival, self-renewal, differentiation, and
migration, such as SCF, Flt-3 ligand, M-CSE, G-CSF, GM-CSE,
IL-3, IL-6, IL-7, IL-8, IL-11, EPO, TPO, LIE, RANKL, SDF-
1, N-cadherin, and many others. They are under concerted
influence of environmental factors, like neighboring cells,
extracellular matrix, endocrine, paracrine, and neural signals,
as well as physical and metabolic stimuli [43, 44].

3.2. Mesenchymal Stem Cells. Mesenchymal stem/stromal
cells (MSCs) are multipotent stromal cells first discovered
in bone marrow as cells capable of forming hematopoi-
etic microenvironment after heterotopic transplantation into
nude mice [33]. Now, it is recognized that MSCs are present in
almost all tissues [45] and are responsible for the maintenance
of tissue homeostasis, regeneration, and repair. Beyond their
role in regular cell turnover in connective tissues and tissue
repair after injury, MSCs have a major role in the control
of tissue inflammation, as well as in the formation of HSC
niches and regulation of hematopoiesis [46-55]. In response
to certain factors, MSCs can be mobilized and recruited
to the site of injury, chronic inflammation, or tumor [56,
57]. For all these remarkable properties and since they
are easily accessible from diverse adult tissues, MSCs are
envisaged as a great tool for cell and gene therapy [50, 58].
However, notwithstanding the plethora of in vitro research
and data showing characteristics and function of MSCs, the
true nature and origin of MSCs in vivo is still a matter of
debate [5, 6, 59]. Numerous problems hinder MSC research,
such as their considerable heterogeneity and lack of specific
markers for prospective isolation, as well as changes in their
properties during in vitro cultivation [3, 59-62]. In order
to standardize criteria for the identification of MSCs, the
International Society for Cellular Therapy provided a set of
minimum criteria for defining human MSCs, which include
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plastic adherence, a set of positive and negative markers, and
three-lineage differentiation capacity [63].

4. Role of IL-17 in Hematopoiesis
and Hematopoietic Stem/Progenitor
Cells Regulation

IL-17 has significant role in hematopoiesis [27]. Its role in
granulopoiesis has been shown in some of the first reports
on this cytokine [64, 65]. IL-17 induced proliferation of
human bone marrow CD34" cells in vitro and their differ-
entiation into granulocytes, albeit only in the presence of
fibroblasts [64]. Also, IL-17 induced increase in the number
of committed hematopoietic precursors in the coculture of
CD34" cells and MSCs from human bone marrow [66]. Our
group showed increase in hematopoietic progenitors in total
mouse bone marrow cell cultures after treatment with IL-
17 [67]. In each case, the effects of IL-17 on hematopoietic
stem/progenitor cells seemed to be indirect, via secondarily
induced mediators, such as G-CSF, IL-6, and erythropoietin.
This stimulatory effect of IL-17 on hematopoiesis, especially
on myelopoiesis, has been supported by in vivo studies, and,
likewise, it has been dependent on hematopoietic cytokines,
G-CSF and IL-6, as well as on transmembrane form of stem
cell factor [65, 67-71]. The in vivo expression of IL-17 in an
experimental model of adenovirus-mediated gene transfer
of the murine IL-17 ¢cDNA induced a profound stimulation
of both bone marrow and splenic granulopoiesis and led
to expansion of myeloid hematopoietic stem and progenitor
cells and neutrophilia [65, 69]. Moreover, a routine complete
blood count analysis of transgenic mice overexpressing IL-
17 revealed an anemia-like phenotype, along with increase in
granulocyte number in peripheral blood, spleen, and bone
marrow [72]. In a different experimental approach, IL-17
recombinant protein injected in a normal mouse elicited a
cascade of biological changes, affecting primarily the cells
of granulocytic lineage, as well as the levels of secondary
mediators released, in both murine bone marrow and spleen
[67, 70, 71, 73]. On the other hand, IL-17RA knock-out
mice show normal baseline hematopoiesis, with peripheral
hematological parameters and clonogenic progenitor assay
scoring comparable to their normal littermate controls [74].
The role of IL-17 in hematopoiesis is largely dependent on
specific tissue microenvironment, since there is more pro-
found stimulation of both myeloid and erythroid progenitors
in spleen than in bone marrow [65, 71, 73]. The effect of
IL-17 is also dependent on the lineage and differentiation
status of the progenitors, as well as on the physiological
status of the organism. Namely, in healthy mouse bone mar-
row, IL-17 stimulates myeloid progenitors (colony-forming
unit-granulocytic/monocytic, CFU-GM) and early stage ery-
throid progenitors (burst-forming unit-erythroid, BFU-E)
but inhibits late stage erythroid progenitors (colony-forming
unit-erythroid, CFU-E) [67, 75, 76]. However, in case of
disturbed hematopoiesis, such as upon radiation or infection,
the response to this cytokine is significantly altered [67, 74,
76, 77], indicating that the action of IL-17 on hematopoiesis
is deeply reliant on the microenvironment and the induction

of other regulators, but also that it primarily acts in response
to a distress, rather than as a baseline homeostatic factor.

Another putative role of IL-17 in preserving the required
level of hematopoietic and immune system response to stress
signals during injury and inflammation is its potential to
affect mobilization of hematopoietic stem cells (Figure 1). In
the mouse model of IL-17-overexpression using adenovirus-
mediated gene transfer, IL-17 stimulated the recruitment of
both stem cells with short- and long-term reconstituting
capacity, and these cells successfully rescued lethally irradi-
ated mice [78]. Results from our experimental model demon-
strated that multiple application of recombinant mouse IL-
17 mobilized erythroid progenitors to peripheral blood and
suggested the possibility that it relocated core erythropoiesis
from bone marrow to spleen [73]. However, the exact role and
mechanisms of action of IL-17 in mobilization of hematopoi-
etic stem cells warrant further studies.

5. Role of IL-17 in Mesenchymal
Stromal/Stem Cells Regulation

It was suggested, even in the beginning of the study of
IL-17, that its mode of action is primarily by inducing
diverse soluble or membrane-bound factors, such as IL-
6, G-SCE, GM-CSE, SCE, NO, prostaglandins, chemokines,
and other inflammatory and growth factors in stromal and
other accessory cells, like macrophages and endothelial and
epithelial cells [10, 17, 18, 64, 79-82]. IL-17RA is expressed
at particularly high levels on stromal cells, including MSCs,
both in human and in mice [17, 83-85]. It is thus reasonable
to consider MSCs as a target of IL-17 action. Because of their
important role in tissue regeneration and homeostasis, as well
as their availability from numerous tissues, MSCs are envis-
aged as a promising tool for regenerative and cell therapy.
Still, there are numerous obscurities concerning their biology,
especially the influence of local microenvironment on their
differentiation and function. The roles of inflammatory cells
and cytokines in MSC-governed tissue regeneration, regula-
tion of hematopoiesis, and immunomodulation have already
been demonstrated [86-89]. However, the data regarding the
influence of IL-17 on MSCs proliferation, differentiation, and
function are relatively scarce and are only recently being
reported. IL-17 increased the frequency and the average size
of CFU-F (colony-forming units-fibroblast) derived from
murine and human bone marrow, as well as the proliferation
of murine and human bone marrow-derived MSCs, in a dose-
dependent manner [84, 85, 90]. In human MSCs, this effect
was dependent on the generation of reactive oxygen species
(ROS) by TRAF-6 and Actl-mediated activation of NADPH
oxidase 1 (Noxl) and subsequent activation of MEK-ERK
MAPK pathways [84]. In the mouse model, both p38 and
ERK MAPKSs were involved in IL-17-induced proliferation of
bone marrow-derived MSCs [85].

The data concerning the influence of IL-17 on differen-
tiation of MSCs are much more ambiguous and depend on
species and tissue of origin (Figure 2). Namely, in human
bone marrow-derived MSCs, IL-17 was shown to enhance
osteogenic differentiation [84, 91] and to inhibit adipocyte
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FIGURE 1: Effects of IL-17 on hematopoietic cells. In bone marrow, IL-17 stimulates granulopoiesis and downregulates erythropoiesis through
inhibition of late stage erythroid progenitors, CFU-E. At the same time, IL-17 stimulates mobilization of hematopoietic progenitors and mature
granulocytes into circulation. Through secondarily induced chemotactic factors, IL-17 stimulates recruitment of granulocytes into a site of
inflammation. It also stimulates erythropoiesis in spleen, by mobilizing erythroid progenitors from bone marrow to spleen and stimulating
splenic CFU-E differentiation. HSC: hematopoietic stem cell; HPC: hematopoietic progenitor cell; LTRSC: long-term repopulating stem cell;
STRSC: short-term repopulating stem cell; CMP: common myeloid progenitor; CFU-GM: colony-forming unit-granulocytic-monocytic;
CFU-G: colony-forming unit-granulocytic; BFU-E: burst-forming unit-erythroid; CFU-E: colony-forming unit-erythroid.

differentiation [92]. The latter was, at least partially, mediated ~ through the suppression of protein kinase A activity and
through induction of cyclooxygenase-2 expression and a  a consequent decrease in SOX9 phosphorylation, a major
consequential increase of antiadipogenic prostaglandin E,  chondrogenesis transcription factor [93]. In our experiments,
[92]. IL-17 also inhibited chondrogenesis of human MSCs using mouse bone marrow-derived MSCs, IL-17 did not affect
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their differentiation potential to osteoblasts or adipocytes
[85]. However, IL-17 suppressed osteogenic differentiation
and bone formation of mouse bone marrow-derived MSCs,
via IxB kinase and NFxB [94], and of rat osteoblast precursor
cells [95]. On the other hand, in mouse multipotent cell line,
C2C12, IL-17 led to their transdifferentiation into adipocytes
through C/EBP-f-mediated PPARy activation, a transcrip-
tion factor crucially involved in adipogenesis [96]. On the
same cell line, our group showed that IL-17, through ERK1,2
MAPK activation, switches the balance of differentiation of
these multipotent myoblast progenitors from myogenic to
osteogenic lineage [97]. Whether these differences are a con-
sequence of species- or tissue-specific properties of different
MSCs or a result of interplay of different microenvironmental
factors is not elucidated yet. Kim et al. showed different
IL-17 receptor subtype expression profile of rat calvarial
osteoblast progenitors (primarily IL-17RB, IL-17RD, and IL-
17RE) [95], compared to human bone marrow-derived MSCs
(primarily IL-17RA and IL-17RC) [84], which may imply
different affinity for IL-17A family member, as well as different
downstream signaling events. Furthermore, Huang et al. [90]
suggested that IL-17 for its in vivo effect on CFU-F expansion
requires additional cofactors, since it was only observed after
application of myeloablative dose of radiation. IL-17 is well
known for its cooperative action in combination with other
growth and inflammatory factors, which gave it the epithet
of “fine-tuning cytokine” [23]. Osta et al. demonstrated
synergistic interaction between IL-17 and TNF-« on bone
matrix formation by human MSCs [91]. The specific tissue
and organism requirements, like injury, inflammation, or
aging, drive different MSCs responses [9, 98, 99], and IL-17,
as part of the complex cytokine network, is proving to be one
of the key players governing these responses.

In addition to the role in differentiation of MSCs, IL-17
was also shown to be involved in migration and mobilization
of MSCs. Huang et al. reported that IL-17 stimulates migra-
tion and motility of human bone marrow-derived MSCs
[84]. Moreover, our group demonstrated that IL-17 induces
urokinase type-plasminogen activator (uPA) in peripheral
blood MSCs, increasing their in vitro motility, endothelial
adhesion, and transendothelial migration, indicating a pos-
sible role of IL-17 in MSCs mobilization and recruitment to
damaged tissues [100]. As a proteolytic enzyme and activator
of plasmin, and by activating intracellular signaling events,
uPA is implicated in migration, adhesion, proliferation, and
differentiation of various cell types [101, 102]. Conversely,
besides inhibiting myogenic and promoting osteogenic dif-
ferentiation of C2CI2 cell line, IL-17 also inhibited their
migration by inhibiting uPA expression through p38 MAPK
activation [103].

The immunomodulatory function of MSCs is very
prospective for therapeutic exploitation. However, there are
still many ambiguities, and various factors influence their
immunoregulatory potential. Numerous studies, both in vitro
and in vivo, imply notable immunosuppressive properties
of MSCs and effects on almost all immune cells, including
T cells, B cells, NK cells, NKT cells, regulatory T cells,
dendritic cells, and macrophages [54, 104, 105]. On the

other hand, there are reports of antigen-presenting and
immunostimulatory role of MSCs [106-112]. It is now widely
accepted that MSCs require a “licensing” step, attained in
an inflammatory setting, in order to gain their immuno-
competence and exert their immunosuppressive effect [54,
88]. Even though there are numerous factors involved in
directing immunomodulatory function of MSCs, there are
not many reports of the role of IL-17 in this context. Our
experiments on mouse bone marrow MSCs did not show
any influence of IL-17 on immunomodulatory potential of
these cells (unpublished results). Our preliminary results on
human peripheral blood MSCs and periodontal ligament-
derived MSCs also did not provide any conclusive data on this
stand. We can only speculate that the presence of IL-17 alone
is not a sufficient signal to modify MSCs immunomodulatory
potential. Indeed, a recent report showed that IL-17 enhances
immunosuppressive effects of IFN-y and TNF-« on mouse
bone marrow-derived MSCs, both in vitro and in vivo,
in an iNOS-dependent manner [113]. Conversely, a study
using synovium-derived MSCs from rheumatoid arthritis
patients showed that IL-17, as well as TNF-q, alone and in
combination, stimulated proliferation of synovial T cells in
the presence of these mesenchymal cells [114]. Further studies
are necessary to determine the exact role of IL-17 in MSC-
mediated immunomodulation.

6. Concluding Remarks

The role of inflammatory cytokines in regulation of
hematopoiesis, both steady state and stress-induced, has
been well documented [115, 116], and IL-17 is recognized
as a pivotal cytokine linking immune and hematopoietic
system [27]. It can enable the switch in hematopoietic cell
production from the erythroid to the granulocyte lineage
by stimulation of proliferative granulocytes and inhibition
of CFU-E in bone marrow when there is a demand for
enhanced defenses, during inflammation or infection. At the
same time, its stimulatory effect on erythroid progenitors
in mouse spleen could be sufficient to maintain efficient
erythropoiesis.

Immune cells, through the production of cytokines and
growth factors, influence MSCs mobilization, recruitment,
and regenerative and immunomodulatory capacity [9, 54,
89]. It is established, for both exogenously applied and
endogenous circulating MSCs, that these cells preferentially
engraft at the site of inflammation in vivo [54, 56]. Our
in vitro data suggest that IL-17 can be a recruitment signal
for peripheral blood MSCs to migrate and engraft into
inflamed tissue in an uPA-activity-dependent way [100]. uPA
is known for its role in migration and mobilization of human
MSCs from bone marrow, contributing to migration into
wounded tissue [117], as well as in transendothelial migration
of neutrophils [118]. IL-17, in association with TNF-«, has
also been shown to affect activation of endothelial cells and
to increase neutrophil transmigration and the expression
of adhesion molecules and chemokines in human vascular
endothelial cells (HUVEC), suggesting that IL-17 facilitates
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FIGURE 2: Effects of IL-17 on the differentiation of MSCs. IL-17 stimulates or inhibits MSCs differentiation into osteocytes, adipocytes,
chondrocytes, and myocytes, depending on the host, origin of MSCs, and microenvironmental factors.

transendothelial migration through induction of endothelial
inflammation, as well [119, 120].

Abnormal IL-17 expression and presence of Th17 cells in
inflamed tissues have been a hallmark of many inflammatory
and autoimmune diseases, including rheumatoid arthritis,
inflammatory myopathies, inflammatory bowel disease, mul-
tiple sclerosis, and psoriasis [26, 28, 29]. Elucidation of its
role in modulation of MSCs function could provide a new
perspective on pathogenic mechanisms that underlie these
diseases and possibly propose some new therapeutic targets.
MSCs also have their role in inflammatory diseases. Local
inflammatory microenvironment in rheumatoid arthritis,
for example, affects MSCs regenerative and immunomod-
ulatory properties, as well as their survival characteristics
[121]. Although in vitro data have shown that synovium-
derived MSCs isolated from rheumatoid arthritis patients
display immunosuppressive properties comparable to the
same MSCs isolated from healthy donors, upon treatment
with IL-17 and/or TNF-« these cells increased proliferation
of PHA-stimulated T cells in coculture [114]. This report
could explain some of discrepancies observed between in
vitro and in vivo effects of murine mesenchymal stem
cells on T cell proliferation and collagen-induced arthritis
[122]. Effects of inflammatory factors, such as IFN-y and
TNF-«, in rheumatoid arthritis have also been proven to
negatively influence the osteogenic differentiation of MSCs

and to induce their apoptosis [123]. The impact of IL-17 on
differentiation potential of MSCs in inflammatory diseases
is not so clear. Huang et al. demonstrated that IL-17 not
only stimulated osteogenic differentiation of human bone
marrow-derived MSCs, but also induced expression of M-
CSF and RANKIL, crucial factors for osteoclast differentia-
tion and survival [84]. However, it is not known how IL-
17 would influence MSCs osteogenic differentiation in the
setting of rheumatoid inflammatory milieu. Nonetheless, the
pathogenic role of IL-17 in rheumatoid arthritis is clearly
established, promoting both inflammation and bone destruc-
tion [28,124]. On the other hand, in C2C12 myoblast cell line,
IL-17 inhibited their myogenic differentiation, migration, and
myotube formation, via inhibition of uPA expression [97,
103], indicating a rationale for the proposed role of this
cytokine in pathogenesis of inflammatory myopathies [29,
125].

Conversely, MSCs reduce the capacity of Thl and Thl7
cells to produce IFN-y and IL-17, respectively, and inhibit
Thl17 cell differentiation and function, inducing regulatory T
cell phenotype [126, 127]. We can speculate that increased
levels of IL-17 in inflamed tissues may act as a tropic signal for
MSCs, as shown for peripheral blood MSCs [100]. These cells
may in turn regulate IL-17 production in a negative feedback
to control excessive inflammation. Liu et al. hypothesized
that MSC-based tissue regeneration could be improved by
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modulating recipient T cell response [123]. They systemically
infused regulatory T cells and markedly improved MSC-
based bone regeneration and repair of calvarial defect in
mice. Alternatively, pharmacological inhibition of IFN-y
and TNF-«a by local administration of aspirin produced
similar results. This kind of intervention with small molecule
inhibitors provides a great therapeutic possibility for treating
inflammation-induced tissue injuries by reducing inflam-
mation on one side and enhancing reparative potential of
MSCs on the other. Similarly, Chang et al. presented potential
for IKKVI, a small molecule inhibitor of IxB kinase, in
regeneration of craniofacial bone defect in mice [94].

However, prospective therapeutic approach necessitates
additional studies to further elucidate the exact role of IL-17
as a part of an intricate network of regulators governing stem
cells fate.
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