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Abstract
The impact of variation in mating system on genetic diversity is a well-debated topic in evo-

lutionary biology. The diploid sexual race of Cyrtomium falcatum (Japanese holly fern)

shows mating system variation, i.e., it displays two different types of sexual expression

(gametangia formation) in gametophytes: mixed (M) type and separate (S) type. We exam-

ined whether there is variation in the selfing rate among populations of this species, and

evaluated the relationship between mating system, genetic diversity and effective popula-

tion size using microsatellites. In this study, we developed eight new microsatellite markers

and evaluated genetic diversity and structure of seven populations (four M-type and three

S-type). Past effective population sizes (Ne) were inferred using Approximate Bayesian

computation (ABC). The values of fixation index (FIS), allelic richness (AR) and gene diver-

sity (h) differed significantly between the M-type (FIS: 0.626, AR: 1.999, h: 0.152) and the S-

type (FIS: 0.208, AR: 2.718, h: 0.367) populations (when admixed individuals were removed

from two populations). Although evidence of past bottleneck events was detected in all pop-

ulations by ABC, the current Ne of the M-type populations was about a third of that of the S-

type populations. These results suggest that the M-type populations have experienced

more frequent bottlenecks, which could be related to their higher colonization ability via

gametophytic selfing. Although high population differentiation among populations was

detected (FST = 0.581, F’ST = 0.739), there was no clear genetic differentiation between the

M- and S-types. Instead, significant isolation by distance was detected among all popula-

tions. These results suggest that mating system variation in this species is generated by

the selection for single spore colonization during local extinction and recolonization events

and there is no genetic structure due to mating system.
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Introduction

The diversity of mating and sexual systems in land plants is of great interest to evolutionary
biologists. For seed plants, the presence of both male and female reproductive organs within a
single individual (i.e. monoecy) is a common and ancestral state [1]. Thus, seed plants are
potentially faced with a strategic decision of whether to reproduce through outcrossing, selfing,
or mixed mating, which is a mixture of outcrossing and selfing [2]. In the short term, selfing is
favored due to transmission advantage [3] and reproductive assurance [4,5]. However the
progeny derived from selfingmay suffer inbreeding depression [6]. The relative balance
between these advantages and disadvantages strongly influencesmating system evolution. In
this respect, the correlation between the evolution of selfing and severe genetic drift events
such as bottlenecks is important because both the transmission advantage [3] and reproductive
assurance [4,5] theories predict their co-occurrence.The former theory predicts that popula-
tion bottleneck events that result in the purging of inbreeding depression would trigger the evo-
lution of selfing [7], while in the latter theory, selfing would be favored under limited mating
opportunities, which are expected in colonization processes. Thus, if populations display mat-
ing system variation, reduction of effective population size is expected, due to the co-occur-
rence of selfing and bottlenecks [8]. However, this scenario has not been well examined in
either gymnospermor pteridophyte species. The mating systems of homosporous pterido-
phytes are of interest because they are unique among vascular plants; their free-living haploid
gametophytes can bear both male and female gametangia (antheridia and archegonia) and they
are capable of three types of mating systems: gametophytic selfing (i.e. syngamy of gametes
derived from the same gametophyte; this extreme form of inbreeding is not possible in hetero-
sporous plants), sporophytic selfing (i.e. syngamy of gametes from two gametophytes that
developed from separate spores from the same parent sporophyte; this is analogous to selfing
in seed plants), and outcrossing (i.e. syngamy of gametes from two gametophytes derived from
separate sporophytes) [9,10]. In order to deepen our understanding of the evolution of mating
systems in plants, it is important to examine the correlation betweenmating system and genetic
diversity in homosporous pteridophytes, which are uniquely capable of extreme inbreeding via
gametophytic selfing.

In this study, we focused on Japanese holly fern, Cyrtomium falcatum (L.f.) C.Presl
(Dryopteridaceae), to evaluate the relationship among sexual expression of gametophytes,
mating system and genetic diversity. Matsumoto (2003) [11] divided the sexual diploid
cytotype of Cyrtomium falcatum in Japan into northern and southern types. The northern
type is distinguished from the southern type by smaller blades, fewer pairs of pinnae, and
grayish indusia without a blackish brown center [11]. The northern type grows on coastal
rocks or cliffs and is distributed discontinuously from the southern part of Hokkaido Island
to Shikoku Island [11], while the southern type is distributed across the Okinawa Islands,
Kyusyu Island and Ogasawara Islands (Fig 1). Matsumoto (2003) [11] observed variation in
the sexual expression of the northern type of C. falcatum. Sporophytes called mixed type
(M-type) simultaneously produce gametophytes with both antheridia (male gametangia)
and archegonia (female gametangia) at frequencies of 90% or greater after three months in
cultivation. In contrast, sporophytes of the separate type (S-type) produce these bisexual
gametophytes at frequencies of 10% or less. This sexual expression is equivalent to dichog-
amy, in which an individual temporally staggers the development of gametangia, because
the gametophytes produce antheridia in the early stages of development and then produce
archegonia after releasing sperm. Sporophytes that produce intermediate frequencies
(10%< frequency< 90%) of gametophytes that produce antheridia and archegonia simul-
taneously are considered to be the intermediate type (I-type). Matsumoto (2003) [11]
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confirmed that all southern type individuals were the S-type. Traditionally, the S-type of
gametangia formation on gametophytes (female at maturity) has been considered a mor-
phological adaptation to promote outcrossing and the M-type (simultaneous hermaphro-
dite at maturity) enables gametophytic selfing [9,12]. In support of this hypothesis,
gametophytes of the M-type sporophyte can produce sporophytes at very high rates (84%–
100%) in isolated cultures, whereas the S-type sporophytes show a low rate of sporophyte
formation (5%–35%) [11]. Ranker and Houston (2002) [13] compared the sexual expres-
sion of natural gametophytes with that of cultured gametophytes for the Hawaiian fern
Sadleria, and suggested that the occurrence of simultaneously hermaphroditic (considered
to be equivalent to the M-type) and unisexual gametophytes (S-type) in the laboratory
would also be a good predictor of their occurrence in nature. Therefore, the S- and M-types
observed in C. falcatum could be considered to reflect mating system variation in nature.
Understanding this morphological variation is important because it helps clarify the role of
mating systems in shaping genetic diversity of populations and may provide clues to the
causes of mating system evolution. In the present study, we developed eight new microsat-
ellite markers to evaluate genetic variation within and among populations of the northern
type of C. falcatum. The specific aims of the present study were to: 1) test whether the wild
populations of M-type individuals show higher selfing rates than those of the S-type indi-
viduals, 2) test correlations between high selfing rates, low genetic diversity and reduction
of effective population size, if the selfing rate varies among populations, 3) estimate the past
and current effective population size, and 4) test whether the M-type and the S-type popu-
lations are genetically differentiated.

Fig 1. Distribution of northern and southern types of diploid sexual Cyrtomiun falcatum in Japan based on Matsumoto (2003) [11], and sampling

locations of 7 populations examined in this study. Dashed line is the boundary of the northern and southern type’s distributional range. This map was

drawn by GeoMapApp (http://www.geomapapp.org/). Locations of the M-type (black circle), the I-type (gray circle) and the S-type (open circle) sporophyte

individuals identified by Matsumoto (2003) [11] are shown.

doi:10.1371/journal.pone.0163683.g001
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Materials and Methods

Populations and sampling

The gametangia formation types, M-type or S-type, of the sevenC. falcatum populations we
examined are as determined by Matsumoto (2003) [11]. Briefly, Matsumoto (2003) [11] sowed
spores on agar medium, and then transplanted each of the obtained gametophytes separately
(e.g. one gametophyte in one separate well) onto vermiculitemedium in the laboratory. At
three months after spore sowing, forty gametophytes per sporophyte were examined to evalu-
ate gametangia formation types [11]. Because each gametophyte was cultivated in isolation,
variance in sexual expression by density [14] could be ignored. In Matsumoto’s (2003) [11]
experiment, 33 sporophyte individuals of the northern type of diploid C. falcatum from 20
localities (Fig 1) were examined.

For this study, we collected 233 sporophyte samples from seven populations (21–42 individ-
uals per population) in five localities of sexual diploid populations of C. falcatum that were pre-
viously examined by Matsumoto (2003) [11]. The seven populations and their localities were
as follows: ESAN 1 (41.8112N, 141.1844E) and ESAN 2 (41.8115N, 141.1844E) from Esan-mis-
aki, Hokkaido Prefecture; SADO (38.0929N, 138.2498E) from Sado Island, Niigata Prefecture;
IZU 1 (34.8824N, 139.1323E) and IZU 2 (34.8821N, 139.1319E) from Jogasaki, Shizuoka Pre-
fecture; KANT (33.6004N, 135.6004E) from Kantori-misaki, Wakayama Prefecture; and
SAND (33.6655N, 135.3355E) from Sandan-peki,Wakayama Prefecture (Fig 1). Three popula-
tions (IZU 1, IZU 2, SADO)were selected from the localities where the S-types have been
observed, and four populations (ESAN 1, ESAN 2, SAND, KANT) were collected from the
localities where M-types have been observed [11].

Voucher specimens of the samples (ri010001–ri010233) were deposited in the Herbarium
of the National Museum of Nature and Science (TNS), Tsukuba, Ibaraki, Japan. For sampling
in Esan Prefectural Natural Park, we obtained permission from the Hokkaido Government
Biodiversity Division.

DNA extraction and microsatellite marker development

Total DNA was extracted from silica-dried leaves using the HEPES/CTAB method [15]. The
DNA samples were used for microsatellite marker development and further genotyping.We
developedmicrosatellite markers using two different methods; one was an improved technique
for isolating co-dominant compoundmicrosatellite markers [16] and the other was a next-gen-
eration sequencing (NGS) method [17].

Firstly, following the method of Lian et al. (2006) [16] genomic DNA of a sample from
IZU1 was digested with six blunt-end cutters (HaeIII, PvuII,AluI, SspI, EcoRI, and ScaI) and
ligated with a specific blunt adaptor [18] using a T4 DNA Ligation kit (Nippon Gene, Tokyo,
Japan). The digested and ligated fragments were amplified using a compound SSR primer
(AC)5(AG)8 and an adaptor primer AP2 (50-CTATAGGGCACGCGTGGT- 30) [16]. The PCR
products were cloned using the TOPO-TA Cloning Kit (Invitrogen, Carlsbad, USA). Plasmid
DNAs were amplified from the colonies with a TemliPhi DNA Amplification Kit (GE Health-
care Bio-Sciences, Little Chalfont, UK). Sequence reactions were prepared with T3 and T7
primers (Invitrogen) using the BigDye Terminator v3.1 Cycle SequencingKit (Applied Biosys-
tems, Tokyo, Japan). The reactionmixture was analyzed on an ABI 3500 genetic analyzer
(Applied Biosystems). A total of 576 different fragments with a compoundmicrosatellite motif
at one end were obtained. From 86 different sequences, specific primers were designed and
selected to have 200 to 400bp product length using PRIMER3 software [19]. A PIG1-tail (5’-
GTTTCTT-3’) was added to specific forward primers to reduce stuttering [20].
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Secondly, we developedmicrosatellite markers using an NGS method with a Roche 454
Genome Sequencer Junior (Roche/454 Life Sciences, Branford, CT, USA). Genomic DNA was
isolated from a pinna of the southern type of diploid Cyrtomium falcatum, collected from the
Tsukuba Botanical Gardens (originally collected fromWakayama Pref., Japan) and fragmented
by nebulization. A DNA library was constructed using the GS FLX Titanium Rapid Library
Preparation Kit (Roche/454 Life Sciences). The DNA library was purified using the MinElute
PCR PurificationKit (Qiagen, Tokyo, Japan) and its quality was checked using the Agilent
High Sensitivity DNA kit (Agilent Technologies, Palo Alto, CA, USA). Emulsion PCR was car-
ried out using the GS Junior Titanium emPCR Lib-L Kit (Roche/454 Life Sciences), and pyrose-
quencing was conducted on a Roche 454 Genome Sequencer Junior instrument at the Tsukuba
Botanical Gardens, with the GS Junior Titanium SequencingKit (Roche/454 Life Sciences).
Contigs were assembled to over 500bp with GS Newbler De Novo Assembler (Roche/454 Life
Sciences), implementing the default parameters and heterozygotic mode. The programQDD
v.2.1 [21] was used with default settings to detect and select microsatellite sequences. Twelve
hundred contigs were used for searching microsatellite candidates. We designed 72 primer
pairs based on the penalty scores calculatedwith Primer3 in the QDD pipeline. As described
by Schuelke (2000) [22], the U19 sequence (50-GGTTTTCCCAGTCACGACG-30) was added
to the 50 end of specific forward primer sequences. A PIG2 tail (5’-GTTT-3’) was added to spe-
cific reverse primer sequences [20].

Fragment analysis of microsatellite markers

We tested all of the candidate markers (86 by the method of Lian et al. (2006) [16] and 72 by
the NGS method) for good PCR amplification, reproducibility, and the level of polymorphism
over all samples, using a subset of samples: two individuals from each of the seven populations.
Finally, eight primer pairs were selected and used to further genotype all samples (S1 Table).
PCR amplifications (simplex PCR) were performed using the Multiplex PCR Kit (Qiagen) in a
downscaled final volume of 5 μl according to the manufacturer's protocol. The forward and
reverse primers were adjusted to 0.2 μM in final concentration and 20 ng of DNA was added to
each reaction. For two primer sets, CFL-079 and CFL–C32, PCRs were conducted using each
specific primer and a dye-labeled (AC)6(AG)10 primer (ABI PRISM1, Applied Biosystems)
under the following conditions: initial denaturation for 15 min at 95°C, followed by 30 cycles at
95°C for 30 s, 55°C for 90 s, 72°C for 1 min, and final extension at 60°C for 30 min. The PCR
reactionmixture for the other six primer sets contained 0.2 μM reverse primer, 0.04 μM for-
ward primer, and 0.2 μM of the fluorescent dye-labeled U19 primer (ABI PRISM1, Applied
Biosystems), which acted as the second forward primer for the cycles following the touchdown
stage. Touchdown PCR was performedwith initial denaturation for 15 min at 95°C, followed
by 25 cycles at 95°C for 30 s, 63–53°C (with a 0.5°C decrease for every subsequent cycle) for 90
s, and 72°C for 1 min, followed by 20 cycles of 95°C for 30 s, 53°C for 90 s, and 72°C for 1 min,
and final extension at 60°C for 30 min. The PCR products were analyzed on an ABI 3500
Genetic Analyzer (Applied Biosystems) with the internal size standard, GeneScan 600 LIZ
(Applied Biosystems), and fragment sizes were determinedwith GeneMapper 3.1 (Applied
Biosystems). The original sequences for the markers were deposited in GenBank under the
accession numbers LC055975—LC055982 (S1 Table).

Data analyses

Inbreeding coefficient and genetic diversity within populations. Gene diversity (h; [23])
and allelic richness (AR; [24]) were calculated for each population using FSTAT ver. 2.9.3.2
[25]. FSTAT was also used to test genotypic disequilibriumamong loci for each population.
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We used INEST2 [26], with the ‘nfb’ model, to estimate FIS values within populations, taking
into account the effect of underestimating heterozygosity in the presence of null alleles. As
mentioned previously, two types of self-fertilizationmay occur in homosporous ferns: gameto-
phytic (SI) and sporophytic (S) selfing.Hedrick (1987) [27] derived a formula showing the rela-
tionship among FIS and the rates of two types of selfing (SI and S).

FIS ¼
Sþ 2SI
2 � S

In the present study, we use FIS values as an indicator of the relative contributions of selfing
sensu-lato (both S and SI) to outcrossing [28]. To assess whether population genetic parameters
differ betweenM- and S-type populations, inbreeding coefficients (FIS), gene diversity (h), alle-
lic richness (AR), relatedness [29], and FST [30] values were calculated and compared, treating
M- and S-types as two groups. Differences in these values between the two types were tested
for significance using a randomization test in FSTAT. We employed one-sided P-values to test
whether the value in one group is significantly larger than the other. Our STRUCTURE analy-
sis (see below) indicated that cluster 6 at K = 6 was admixed in both SAND and SADOpopula-
tions, although these two populations are located far apart from each other (Fig 1, see Results
and Discussion for details). This cluster 6 was further divided into two clusters in K = 7 corre-
sponding to each of the two populations. As we found that these admixed clusters affected the
evaluation of genetic diversity in these two populations, we also analyzed genetic diversity in
the two populations after removing individuals which had ancestry values of greater than 50%
to cluster 6 in K = 6.
Genetic differentiation and structure among populations. Genetic differentiation

among populations was evaluated by calculating the overall and pairwiseFST [30] values and
their respective confidence intervals (95%) were determined on the basis of 1000 bootstrapping
replicates using FSTAT. The standardized values of FST and F’ST [31] were also calculated
using GenAlEx 6.5 [32]. Patterns of isolation by distance (IBD; [33]) were evaluated, using
GenAlEx [32], according to the method describedby Rousset (1997) [34]; a Mantel test (with
999 random permutations) between the matrices obtained for pairwise population differentia-
tion in terms of FST /(1—FST) and the natural logarithms of direct minimum geographic dis-
tance among populations. Genetic structure was also investigated with the model-based
clustering algorithm implemented in the software STRUCTURE v. 2.3.3 [35,36]. A number of
clusters (K) varying from 1 to 15, were evaluated under the correlated allele frequenciesmodel
by running 100,000 burn-inMarkov Chain Monte Carlo (MCMC) repetitions and 1,000,000
subsequent repetitions based on the LOCPRIORmodel [36]. The probabilities of each K were
averaged over 10 runs.We employed the CLUMPAK server [37] to evaluate multimodality
[38] among runs at each K. The optimum K value was determined based on ΔK [39], evaluating
the probability of the data (Ln P(D)) for each K value using STRUCTURE HARVESTER [40].
Bar charts representing the proportion of cluster membership in each individual were obtained
using CLUMPAK. The genetic relationships between the clusters were evaluated based on
genetic distance calculated in STRUCTURE and a neighbor-joining tree of clusters was gener-
ated using Populations 1.2.23 [41].
Inference of past population size change and effective population size. The software

DIYABC v2.0 [42,43] was used to infer past population size changes and the effective popula-
tion size of Cyrtomium falcatum based on the Approximate Bayesian Computation (ABC)
approach. DIYABC provides flexibility for the mutation models of microsatellite loci in coales-
cent simulations, allowing both the generalized stepwise mutation model (GSM; [44]) and the
single nucleotide indel model (SNI). As our main purposewas to test whether the effective pop-
ulation size and demographic history among M- and S-type populations were different due to
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their different forms of gametangia formation, three simple scenarios were examined in each
population (S1 Fig):

Scenario 1. Bottleneckmodel: the ancestral effective population size (Na) was changed at t1
to the modern effective population size (N1) and N1 was set to be smaller than Na.

Scenario 2. Constant model: the ancestral effective population size (Nb) and the modern one
(N1) were set to be equal, assuming the effective population size has not changed.

Scenario 3. Expansion model: the ancestral effective population size (Nc) was changed at t1
to the modern effective population size (N1) and N1 was set to be larger than Nc.

In these scenarios, t1 represents time scale measured by generation time.We employed the
default values of the priors for each parameter in DIYABC. The mean values for expected het-
erozygosity (HE), number of alleles (A), allele size variance across loci and M index across loci
[45,46] were used as summary statistics. A million simulations were run for each scenario.
After all the simulations had been run, the most-likely scenario was determined by comparing
the posterior probabilities using the logistic regression method. The goodness of fit of the sce-
nario was assessed by the option ‘‘model checking” with principal component analysis (PCA)
in DIYABC, which measures the discrepancy between the model and real data. To translate the
inferred number of generations for t1 to time scale by year, we assumed a generation time of 3
years, as Matsumoto (2003) [11] showed that the northern type of C. falcatum produces spores
at 1 year in cultivation tests.

Results

Characteristics of the eight microsatellite loci

Eight newmicrosatellite markers were developed in this study (S1 Table). The number of
detected alleles ranged from 2 (locus CFL-B16) to 14 (locus CFL-B-02 and CFL-079) and a
total of 64 alleles were detected across all 8 loci (S2 Table). The null allele frequencies estimated
by INEST2 (S3 Table) were relatively high (over 0.10) in 9 out of 56 (8 loci × 7 populations)
combinations, but significant in only one case: CFL-B12 locus in SADO (0.246; 95% CI:
0.0977–0.400). No significant deviations from genotypic equilibriumwere detected once puta-
tive admixed individuals in SADOwere excluded.

Mating system and genetic diversity

All of the populations, except for SADO, showed significantly positive inbreeding coefficient
(FIS) values, ranging from 0.220 to 0.794 over all loci (Table 1). The average FIS value of M-type
populations (0.626) was significantly higher than S-type (0.208, P< 0.05; Table 2). The FIS val-
ues estimated using INEST2 (S4 Table) did not largely differ from those of FSTAT, suggesting
that the presence of null alleles had little influence on the overall results. The average allelic
richness (AR) of the M-type populations (1.999) was significantly lower than that of the S-type
populations (2.718, P< 0.05; Table 2). Similarly, the average value of gene diversity (h) of the
M-type populations (0.152) was significantly lower than that of the S-type populations (0.367,
P< 0.05; Table 2). When admixed individuals were included in these analyses, different trends
were not detected (Table 2).

Population genetic structure

The overall FST and F’ST values were 0.581 and 0.739, respectively, indicating a high level of
genetic differentiation among populations. This pattern was not changed when admixed indi-
viduals were removed from the data (FST = 0.521, F’ST = 0.699). The average of the pairwiseFST
values among the M-type populations was higher than that among the S-type populations, and
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the difference was nearly significant (P = 0.067). Significant IBD was detected among the 7
populations, both with (R2 = 0.3447; P< 0.05) and without (R2 = 0.3435; P< 0.05) the
admixed individuals included (Fig 2). In the STRUCTURE analysis, the mean probability of
the data (LnP(D)) increased steadily up to K = 7 (S2 Fig) and ΔK suggestedK = 7 as optimal
(S2 Fig). At K = 2, ESAN 1 and 2 were grouped into cluster 1 and the remaining populations
were assigned to cluster 2 (Fig 3). Thus, the clustering at K = 2 did not correspond to the M-
and S-types. At K = 3, twoM-type populations (KANT and SAND) inWakayama Prefecture
and one S-type population (SADO)were separated from IZU1 and IZU2. At K = 4, KANT was
differentiated. At K = 5 and greater, five clusters corresponding to the five main sampling local-
ities (Fig 1) were observed.At K = 6, SADO and SAND populations were shown to contain a
considerable number of admixed individuals (with cluster 6). At K = 7, cluster 6 was further
divided into two clusters and cluster 7 corresponded to the admixed cluster in SAND. The NJ
tree for the seven clusters revealed two groups. In one group, cluster 1 (ESAN 1 and 2), 2 (IZU
1 and 2), 4 (KANT) and 5 (major cluster in SAND) were grouped together, while cluster 3 and
6 in SADO and cluster 7 for the admixed cluster in SANDwere in the other group. The F val-
ues of each cluster (analogous to the FST values between each cluster and the assumed ancestral
population) showed that clusters corresponding to M-type populations had larger values
(0.627–0.751) than S-type populations (0.474–0.508, Fig 3).

Table 1. Genetic diversity indices and inbreeding coefficient values for seven populations of the northern type of diploid Cyrtomium falcatum.

M-type populations S-type populations

ESAN1 ESAN2 SAND KANT IZU1 IZU2 SADO

NA 2.130 2.125 2.500 (3.750) 2.250 3.750 2.625 3.000 (4.125)

AR 1.700 1.847 2.380 (3.626) 2.074 2.900 2.390 2.863 (3.776)

h 0.076 0.158 0.227 (0.374) 0.217 0.378 0.326 0.436 (0.562)

FIS 0.501 0.671 0.794 (0.602) 0.560 0.340 0.220 -0.100 (0.157)

N1 169 210 299 328 846 465 715

NA, mean number of alleles; AR, allelic richness; h, gene diversity; FIS, multilocus estimate of inbreeding coefficient; N1, current effective population size

estimated by DIYABC. Bold type indicates significant FIS values (p < 0.00089, simple Bonferroni correction for 5% level). Genetic diversity indices and

inbreeding coefficient values in parentheses are those calculated for all samples including the admixed individuals revealed by the STRUCTURE analysis.

doi:10.1371/journal.pone.0163683.t001

Table 2. Group comparison of population genetic parameters between the M- and the S-type populations of the northern type of diploid Cyrto-

mium falcatum.

AR h FIS Relatedness FST

M-type 1.999 0.152 0.626 0.708 0.663

(all samples) (2.378) (0.177) (0.587) (0.672) (0.619)

S-type 2.718 0.367 0.208 0.490 0.367

(all samples) (3.110) (0.410) (0.241) (0.440) (0.328)

P-value (M>S) 0.989 1.000 0.029* 0.064 0.067

(all samples) (0.890) (0.977) (0.002*) (0.560) (0.270)

P-value (S>M) 0.016* 0.009* 0.981 0.963 0.967

(all samples) (0.168) (0.053) (1.000) (0.954) (1.000)

AR, allelic richness; h, gene diversity; FIS, multilocus estimate of inbreeding coefficient; FST, pairwise FST value among populations

*, P-values less than 0.05. Population genetic parameters calculated using all samples including the admixed individuals revealed by the STRUCTURE

analysis are shown in parentheses.

doi:10.1371/journal.pone.0163683.t002
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Inference of demographic history of each population

In DIYABC, the highest posterior probability was for scenario 1 (bottleneckmodel), and its
95% confidence interval (CI) did not overlap with those of the other two scenarios in each of
the 7 populations, regardless of gametangia formation type (S5 Table). For scenario 1, the
median values of the effectivemodern population size of N1 were well estimated in each popu-
lation. The S-type populations had significantly larger N1 values (465–846) than the M-type
ones (169–328; t-test, P< 0.05). However, the posterior distribution pattern suggested that
other parameters were poorly estimated (S3 Fig and S6 Table), with the exception of the timing
of the population size change event (t1) in the SADOpopulation. In the SADOpopulation, the
median value of t1 was 2,940 generations ago (95% CI, 256–9,390), corresponding to 8,820
years ago (95% CI, 768–28,170). In all populations, all of the summary statistics showed no sig-
nificant differences between the observed and simulated data, based on the posterior distribu-
tions (S6 Table), and the PCA showed that the observeddata point was centered on the cluster
of simulated data points, based on the posterior distributions (S4 Fig), suggesting that scenario
1 was a good fit to the observeddata in all populations.

Discussion

Mating system differentiation, genetic diversity and effective population

size

We found evidence for mixedmating in the northern type of diploid C. falcatum, as all but one
population (SADO) had significantly positive FIS values, ranging from 0.2 to 0.8, indicating it is
highly likely that gametophytic selfing, sporophytic selfing, and outcrossing are all occurring in
these populations. In contrast to our results, Chung et al. (2012) [47] examined sexualC.

Fig 2. Isolation by distance for the 7 populations of the northern type of diploid Cyrtomium falcatum. The relationship between

the matrix of pairwise differentiation described as FST / (1 − FST) and the matrix of the natural logarithm of geographic distance (in meters)

among the 7 populations.

doi:10.1371/journal.pone.0163683.g002
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falcatum populations along the southern shores of South Korea, and showed that the FIS values
for these populations did not significantly deviate from zero, suggesting the prevalence of out-
crossing. The C. falcatum individuals described in Chung et al. (2012) [47] may be the southern
type, becauseMatsumoto (2003) [11] reported the distribution of the southern type in Naga-
saki Pref., Japan (Fig 1), which is only 200 km away from southern South Korea, separated by
the Tsushima Strait. Matsumoto (2003) [11] suggested that the southern type was an outcros-
ser based on its S-type of sexual expression of gametophytes, and the consistently low rates of
sporophyte formation in isolated cultures. Because of the existence of these different mating
systems, the two sexual diploid C. falcatum types provide an interesting experimental opportu-
nity for future evolutionary studies pertaining to the transition between obligate outcrossing
and mixed mating in homosporous ferns.

A cluster specific to the SADO and SAND populations, which are located far apart from
one another, was detected in the STRUCTURE analysis (K = 6, cluster 6, Fig 3). One of the pos-
sible explanations for this cluster is long-distance dispersal of the southern type into the north-
ern range followed by hybridization of the northern and southern types. Although we
examined voucher specimens of SADO and SAND populations, there were no morphological
differences between the pure and admixed individuals revealed in the STRUCTURE analysis.
Additional studies including samples of the southern type are required to clarify the geographi-
cal distribution pattern of the two types of C. falcatum.

The FIS values of M-type populations were significantly higher than those of S-type ones
(Tables 1 and 2). Allelic richness (AR) and gene diversity (h) values of M-type populations were
lower than those of S-type ones and the effective population size estimated by DIYABC also
showed the same pattern (Tables 1 and 2). We acknowledge that there are several sources of
uncertainty and assumptions in the ABC approach (e.g. assumptions about the generation
time, overlapping generations, confidence intervals of the estimated parameters and the
assumedmodel; for details see Tsuda et al. (2015) [48]). DIYABC does not assume gene flow
after divergence, which may bias estimates of divergence time and effective population size
when demographic scenarios for multiple samples (e.g. population, species) are examined
[48,49]. For this reason, we did not include population splits in our scenarios and only inferred
the temporal effective population size change in single populations. Moreover, the relatively
high F’ST value suggests that gene flow among populations might be restricted. Thus, although
we need to consider the assumptions of the methods used in genetic analyses, we believe the
results of ABC are informative regarding the differences between the two types of populations
in our study. Indeed, although the inference of effective population size change in single popu-
lations is a simple ABC approach, Sakaguchi et al. (2013) [50] employed a similar approach to
successfully detect geographic patterns in effective population size of conifer species in
Australia.

To our knowledge, this is the first study to show that the type of gametangia formation of
gametophytes affects the levels of inbreeding and genetic diversity in natural populations of
homosporous ferns. It is well known that inbreeding species have lower neutral genetic diver-
sity within populations compared to outcrossing taxa [51]. The correlation between genetic
diversity and gametangia formation in M- and S-types of C. falcatum follows these general
trends. The observedpatterns could be due to several factors. Firstly, inbreeding is expected to

Fig 3. Results of the STRUCTURE analysis and the Neighbor-joining (NJ) tree of the clusters when K = 7. (A)

The proportion of the membership coefficient of 233 individuals in the 7 populations for each of the inferred clusters

for K = 2–7 defined using Bayesian clustering in STRUCTURE analysis. Population types and cluster numbers on the

NJ tree are indicated under the plot of K = 7. (B) The NJ tree of the seven clusters for K = 7. Values shown next to

each cluster number are FST values between each cluster and the common ancestral population.

doi:10.1371/journal.pone.0163683.g003
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reduce effective population size:Ne =N / (1+FIS) [52]. Secondly, recent empirical studies in
seed plants have revealed that reduction of genetic diversity or effective population size are
often greater than those expected from FIS values alone [8], possibly because of linked selection
owing to reduced recombination efficiency [53], and/or because of population bottlenecks. In
the present study, despite their intermediate FIS, average gene diversity (h) of the M-type popu-
lations (0.152) was about half that of S-type populations (0.367), and the average Ne of the M-
type populations (215) was about a third of that of S-type populations (675). Although the 95%
CIs of the inferredNe values in the ABC should be taken into consideration, these levels of
reduction in h and Ne are comparable to the case of complete inbreeding, and seem to be
greater than those expected from the intermediate FIS values observed in M- and S-type popu-
lations (0.626 vs. 0.208). One possible explanation for population bottlenecks is colonization.
The gametophytic selfing in ferns is hypothesized to be an advantage for long-distance coloni-
zation, as it enables a single spore to establish a new population [4,54,55]. For example, de
Groot et al. (2012) [56] examined fern populations in a recently reclaimedDutch polder land
and concluded that the polder land was colonized via multiple independent single-spore colo-
nization events in all four species studied. It is likely that simultaneous formation of both male
and female gametangia and higher rates of selfing confer higher colonization ability to M-type
individuals. This selfing ability is likely to be advantageous for range expansion and also follow-
ing colonization. BothM- and S-type individuals of the northern type are lithophytes that
grow on sea cliffs, a habitat that is vulnerable to disasters such as landslides. In fact, one popu-
lation of the northern type in Fukushima Pref. was lost after the 2011 Great East Japan Earth-
quake and Tsunami [57]. DIYABC detected past population bottlenecks (Scenario 1, S1 Fig) in
all populations regardless of M- or S-type (S4 Table), and this might reflect past episodes of
local extinction and recolonization in unstable habitats. Although there is no apparent differ-
ence between the habitats of M- and S-types, it is possible that differences in magnitude or fre-
quency of past colonization bottleneck events could result in significant differences in the FST,
genetic diversity and effective population sizes betweenM- and S-type populations.

Population genetic structure

Previous studies using allozymes or microsatellites showed that the standardized F’ST values
are strongly variable in homosporous fern species (as they are in seed plant species), e.g. F’ST =
0.068 for Odontosoria chinensis in Hawaii [58], F’ST = 0.761 for Dryopteris aemura in Spain
[59], F’ST = 0.589 for Cyrtomium falcatum in Korea [47], and F’ST = 0.414 for Selliguea hastata
in Japan [60] (all F’ST values calculated by R.I.). The F’ST values (0.739) of the present study are
relatively high. Interestingly, Korean outcrossing populations of C. falcatum [47] also have a
relatively high overall F’ST value (0.589) when compared to the northern type of C. falcatum,
despite their putative outcrossing. This may indicate that this level of population differentiation
is typical for the species and could be due to species dispersal ability and/or habitat preferences.
For example, it is possible that a discontinuous geographical distribution of suitable habitat,
such as crevices in sea cliffs or rocks near the seashore, is responsible for population differentia-
tion. Significant IBD was detected in this study (Fig 2) and the STRUCTURE analysis did not
show clear clustering corresponding to the M- and S-type populations (Fig 3). Althoughmore
populations would be required to conclude, we suggest that range-wide genetic structure of
this species is not generated by M- and S-type differences, but rather by dispersal limitation.
Significant IBD, related to past range shifts following climate change, has been detected in
many plant species in the Japanese archipelago [61–63]. Significant IBD was also reported in a
fern species,Asplenium fontanum subsp. fontanum, in Europe [64] and was likely caused by
range expansion following the last glacial maximum (LGM). Similarly, past range shift in
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relation to the LGMwas described in Selliguea hastata in Korea and Japan [60]. Although not
well examined in palaeoecologicalstudies of spore fossils, past distributional shifts in relation
to the LGMmight play an important role in generating the modern genetic structure of C. fal-
catum. Interestingly, although the time scale of population size change in the northern type of
C. falcatum was well estimated in only one population (SADO, 8820 years ago, 95%CI: 1224–
26610 years ago), this timing corresponds to a post-LGM recolonization scenario.

The M- and S-types of C. falcatum were significantly different in levels of selfing (FIS),
genetic diversity, and effective population size. These results suggest that reproductive and
demographic differences exist between the two types, despite the lack of genetic structure
between them. The more severe population bottlenecks were inferred to have occurred in the
M-type populations rather than the S-types. This implies that local extinction and recoloniza-
tion events could provide opportunities for the maintenance of the M-type populations, and
possibly for increasing the frequency of the M-type individual in some cases, even under occa-
sional immigration of the S-type individuals. Evolution of selfing via transmission advantage
operates only under a low genetic load, and fixed selfing is expected [7]. Therefore, the exis-
tence of mixedmating even in the M-type populations would suggest that reproductive assur-
ance, rather than transmission advantage, is the main factor affecting the evolution of selfing in
this species. If this is the case, the M-type would be advantageous in small and disturbed popu-
lations, while the S-type would be advantageous in large and stable populations.

In this study, we discuss results obtained after removing putative admixed individuals in
SADO and SAND populations. Subpopulation genetic structure within these two populations
may be one of the reasons why a clearer difference in genetic diversity between the S- and M-
types was detected only after the removing admixed samples. However, it is difficult to discuss
the origin of cluster 6 and 7 in detail with the current dataset. One possible explanation is
migration and hybridization of northern and southern types of C. falcatum in these areas,
although this was not expected given the morphological observations of Matsumoto 2003 [11].
However, our on-going study based on restriction site associated DNA sequencing (RAD-seq)
supports this hypothesis (Imai et al. unpublished).We would need to sample individuals cover-
ing the species entire distributional range, including both southern and northern types, and
evaluate genetic variation using several types of markers to clarify sympatric distribution and
hybridization.
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S1 Fig. Demographicmodels used in DIYABC for each population of C. falcatum. Scenario
1. Bottleneckmodel: the ancestral effective population size (Na) was changed at t1 to the mod-
ern effective population size (N1) and N1 was set to be smaller than Na Scenario 2. Constant
model: the ancestral effective population size (Nb) and the modern one (N1) were set to be
equal, assuming the effective population size has not changed. Scenario 3. Expansion model:
the ancestral effective population size (Nc) was changed at t1 to the modern effective population
size (N1) and N1 was set to be larger than Nc.
(EPS)

S2 Fig. The values of posterior probability of the data (Ln P(D)) from 10 runs for each
value of K (1–15; A) and ΔK (right B).
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S3 Fig. Prior and posterior distributions for each parameter obtained by DIYABC analysis
for each population.X axis indicates values for the parameter described in the title of each
graph; pmic: the parameter of the geometric distribution to generate multiple stepwise

Mating System Variation and Genetic Diversity in a Homosporous Fern

PLOS ONE | DOI:10.1371/journal.pone.0163683 October 5, 2016 13 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0163683.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0163683.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0163683.s003


mutations; smic: Mean mutation rate of single nucleotide indel; μmic: mean mutation rate of
SSR. Y axis indicates probability of prior and posterior.
(PPTX)

S4 Fig. Principal Component Analysis (PCA) score plot obtained fromDIYABC analysis
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