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Abstract: Seven Italian Simmental cows were monitored during three different physiological stages,
namely late lactation (LL), dry period (DP), and postpartum (PP), to evaluate modifications in their
metabolically-active rumen bacterial and protozoal communities using the RNA-based amplicon
sequencing method. The bacterial community was dominated by seven phyla: Proteobacteria,
Bacteroidetes, Firmicutes, Spirochaetes, Fibrobacteres, Verrucomicrobia, and Tenericutes. The relative
abundance of the phylum Proteobacteria decreased from 47.60 to 28.15% from LL to DP and then
increased to 33.24% in PP. An opposite pattern in LL, DP, and PP stages was observed for phyla
Verrucomicrobia (from 0.96 to 4.30 to 1.69%), Elusimicrobia (from 0.32 to 2.84 to 0.25%), and SR1 (from
0.50 to 2.08 to 0.79%). The relative abundance of families Succinivibrionaceae and Prevotellaceae
decreased in the DP, while Ruminococcaceae increased. Bacterial genera Prevotella and Treponema
were least abundant in the DP as compared to LL and PP, while Ruminobacter and Succinimonas were
most abundant in the DP. The rumen eukaryotic community was dominated by protozoal phylum
Ciliophora, which showed a significant decrease in relative abundance from 97.6 to 93.9 to 92.6 in LL,
DP, and PP, respectively. In conclusion, the physiological stage-dependent dietary changes resulted
in a clear shift in metabolically-active rumen microbial communities.

Keywords: physiological stages; protozoa; RNA; cDNA; active rumen microbiota

1. Introduction

The bovine rumen is colonized by a complex microbial ecosystem comprising sym-
biotic populations of bacteria, ciliated protozoa, fungi, and archaea [1]. These symbionts
enable the ruminants to convert indigestible fibrous plant mass into nutrient sources such
as volatile fatty acids, lipids, amino acids, lactate, and hydrogen that are essential for the
growth, production performance, and health of the ruminants [2]. The composition of
rumen microbiota is affected by several factors, such as diet [3–5], age and health [6,7],
breed [8], diet and age [9], environment, and host genetics [10]. Diet composition is found
to have a major influence on the community structure and fermentation patterns of rumen
microbes [11], which in turn affect methane production, host health, and productivity [12].

Modification of the diet is required for gestating cows during the dry period (prepar-
tum). The effective feeding management strategy for better transition success is to dilute
the high-energy forage diet with low-energy forage components such as wheat straw [13]
or supplementation of high-forage diet with fat [14]. The strategy of using energy-diluted
diets results in higher neutral detergent fiber (NDF) and lower energy content of the diet,
which may reduce the host energy and total dry matter intake, maintain growth rate, and
can prevent postpartum cows from liver fat deposition [15,16].

Such diet modifications are expected to have a great impact on the ruminal microbiota
that is highly associated with host feed digestion and metabolism [17]. Nevertheless, few
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comparative studies on the effect of physiological stage-dependent dietary modifications
on community profile of rumen microbiota are available, and this area must be explored to
define better feeding management strategies [18–21]. In recent years, culture-independent
analyses, such as metabarcoding, have been largely applied and have greatly expanded our
understanding of the rumen microbial communities [22]. These approaches have allowed
for the complete definition of the microbial community, including non-cultivable species
that have been estimated to represent 90% of the rumen microbiota [23]. The majority of the
published rumen microbiome data is based on sequencing of 16S rRNA genes amplified
from a DNA template [24–26]. However, DNA-based methods are not reliable when
microbial activity is concerned, as these methods are unable to distinguish between the
genes that come from active, inactive, lysed, or dead cells [27], thus making it impossible
to predict the viability and biological and metabolic activity of the detected microbial
communities [28]. On the contrary, RNA-based methods are considered accurate predictors
of metabolically-active microbial community structures [29,30] due to the presence of a
positive correlation between the content of ribosomal RNA (rRNA) and metabolic activity of
microorganisms [31]. Recent comparisons between DNA- and RNA-based rumen microbial
community profiles under different dietary treatments resulted in the identification of
certain distinct phylotypes and unique microbial taxa for each approach [32–34]. RNA-
based analysis showed a higher dominance of the phylum Proteobacteria in grain-fed cows
than in DNA-based datasets [32]. Similarly, a high number of Prevotella transcripts were
observed at the RNA-level using a higher proportion of corn silage in the dairy cow diet;
however, no effects on rumen microbial communities were observed at the DNA-level [33].
Hence, it is worth noting that RNA-based studies may provide a different community
profile from DNA-based studies when evaluating potentially active rumen microbiota.
The present study was conducted to evaluate the effect of diet-dependent modifications in
active rumen bacterial and protozoal community structure using an RNA-based method.
This was done by total RNA-extraction, cDNA synthesis, and subsequent amplification
of RNA-derived transcripts–amplicons by PCR using primers specific for bacterial 16S
rRNA and eukaryotic 18S rRNA genes, followed by sequencing using the Illumina Miseq
platform. This approach allowed for a comparison of the relative amount of the active
microbial taxa in the different physiological stages. To the best of our knowledge, this study
is the first of its type to report modifications in the metabolically active rumen bacterial and
protozoal community structure covering the overall physiological stages of dairy cows.

2. Materials and Methods
2.1. Ethics Statement

All experimental procedures were carried out according to Italian law on animal care
(Legislative Decree No. 26 of 14 March 2014) and approved by the ethics committee at the
University of Padova (approval number 6/2020).

2.2. Animal Management, Diet, and Rumen Fluid Sampling

Seven lactating Italian Simmental cows (3 primiparous, 1 secondiparous, and 3 multi-
parous) were used as rumen fluid donors in this study and were housed under the same
rearing environment at the Experimental Farm of University of Padova, Italy. At the
beginning of the experiment, all cows were pregnant (from 148 to 203 days in gestation).
The experiment was composed of three phases based on physiological stages of dairy cows:
LL (248–332 days in milk), DP (8–46 days pre-calving), and PP (15–38 days post-calving).
Cows were fed a specific total mixed ration (TMR) formulated to cover their nutritional
requirements (Table 1). This was done for at least two weeks before sample collection,
during each physiological stage. Rumen fluid samples were collected between 6 am and
7 am, before morning feeding, using an esophageal vacuum pump system as described by
Tagliapietra et al. [35]. One sample (approximately 500 mL) of rumen fluid (mixed with
fine feed particles) was collected from each cow for each physiological stage. The samples
were immediately filtered through four layers of cheesecloth to remove feed particles and
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transferred to the laboratory under controlled temperature conditions using preheated
(39 ± 0.5 ◦C) thermal flasks. Samples were homogenized, and an aliquot of 50 mL was
directly used in further analysis.

Table 1. Ingredients (% of dry matter) and composition (% of dry matter) of the total mixed rations
(TMR) fed to the cows during three different physiological stages.

Item
Physiological Stage 1

LL DP PP

Ingredients
Meadow hay 13.1 24.6 2.5
Alfalfa hay 17.4 - 20.6

Maize silage 47.4 20.3 32.0
Wheat straw - 37.8 1.7

Dry sugar beet pulp - - 2.4
Protein mix 2 10.6 16.1 17.7
Energy mix 3 8.9 - 19.3

Extruded linseed 1.1 - 0.4
Fat supplement 4 - - 1.2
Vit–min mix 5,6 1.4 5 1.2 6 2.2 5

Chemical composition
Dry matter 50.2 63.8 55.1

Crude protein 13.1 13.0 15.7
Lipids 3.4 3.2 4.2
Starch 21.1 7.1 24.0
NDF 39.4 57.0 33.6
ADF 23.4 36.0 21.1

MFU no./kg DM 7

1 LL = late lactation; DP = dry period; PP = post-partum period; 2 protein mix: 50% of decorticated sunflower
meal, 35% of toasted full-fat soybean meal, 12% of 44 soybean meal, 3% of corn meal; 3 energy mix: 66.67%
of corn meal and 33.33% of barley meal; 4 fat supplement: Multifat (Nutristar, Reggio Emilia, Italy) contained
linseed, calcium soaps obtained by palm oil, carob germ, corn (CP = 16.0%; lipids = 42.50%); 5 vitamin–mineral
supplement for lactating cows: Milk H (Tecnozoo S.R.L., Torreselle di Piombino Dese, PD, Italy) contained per
kilogram: 330,000 IU of vitamin A, 60,000 IU of vitamin D3, 2000 mg of vitamin E, 100 mg of vitamin B1, 75 mg
of vitamin B2, 50 mg of vitamin B6, 0.3 mg of vitamin B12, 12,000 mg of niacin amide, 8 mg of biotin, 300 mg
of Fe, 150 mg of I, 30 mg of Co, 300 mg of Cu, 2000 mg of Mn, 3000 mg of Zn, 15 mg of Se; 6 vitamin–mineral
supplement for dry cows: Tecnofertil (Tecnozoo S.R.L., Torreselle di Piombino Dese, PD, Italy) contained per
kilogram: 315,000 IU of vitamin A, 200,000 IU of vitamin D3, 1500 mg of vitamin E, 300 mg of vitamin K3, 50 mg
of vitamin B1, 20 mg of vitamin B2, 50 mg of vitamin B6, 1 mg of vitamin B12, 4000 mg of niacin amide, 1500 mg
of Fe, 200 mg of I, 30 mg of Co, 50 mg of Cu, 2000 mg of Mn, 6000 mg of Zn, 20 mg of Se; 7 Milk forage unit (MFU)
no. per kg of dry matter.

2.3. RNA-Extraction and Synthesis of cDNA

A total volume of 50 mL of freshly filtered rumen fluid samples were pelleted by
centrifugation at 2683× g for 10 min. Supernatants were discarded, and pellets were
re-suspended in phosphate-buffered saline (PBS) to obtain a final concentration of 1 g
rumen content/1 mL of the re-suspended mixture. Re-suspended mixture (100 µL) was
mixed with TRIZOL reagent (1 mL), and cells were disrupted using zirconia silica beads
(0.25 mm) on a TissueLyser (Qiagen, Hilden, Germany). Disruption was carried out in
high-speed mode 4 times for 30 s at 30 Hz in two rounds of bead beating steps (30 frequency
1/s, 30 s each). Chloroform (200 µL) was added and each sample was vortexed for 15 s,
left on ice for 15 min, and pelleted by centrifugation at 12,000× g, 4 ◦C for 15 min. The
extracted RNA was purified using an RNeasy Mini Kit (Qiagen), including an on-column
DNase digestion step according to the manufacturer’s protocol. Following centrifugation,
the upper aqueous phase (350 µL) was transferred to a fresh tube, and 100% ethanol
(350 µL) was added. This mixture (700 µL) was transferred to the column provided in the
RNeasy Mini Kit (Qiagen) and centrifugated at 18,407× g for 30 s. RNA concentration was
assessed using a Nano kit (Agilent Technologies, Santa Clara, CA, USA). Purified RNA was
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reverse-transcribed into single-stranded cDNA using the SuperScript IV cDNA synthesis
protocol (ThermoFisher Scientific).

2.4. Targeted Amplicon Sequencing of Bacteria and Protozoa

Before PCR amplification, the cDNA templates (containing 1 µg cDNA/µL) were
diluted with Rnase-free water to obtain a final concentration of 40 ng cDNA/µL. In order
to make the amplicons compatible with Illumina MiSeq sequencing, overhang adapter
sequences were additionally linked to the primers. For analysis of bacterial communities,
tailed primers specific for V3–V4 hypervariable region of the 16S rRNA gene were used,
forward primer = Pro341F: 5′-TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG
CCT ACG GGN BGC ASC AG-3′; reverse primer = Pro805R: 5′-GTC TCG TGG GCT CGG
AGA TGT GTA TAA GAG ACA GGA CTA CNV GGG TAT CTA ATC C-3′ [36]. The PCR
mixture was composed of 5× high fidelity PCR buffer (5 µL), 25 mM dNTPs (0.2 µL), 10 µM
forward primer (1 µL), 10 µM reverse primer (1 µL), 2 U/µL Phusion high-fidelity DNA
polymerase (0.5 µL; Thermo-Fisher Scientific, Waltham, MA, USA), 40 ng cDNA template
(5 µL) to a final volume of 25 µL with Rnase-free water. Thermocycling conditions for PCR
comprised an initial denaturation at 94 ◦C for 1 min, followed by 25 cycles of annealing
at 95 ◦C for 30 s, 55 ◦C for 30 s, and 68 ◦C for 45 s and a final extension at 68 ◦C for 7 min.
PCR products were controlled on a 1.8% agarose gel.

The protozoal communities were analyzed using modified primers specific for V9 re-
gion of 18S rRNA gene from the Earth microbiome project [37,38], Illumina_Euk_1391f
forward primer = TCGTCGGCAGCGTCAGA TGTGTATAAGAGACAGGTACACACCGC-
CCGTC, and Illumina_EukBr reverse primer = GTCTCGTGGGCTCGGAGATGTGTATAA-
GAGACAGTGATCCTTCTGCAGGTTCACCTAC. The PCR mixture was composed of
5× high fidelity PCR buffer (5 µL), 25 mM dNTPs (0.2 µL), 10 µM forward primer
(0.5 µL), 10 µM reverse primer (0.5 µL), 2 U/µL Phusion high-fidelity DNA polymerase
(0.5 µL; Thermo-Fisher Scientific, Waltham, MA, USA), 40 ng cDNA template (5 µL) to a
final volume of 25 µL with Rnase-free water. Thermocycling conditions for PCR comprised
initial denaturation at 94 ◦C for 3 min followed by 35 cycles of annealing at 94 ◦C for 45 s,
57 ◦C for 60 s, and 72 ◦C for 90 s, and final extension at 72 ◦C for 10 min. PCR products
quality was controlled on a 1.8% agarose gel. PCR product indexing and sequencing
were done by BMR Genomics, Padova (Italy) using the Illumina MiSeq platform with a
paired-end 300-cycle run.

2.5. Bioinformatic Analysis

The bioinformatic analysis of the targeted amplicon sequencing datasets, covering the
16S and 18S rRNA gene, was very similar with few exceptions. Briefly, the Illumina MiSeq
sequences (2× 300 bp) were demultiplexed using CASAVA v1.8 (Illumina) software. In total
1,960,561 raw reads (16S rRNA amplicon sequence data) and 3,560,235 raw reads (18S rRNA
amplicon sequence data) were generated, with 93,360± 5448 reads (mean± SEM; 16S rRNA
amplicon sequence data) and 169,535 ± 10,225 reads (mean ± SEM; 18S rRNA amplicon
sequence data) per sample. The quality of the sequencing data was checked with FastQC
program (version 0.11.7; https://www.bioinformatics.babraham.ac.uk/projects/fastqc/;
accessed on 18 March 2021). The bioinformatic analysis was performed using QIIME 2
(2018.11) software [39]. The demultiplexed raw sequence data files were imported into
QIIME 2 artifact using “SampleData [PairedEndSequencesWithQuality]” semantic type. In
the case of 18S rRNA amplicon sequencing data, the residual artificial sequences (forward
(16 bp) and reverse (24 bp) primers) were removed by implementing cutadapt v1.18 within
the QIIME 2 artifact using q2-cutadapt plugin and trim-paired command [40]. Raw paired-
end sequence data files were first trimmed using cutadapt linked adapters command-line,
followed by –p-anywhere option. However, the removal of residual artificial sequences
(unclipped forward (17 bp) and reverse (21 bp) primes) from 16S rRNA amplicon sequencing
data was done during the DADA2 step. The trimmed sequence data files (belonging to 18S
rRNA transcript amplicons), as well as untrimmed 16S rRNA amplicon sequence data files,

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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were quality filtered (cut bases with an average quality score below 20). Denoised paired-end
sequences were merged (mean length: 414 bp and 111 bp; 16S rRNA and 18S rRNA transcript
amplicons, respectively). Non-overlapping regions, chimeric sequences, and singletons were
discarded, and FeatureTable[Frequency] and FeatureData[Sequence] QIIME 2 artifacts were
generated using q2-dada2 plugin which implements DADA2 pipeline within the QIIME
2 [41]. Taxonomic classification of 16S rRNA amplicon sequence data was performed using
q2-feature-classifier plugin and a Naive Bayes classifier (pre-trained on SILVA 16S rRNA
reference database (release_132) clustered at 99% similarity) [42]. Taxonomic classification
was done using the Naive Bayes sklearn-based taxonomy classifier with a default confidence
of 0.7. Non-bacterial, cyanobacteria and chloroplast, and unassigned sequences from
FeatureTable[Frequency] and FeatureData[Sequence] QIIME 2 artifacts were removed with
taxonomy-based filtering step using q2-taxa plugin in QIIME 2. A total of 641,525 reads were
generated representing 4974 unique bacterial OTUs. All 4974 selected unique bacterial OTUs
were taxonomically reassigned based on the Ribosomal Database Project (RDP) classifier
(http://rdp.cme.msu.edu/; accessed on 18 March 2021) [43]. The RDP classifier taxonomy
output table was filtered by setting up cutoff values of confidence thresholds to 94.5% for
genus, 86.5% for family, 82.0% for order, 78.5% for class, and 75.0% for phylum [44]. The
sequences belonging to the unclassified taxon within the dominant Proteobacteria phylum
were rechecked manually for better taxonomic designations using RDP SeqMatch [45]. For
18S rRNA amplicon sequencing data, the taxonomic classification was performed using
q2-feature-classifier plugin and classify-consensus-blast (an alignment-based classification
method). This method used SILVA 18S rRNA (release_132) as a reference database with a
confidence level of 0.90. Due to the lack of proper information about the seven taxonomic
ranks in SILVA 18S rRNA reference database, the identified genera were rechecked using
UniProt Knowledgebase (UniProtKB) (https://www.uniprot.org/taxonomy/; accessed
on 18 March 2021) and Systema Naturae 2000 (http://sn2000.taxonomy.nl/; accessed on
18 March 2021) databases to obtain exact names of each taxonomic rank. Non-eukaryotic
and unassigned sequences from FeatureTable[Frequency] and FeatureData[Sequence] were
finally removed with the taxonomy-based filtering step using q2-taxa plugin in QIIME 2. A
total of 2,194,288 reads were generated representing 256 unique eukaryotic OTUs.

The raw sequence data were deposited in the SRA database with accession number
PRJNA680705.

2.6. Statistical Analysis

Statistical analyses were performed using Calypso version 8.84 [46] and Primer-e
(PRIMER 6.1.16 and PERMANOVA+ 1.0.6) [47] software. For Calypso software, two QIIME
2 output files were exported, namely FeatureTable[Frequency] as feature-table.biom and
FeatureData[Taxonomy], while for Primer-e software, a BIOM table (feature-table-with-
taxonomy annotations) was created using the biom add-metadata command in QIIME 2.
The diversity indices (richness, evenness, and alpha-diversity estimators) among amplicon
sequence datasets were made comparable by rarefying samples to the lowest number of
reads observed in each dataset (a read depth of 18,929; 16S rRNA amplicon sequencing
dataset, and a read depth of 41,480; 18S rRNA amplicon sequencing dataset) (Table 2). The
statistical differences among diversity indices of physiological stages were tested with a one-
way analysis of variance (ANOVA) test, and for pair-wise comparisons, the Wilcoxon rank
test was used in Calypso v8.84. The physiological stage-dependent modifications in the
rumen active microbial community structure were confirmed using principal-coordinate
analysis (PCO) and analysis of similarities (ANOSIM) based on Bray–Curtis dissimilar-
ity matrices in Primer-e. The significantly different bacterial and protozoal taxa among
physiological stages were identified using the one-way analysis of variance (ANOVA) test,
and for pair-wise comparisons, Tukey’s test was used on normalized OTU abundance
data (Supplemental Tables S1 and S2). For the 16S rRNA amplicon sequencing dataset,
OTU abundance data were normalized with the total sum normalization (TSS) method.
However, for the 18S rRNA amplicon sequence dataset, the OTU abundance data was

http://rdp.cme.msu.edu/
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normalized using Hellinger transformation (total sum normalization (TSS) combined with
square root transformation) prior to the calculation of Bray–Curtis dissimilarity matrices.

Table 2. Comparison of various alpha-diversity estimators of active rumen bacterial and eukaryotic communities of different
physiological stages.

Index 1
Bacteria Eukaryotes

LL DP PP SEM 2 p-Value 3 LL DP PP SEM 2 p-Value 3

Richness
Chao 1 464 b 692 a 543 a,b 36.50 0.026 47.0 b 68.0 a 40.0 b 3.47 <0.001

Evenness
Shannon 0.71 b 0.84 a 0.74 b 0.02 <0.001 0.39 0.48 0.39 0.03 0.3000
Simpson 0.93 b 0.98 a 0.96 a,b 0.01 0.002 0.62 0.77 0.58 0.04 0.110
Diversity
Shannon 4.35 b 5.50 a 4.66 b 0.14 <0.001 1.45 a,b 2.01 a 1.43 b 0.11 0.031

Inverse Simpson 16.4 b 86.6 a 32.4 a 8.56 <0.001 3.18 4.66 3.02 0.33 0.081
1 Alpha-diversity estimators among amplicon-sequencing datasets; 2 standard error of the mean; 3 p-values were obtained doing one-way
analysis of variance (ANOVA), and p < 0.05 shows significant effect of the physiological stage. For pairwise comparisons, Wilcoxon rank
test was used. a,b Means within a row with different superscripts differ significantly (p < 0.05).

To describe bacterial and eukaryotic rumen communities, genus-level heatmaps were
plotted using the heatmap.3 package in R (version 1.3.1093) on normalized data.

3. Results
3.1. Effect of Physiological Stages of Dairy Cows on the Diversity of Their Active Rumen Microbiota

Physiological stage-dependent dietary amendments were found to have a clear effect
on the diversity of active rumen bacterial and eukaryotic communities of Italian Simmental
cows. The bacterial species richness (Chao 1) as well as evenness increased significantly
during transition from LL to DP and also showed a non-significant (p > 0.05) minor decrease
during passage from a DP to PP diet (Table 2). Similar to the bacteria, high-forage feeding
in the DP also significantly increased the eukaryotic species richness (Chao 1) from a value
of 47.0 in LL to 68.0 in the DP, followed by a significant decrease to 40.0 during transition
to the PP diet. However, the eukaryotic species evenness remained unaffected (p > 0.05) by
physiological stage-dependent dietary changes (Table 2).

Likewise, both alpha-diversity indices (Shannon and Inverse Simpson) showed a
significant increase in the bacterial taxa diversity from the lowest diversity in LL (4.35 and
16.4) to the highest diversity in DP (5.50 and 86.6), followed by a significant decrease in
diversity to 4.66 and 32.4, respectively, during transition from DP to PP (Table 2).

Principal-coordinate analysis (PCO) showed clear shifts in the active rumen bacterial
and eukaryotic community structures during transition from LL to DP, followed by a
re-shift of the PP microbiota closer to the LL over the transition period, as seen in the
PCO plot with the first two principal-coordinates describing 46% (bacteria, Figure 1A) and
52.3% (eukaryotes, Figure 1B) of the total variations. These results were further confirmed
with the analysis of similarities (ANOSIM) test, which revealed statistically significant
differences in the active rumen bacterial (Global R = 0.683, p < 0.001) as well as eukaryotic
(Global R = 0.339, p < 0.001) communities of different physiological stages.
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Figure 1. Principal-coordinate analysis (PCO) of the active rumen bacterial (A) and eukaryotic (B) communities during
different physiological stages. The bacterial OTU abundance data were normalized by total sum normalization, while
eukaryotic OTU abundance data were transformed by Hellinger transformation (total sum normalization combined with
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3.2. Physiological Stage-Dependent Modifications in the Active Rumen Bacterial Communities

A total of 4974 unique OTUs specific to the V3–V4 region of bacterial 16S rRNA
transcript amplicons were obtained. There were 673 unique bacterial OTUs found in
LL samples, 1866 OTUs in the DP samples, and 1163 OTUs in PP samples. A total of
194 bacterial OTUs were shared between LL and DP, 212 OTUs between DP and PP,
442 OTUs between PP and LL, and 424 OTUs were “core bacterial OTUs” commonly
found in the three physiological stages (Figure 2A). The active rumen bacterial community
was comprised of 17 phyla, of which Proteobacteria (37.56%), Bacteroidetes (26.62%),
Firmicutes (11.38%), Spirochaetes (5.90%), Fibrobacteres (2.02%), Verrucomicrobia (1.42%),
and Tenericutes (1.25%) were the seven most abundant, with median relative abundance
value indicated in brackets (Figure 2B, Table S1).

The Fibrobacteres and Spirochaetes phyla showed similar trends and were more
abundant in the PP (6.73–9.98%) as compared to the LL and DP (Figure 2B).

Proteobacteria was the most dominant bacterial phylum in our study, being more
abundant in high-concentrate-fed (i.e., LL and PP) than high-forage-fed (DP) Italian Sim-
mental cows. A similar trend was observed for the dominant Gammaproteobacteria class,
Succinivibrionaceae family and the dominant unclassified genus of this family, showing a
significant decrease in relative abundance from 26.93% in LL to 4.13% in the DP, followed
by a significant increase to 17.93% during transition from DP to the PP (Table S1). On the
contrary, the two least abundant genera of the Succinivibrionaceae family, Ruminobacter
(1.24–4.81%) and Succinimonas (0.01–1.06%), showed opposite trends, increasing (1.24 to
2.06%) or decreasing (0.03 to 0.01%), respectively, from LL to PP, but both were more
abundant in the DP (Figure 3, Table S1). Likewise, the least abundant Alphaproteobacteria
class and its corresponding Rhodospirillales order also showed a significant increase from
0.26% in LL to 2.60% in the DP, followed by a significant decrease to 1.05% in the PP period
(Table S1).
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Bacteroidetes was the second most abundant phylum in our study, showing no sig-
nificant (p = 0.83) change in relative composition during different physiological stages
as did the dominant Bacteroidia class and Bacteroidales order of this phylum (Table S1).
Nevertheless, significant differences were found at lower taxonomic levels, where the
Prevotellaceae family (Figure 2B), and its representative Prevotella genus were relatively
more abundant in LL and PP (∼13.0–14.0%) as compared to the DP (∼8.0%) (Figure 3). In
contrast, unclassified Bacteroidales was more abundant in the DP (6.17%) as compared to
the PP (2.77%) and LL (1.87%).

Firmicutes was the third most abundant phylum in our study. The relative compo-
sition of this phylum and its predominant lower taxonomic groups remained unaffected
(p > 0.05) by dietary changes (Figure 2B, Table S1). However, the second most abundant
family within this phylum, Ruminococcaceae was more abundant in the DP (5.03%) as
compared to the LL (2.81%) and PP (2.36%). Likewise, the three least abundant rumen
bacterial phyla, namely Verrucomicrobia (0.96–4.30%), Elusimicrobia (0.25–2.84%), and SR1
(0.50–2.08%), and the lower taxonomic groups within these phyla were also more abundant
in high-forage-fed DP cows than other physiological stages (Figure 2B, Table S1).

The Fibrobacteres and Spirochaetes phyla showed similar trends and were more
abundant in the PP (6.73–9.98%) as compared to the LL and DP (Figure 2B). Similar trends
were observed for the dominant Fibrobacter and Treponema genera of these phyla (Figure 3
and Supplemental Table S1).

3.3. Physiological Stage-Dependent Modifications in the Active Rumen Eukaryotic Communities

The active eukaryotic community in the rumen was represented by a total of 256 unique
OTUs specific to the 18S rRNA V9 gene region. There were 29 unique OTUs found in the LL
samples, 101 OTUs in the DP, and 22 OTUs in the PP samples. Only 13 OTUs were shared
between LL and DP; similarly, 13 OTUs between DP and PP, 14 OTUs between PP and LL,
and 64 OTUs were “core eukaryotic OTUs” commonly found in the three physiological
stages (Figure 4A). A total of 17 eukaryotic phyla was observed, of which the protozoal
phylum Ciliophora was the most dominant, showing a median relative abundance value
of 95.50% (Figure 4B); a similar result was reported previously [22]. At the phylum level,
no significant differences were detected in the active eukaryotic community composition
of high-concentrate-fed (i.e., LL and PP) and high-forage-fed (DP) Italian Simmental cows,
except a slight decrease in the relative abundance of phylum Ciliophora during the transi-
tion from LL to the DP and PP (Figure 4B, Table S2). However, significant differences were
found at the family level, where the two most abundant families within the phylum Cilio-
phora, namely Ophryoscolecidae (61.85–82.55%) and Isotrichidae (13.73–31.00%), showed
different patterns, with the former being more abundant in LL and PP, and the latter being
highly abundant in the DP (Figure 4B).

At the genus level, Entodinium (Ophryoscolecidae) was the most dominant protozoal
genus in all physiological stages, accounting for 76.26–82.30% of the total protozoal abun-
dance in high-concentrate-fed PP and LL cows versus 58.43% in high-forage-fed DP cows
(Figure 5). Notably, a high-forage diet in the DP resulted in a complete shift in the protozoal
community at the genus level, as indicated by a high dominance of the protozoal gen-
era Dasytricha (Isotrichidae), Eudiplodinium, and Ostracodinium (Ophryoscolecidae) in the DP
compared to the other physiological stages (Figure 5). The other least abundant protozoal
families within the phylum Ciliophora, such as Buetschliidae (0.43–0.64%), Cycloposthiidae
(0.02–0.15%), and Spirodiniidae (0.00–0.06%), and their lower taxonomic groups, were not
affected by dietary changes (Figure 4B, Table S2).
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The least abundant protozoal phylum Amoebozoa (0.52–1.35%) and other eukary-
otic phyla Chytridiomycota (0.60–4.44%), Rhodophyta (0.81–1.34%), and Metamonada
(0.36–1.08%) also remained unaffected by physiological stage-dependent dietary changes
(Figure 4B, Table S2). Nevertheless, three families within the phylum Amoebozoa, namely
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Actyosteliidae (0.02–0.73%), Dactylopodida (0.01–0.32%), and Entamoebidae (0.00–0.08%),
showed significant changes in relative composition with dietary changes during different
physiological stages (Figure 4B). Dactylopodida and its representative Angulamoeba genus
were more abundant in the LL and PP and almost absent in the DP samples. On the con-
trary, Actyosteliidae, Entamoebidae and their representative Acytostelium and Entamoeba
genera, respectively, showed similar trends and were more abundant in the DP than PP
and LL. Similar minor increases in the relative abundances of the Hypotrichomonadi-
dae family and the Trichomitus genus of phylum Metamonada were observed during DP
(Table S2).

4. Discussion

Physiological stages of dairy cows and diet amendments during the transition period
strongly affect the active rumen bacterial and protozoal communities. The rumen micro-
biota has a direct effect on host nutrient utilization affecting the metabolism and health of
dairy cows. This symbiosis is complex and must be maintained in equilibrium for a healthy
transition period. Indeed, the effective management of dairy cows requires knowledge
of the active microbiota modification in the different physiological stages of dairy cows,
related to different diets.

The use of an RNA template in a 16S metabarcoding analysis provides the relative
amounts of the living microbial taxa forming the active part of the rumen microbiota.

The highest diversity of active rumen bacteria during the DP stage reported in the
present study is in agreement with other DNA/RNA-based studies [48,49] and is probably
related to the high forage content in the diet. High ruminal bacterial diversity with high-
forage diets and low bacterial diversity with high-concentrate diets have been already
reported [50,51]. Similar negative impacts of a high-concentrate diet on bacterial species
richness and diversity have been discussed by Zhang et al. [52] and Pinto et al. [53].
Likewise, a significantly higher eukaryotic taxa diversity was observed during the DP in
our study, which is in line with other studies [54,55], which reported that the high-forage
diet supports high protozoal species diversity compared to the grain-based diet.

The overall dominance of the Proteobacteria phylum in our study is in agreement with
the results of other RNA-based studies. Kang et al. [30] provided the first evidence of the
high abundance of Proteobacteria (28.70%) at the RNA level, indicating higher importance
of this group in rumen metabolic activities than previously ascribed based on DNA-level
studies. A significant increase in Proteobacteria relative abundance was observed with
increasing dietary concentrate proportions [49] and in high-energy-fed beef steers [34,56]
at the RNA level. In line with other RNA-based studies, we found that by increasing
energy content and the dietary corn silage proportion from 20.3 (% of dry matter) in DP to
32.0 and 47.4 (% DM) in PP and LL periods, respectively, the relative composition of their
Proteobacteria phylum as well as the Succinivibrionaceae family of this phylum was also
significantly increased. An increase in Proteobacteria abundance related to high energy
diet has been reported by several studies [3,57–59], while others [9,10,60] have reported
high abundance of Succinivibrionaceae. The bacteria belonging to the Succinivibrionaceae
family play an important role in rumen succinate production through hydrogen utilization,
which enables them to compete with hydrogenotrophic methanogens for substrate [61–63].
Although Proteobacteria are not considered to be the dominant rumen bacterial phylum
at the DNA level, the high dominance of this phylum at the RNA level and the specific
role of Succinivibrionaceae in succinate production (a propionate precursor), indicates that
probably it is the main contributor of ruminal propionate production under a high-grain
diet [64].

Within the Bacteroidetes phylum, the high abundance of Prevotellaceae in the rumen
of high-concentrate-fed cows (i.e., LL and PP) in our study is in accordance with other
studies [56,65], where this family comprised 17.9–35.18% of the total rumen microbial
community of high-energy-fed cows. Prevotella species are strictly anaerobic and may
comprise up to 60% of the total rumen bacterial population in silage-fed animals [66].
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Ruminal Prevotella species digest starch, simple sugars, and non-cellulosic polysaccharides
to produce succinate [67]. In addition, some ruminal Prevotella taxa are also involved in
the metabolism of pectin, hemicellulose [68], protein, and peptides [69]. The use of high
amounts of concentrates (rapidly fermentable carbohydrates) in the diet of LL and PP and
the reduction in eating time could explain the high relative abundance of Prevotella during
those periods, as observed by Kljak et al. [70].

Considering the Firmicutes phylum, the high dominance of Ruminococcaceae in the
rumen fluid samples of DP is in agreement with other studies that also showed an increase
in abundance of Ruminococcaceae members with an increase in forage contents of the
diet [49,58]. Ruminococcaceae taxa play an essential role in cellulose and hemicellulose
degradation [71,72] and in the ruminal biohydrogenation pathways [73], which could
explain their high abundance in high-forage-fed DP cows in our study. The Elusimicrobia
phylum is usually unique to RNA-based studies, indicating high activity of this phylum
in the rumen [34]. This phylum is underrepresented or totally absent in the DNA-based
datasets [74], which could be due to their unsuccessful DNA isolation [34], as it has been
reported previously that the choice of DNA-extraction methods might have an impact on
the taxonomic outcomes of rumen microbial communities [59].

The Fibrobacteres and Spirochaetes phyla were in our study more abundant in the
PP as compared to the LL and DP, and similar trends were observed for the dominant
Fibrobacter and Treponema genera of these phyla. An opposite pattern for these genera was
reported recently [65,75]; however, both these studies used DNA as a template for defining
communities.

Regarding the eukaryotic community, the protozoan phylum Ciliophora was the
most dominant. A similar result was reported previously [19]. A high abundance of the
Entodinium genus in high-concentrate-fed (LL and PP) cows in our study is similar to
other studies, where a high dominance of Entodinium in concentrate-fed Korean cows [76],
malt meal-fed cattle [77], high-corn silage and grain-fed cows [55,78], and concentrate-fed
Jersey cows [79] was reported. A study by Zhang et al. [52] showed a linear increase in
the abundance of the Entodinium genus with the increase in the amount of concentrates
in the diet. Similarly, many culture-based studies also reported an increase in the number
of Entodinium genus members with the increase in dietary concentrate proportion in
ruminants [53,54]. The entodiniomorphid protozoa are highly resistant to low ruminal
pH [53], possess an ability to engulf starch [80] and amylase activity [81], and thus play an
important role in the removal of free starch from high-grain-fed ruminants [80].

Our study reported a significant increase in the relative abundance of the Dasytricha
genus from 1.46% and 2.21% (LL and PP, respectively) to 14.28% (DP) with decreasing
dietary corn silage proportions; however, the relative abundance of the Isotricha genus
remained unaffected (p = 0.59) by dietary changes (Figure 5, Table S2). The high abundance
of Dasytricha in high-forage-fed DP cows in our study was similar to other studies, where
the abundance of Dasytricha sp. increased with increasing dietary forage proportion [82,83]
as well as in sugarcane-fed cattle [84] and was negatively impacted by dietary corn silage
proportions [78]. The increased proportion of holotrich ciliates (Dasytricha ruminantium and
Isotricha species) in the rumen of high-forage cows in our study was probably due to their
strong adherent ability towards solid feed particles and the rumen wall, thus preventing
them from being washed away from the rumen [85]. Another possible explanation could
be an increased amount of soluble sugar from the meadow hay in the DP ration. This
would be supported by the fact that the Dasytricha genera is characterized by prominent
cellobiosidase and glucosidase activity but minor fibrolytic activity [86].

However, we cannot confirm this hypothesis, since the focus of our research was on
forage diet modification related to the physiological state of the cow during the transition
period. Thus, we focused on fiber content and not soluble sugar in the given diet. The use
of a high-forage diet during the DP also increased the relative abundance of Eudiplodinium
and Ostracodinium genera compared to the other physiological stages (Figure 5, Table S2).
A linear decrease in the relative abundance of Ostracodinium with an increase in the amount
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of dietary concentrate proportion has been previously reported [52]. The species of Eu-
diplodinium and Ostracodinium possess high cellulolytic activity [54,87]. The preferential
cellulose uptake by Eudiplodinium maggii and its ability to rapidly digest cellulose and
synthesize amylopectin from cellulose [88] highlights the importance of this protozoal
genera in cellulose metabolism of high-forage-fed dairy cows.

5. Conclusions

The approach of the RNA-based amplicon sequencing method allows for an accurate
prediction of metabolically-active rumen bacterial and protozoal communities. Particularly,
in the study on the effects of different factors affecting the ruminal microbial populations
(i.e., diets, stress, climatic conditions, pathologies, etc.), the ability to distinguish between
active and inactive, lysed or dead microorganisms is essential. The results of this ex-
periment showed that the physiological stage and the relative diet modification affects
significantly the composition of the bacterial and protozoal communities, especially during
the dry period, when the largest changes of the diet composition are required.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms9040754/s1, Table S1: Relative abundance (%) of major bacterial taxa during
different physiological stages of dairy cows; Table S2: Relative abundance (%) of major eukaryotic
taxa during different physiological stages of dairy cows.
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