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The fate of ongoing infectious disease outbreaks is predicted through repro-
duction numbers, defining the long-term establishment of the infection, and
epidemicity indices, tackling the reactivity of the infectious pool to new
contagions. Prognostic metrics of unfolding outbreaks are of particular
importance when designing adaptive emergency interventions facing real-
time assimilation of epidemiological evidence. Our aim here is twofold.
First, we propose a novel form of the epidemicity index for the characteriz-
ation of cholera epidemics in spatial models of disease spread. Second, we
examine in hindsight the survey of infections, treatments and containment
measures carried out for the now extinct 2010–2019 Haiti cholera outbreak,
to suggest that magnitude and timing of non-pharmaceutical and vacci-
nation interventions imply epidemiological responses recapped by the
evolution of epidemicity indices. Achieving negative epidemicity greatly
accelerates fading of infections and thus proves a worthwhile target of con-
tainment measures. We also show that, in our model, effective reproduction
numbers and epidemicity indices are explicitly related. Therefore, providing
an upper bound to the effective reproduction number (significantly lower
than the unit threshold) warrants negative epidemicity and, in turn, a
rapidly fading outbreak preventing coalescence of sparse local sub-threshold
flare-ups.
1. Introduction
Much work on the mathematical description of unfolding cholera outbreaks has
been put forth in the aftermath of the disastrous Haiti epidemic, which started
in 2010 [1–3]. Cholera is an infectious waterborne disease caused by contami-
nation with Vibrio cholerae, a bacterium that colonizes the intestine after
ingestion and can cause, if untreated, severe dehydration and electrolyte loss
resulting at times in the death of the host. As infected individuals shed patho-
gens through their faeces, high bacterial loads may reach communities’ water
supplies and fuel the infection cycle in settings where basic sanitation is lacking.

One of the most severe cholera outbreaks in recent history struck Haiti just
months after a catastrophic earthquake had hit the country on 12 January 2010,
imposing a major death toll and effectively destroying whatever sanitation and
transportation infrastructures pre-existed. Sadly, cholera—at that time unknown
to the island for more than two centuries—was accidentally seeded into the
country from Nepal, where a severe cholera outbreak had been ongoing [2,4].
Given the lack of basic sanitation infrastructure and the obvious unprepared-
ness of the population, cholera quickly propagated through the whole
country showing remarkable spatial signatures [1,2,4–10]. In 2013, the Haitian
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health authorities, jointly with public and private partners,
teamed up to establish a protocol for eradicating the disease
from Haiti [2]. The chosen strategy consisted of non-pharma-
ceutical interventions (NPIs), such as targeted water,
sanitation and hygiene (hereafter WaSH) interventions,
deployed intensively and in a capillary manner [2], combined
with a vaccination campaign of large proportions—and
difficult logistics [9,11]. WaSH interventions were carried
out by rapid response teams depending on an alert system
and involved, e.g. educational sessions for the local popu-
lation, distribution of chlorination and sanitation products,
nursing support and additional prophylaxis. These inter-
ventions sought to curb the persistence of V. cholerae in the
environment by reducing local and global exposure to con-
taminated waters, and halting the shedding of extremely
high and initially hyperinfectious bacterial loads from
infectious individuals into the aquatic reservoirs, where
pathogens can survive long enough to close the transmission
cycle [3,12,13]. Vaccination protocols and deployment had
to be adapted in time, e.g. because of extreme events like
hurricane Matthews ravaging the southwest of Haiti [14].

Here, we move from a detailed understanding of the
effects of each WaSH intervention carried out in space and
time in Haiti, to investigate whether reliable prognostic indi-
ces exist that would allow a team of on-field epidemiological
experts to rapidly decide the best interventions at any given
stage of an unfolding cholera epidemic. To that end, in this
work, we shall adapt an extensively used family of spatio-
temporal epidemiological models [3,5,6,14–19] to account
for the effect of WaSH interventions. This containment
effect is connected to a decrease in the rates governing the
exposure to the infection and the contamination of water
reservoirs, which in turn affect the reproduction number
(the number of secondary infections caused by an infected
individual, which may be derived by a variety of methods
[20–24]). In a naive population (i.e. lacking any prior immu-
nity), the basic reproduction number R0 discriminates
between a spreading epidemic eventually leading to endemic
transmission (R0 . 1) and a short-lived outbreak asymptoti-
cally waning towards a disease-free equilibrium (R0 , 1).
Analogously, effective reproduction numbers Rt are
employed when susceptible individuals do not comprise
the entire population, and/or time-dependent containment
measures or environmental forcing are accounted for
[3,23,25]. Therefore, in the present work, we shall also estab-
lish and compute conditions for possible long-term
circulation of the pathogen either in uncontrolled settings
(R0), or else when containment efforts are deployed (Rt),
using a next-generation matrix approach suitable to tackle
spatial systems like those where human mobility is a
significant driver of infections [26–29].

It has been noted, however, that both R0 and Rt overlook
an epidemiological system’s short-term transient response to
a perturbation of its state (say, the local injection of a number
of infectious individuals through human mobility). Whatever
the long-term attainment of disease-free conditions, the
nature and the extent of local transient responses following
a perturbation may influence the geography of an unfolding
outbreak. For instance, local subthreshold flare-ups may have
severe consequences in terms of death toll, hospital capacity
or economic damages, and in terms of coalescence of local
outbreaks [29,30]. Generalized reactivity analysis, a recently
developed methodological framework for the study of
transient dynamics in ecological systems subject to external
perturbations [3], may thus be applied [29–33]. Generalized
reactivity focuses on the relative contribution of the state-
space components of a metapopulation or metacommunity
disease ecology model to transient behaviour following an
impulsive perturbation. It can be used to define a
threshold-type quantity, termed the epidemicity index.
Here, we shall study a proper formulation of such index for
cholera models, where the need to characterize the ecological
reservoirs of the bacterial component poses interesting math-
ematical challenges. In fact, generalized reactivity analysis
requires the definition of a proper eco-epidemiological
output transformation of the relevant state variables, whose
transient dynamics is then determined by the dominant
eigenvalue of a suitable Hermitian matrix obtained from
the Jacobian associated with the equilibrium and the system
output transformation [29,30,33]. Here, we shall investigate
and apply strategies for the computation of the epidemicity
index proxied by the effective reproduction number as a
prognostic tool to complement the design of emergency inter-
vention strategies. Our results may find applications in the
design of emergency interventions facing the kind of trade-
offs typical of decision-making on alternative strategies for
containment measures during unfolding cholera outbreaks.
2. Methods
2.1. Data sources
Weekly incidence data to calibrate the model were gathered from
the epidemiological bulletins provided by the Haitian Ministry
for Public Health and Population [34] and are available at a
departmental level. Population distribution has been obtained
through the Institut Haïtien de Statistique et d’Informatique.
Non-pharmaceutical interventions (NPIs) data are available
from the literature [9]. The information about all interventions
deployed, originally available on a municipal and weekly scale,
has been geographically upscaled to the departmental level
and temporally downscaled (assuming a constant intervention
rate) at the daily scale. Rainfall data have been gathered from
two sources. Measurement up to March 2015 come from the
TRMM 3B42 RT Derived Daily Product (https://disc2.gesdisc.
eosdis.nasa.gov/dods/TRMM_3B42RT_Daily_7.info), while
subsequent data were gathered from GPM satellite-based
precipitation measurements (https://disc.gsfc.nasa.gov/).

2.2. A cholera modelling framework
We adopt a spatially explicit SIRBV compartmental model pro-
gressively improved and verified [5,6,14,15,18,30,35,36] that
studies the demography of the disease within local communities
compartimentalized into classes depending on their health
status. In each community i, we specifically identify the coupled
rates of change of: susceptibles (Si); symptomatic infected indi-
viduals (Ii) (an individual who has contracted cholera and is
currently shedding pathogens at a rate exceeding six stools per
day); asymptomatic infected individuals (Ai) who have con-
tracted cholera but do not show its clinical manifestations;
recovered individuals (Ri), who developed acquired immunity
for a given time span following either symptomatic or asympto-
matic infection. Because the cholera vaccine is administered in
two doses, each compartment is split into three different cohorts,
namely unvaccinated, once-vaccinated and twice-vaccinated
individuals. This additional stratification makes it possible to
account for differential vaccine efficacy depending on the
number of doses received (e.g. [37]). WaSH interventions (local
measures aimed at safe water distribution and the enforcement
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of preventive epidemiological measures of public health; e.g.
[1,2,4]) are also accounted for in view of the importance of
their deployment in the Haiti outbreak.

The spatial structure of the model is described by a network,
where the nodes are the 10 Haitian administrative depart-
ments and the links represent mobility matrices for healthy
(i.e. mobile) individuals. We consider that a fraction m of the
population is actually mobile and may become exposed to
pathogens not only in their home community but also when
travelling. We need to model the probability that a traveller
originating from a community, say i, will reach another commu-
nity, say j, as destination, and to this end gravity or radiation
models are used (see [3,38,39]). Here, because of the
spatially heterogeneous population density within Haiti [3],
we relied on a gravity model by quantifying the normalized
flux Qij of mobile susceptibles from node i to node j as
Qij ¼ Hj e�dij=D=½Pk=i Hk e�dik=D�, where Hj is the population of
the destination community, dij is the distance between origin
and destination communities (properly determined depending
on the prevailing transportation means) and D is a scaling par-
ameter that can be estimated through model fitting. The
mobility model has been firstly defined on small geographical
units corresponding to the Haitian watersheds [5,6,15] and
later upscaled to the departmental level proportionally to the
resident population [14].

In addition to 12 epidemiological compartments, we further
implemented a supplementary departmental compartment
representing the bacterial concentration in the local aquatic
environment (Bi), which effectively drives the spread of the epi-
demic as contagion is usually contracted by ingesting a body
mass-dependent dose of pathogens [3,6,35,40]. The abundance
of the pathogen in the environment is assumed to decay expo-
nentially at rate μB and replenished proportionally to the
current number of infected Ii. The compartment of susceptibles
is supplied by a constant recruitment term μHi, where μ is the
baseline human mortality rate (affecting equally all other
human compartments of the model in the given ith node) and
Hi is the population size at demographic equilibrium. Key to
the descriptive power of the model is the formulation of the
force of the infection [6,19,35], describing the rate at which
susceptibles are exposed to pathogens

F iðtÞ ¼ ð1�mÞbiðtÞ
Bi

Bi þ 1
þm

X
j=i

QijbjðtÞ
Bj

Bj þ 1
, ð2:1Þ

where we allow infection for both the non-mobile (1−m) fraction
of the population, which can only get infected locally, and the
mobile fraction of the population (m), which may contract the
pathogen also while travelling. The force of infection depends
on the local exposure rate βi(t), which reflects the probability
per unit time that susceptible individuals come into contact
with contaminated water, and the instantaneous local pathogen
abundance in the ith compartment, Bi. The bacterial compart-
ment is scaled and computed as Bi ¼ Bw

i =K where Bw
i is the

actual bacterial concentration in the local population in the ith
department and K is the half saturation constant, the concen-
tration that would yield a 50% chance of becoming infected if
exposed to it. It is also assumed that the aquatic reservoir
volume is directly proportional to the abundance of resident
people [6,40]. The latter is included in the force of infection
through a logistic response curve [40]. At the Haitian departmen-
tal scale, hydrological transport ruling the spread of pathogens
through river networks may be neglected [15]. Also, based on
previous analyses, a commonly adopted specific compartment
of exposed individuals E [8] has been ruled out by formal
model comparison via the Akaike criterion [6]. The weekly
recorded infections in week ending on day t are computed as
CiðtÞ ¼

Ð t
t�7 sF iðtÞSiðtÞdt, being σ the symtomatic fraction of

newly infected. NPIs, such as WaSH actions, as well as reports
of recent disease incidence in a territory, may condition large-
scale public behaviour, thereby resulting in altered exposure
patterns. We model nodal NPIs as a rate of instantaneous inter-
ventions deployed and we denote it as NPIsi(τ) being i the
community where NPIs are deployed. Clearly, weekly deployed
(i.e. reported) interventions are WaSHiðtÞ ¼

Ð t
t�7 NPIsiðtÞdt. We

assume, after some preliminary computations unreported here,
that the exposure rate βi(t) decreases following an exponential
law after the occurrence of many cases or after NPIs
interventions:

biðtÞ ¼ b0 exp � 1
Hic

ðt
t�t0

sF iðtÞSiðtÞdt
�

�
ðt
t�tw

NPIsiðtÞ
Hi

1� t� t

tw

� �
dt

� �j1
#
, ð2:2Þ

where t0 represents the memory of public perception of the infec-
tion risk, ψ is a parameter scaling the past disease incidence with
the nodal population Hi, tw is the duration of NPIs’ effectiveness,
and ξ1 is a shape parameter. NPIs are weighted linearly so that
their efficacy ranges between 1 at the time the intervention is
deployed and 0 when the given NPI has been deployed since
tw days. The two integrals are numerically approximated with
a standard rectangular integration method, with step equal to 1
day. We normalized the disease in incidence and the NPIs with
the nodal population to guarantee homogeneity across units.
In addition, detected symptomatic infections Ci(τ) and NPIsi(τ)
are neglected with τ < 0 as they refer to pre-outbreak time-
points. Susceptible individuals becoming infected at rate F iðtÞ
can either develop symptoms (a fraction σ of those exposed) or
not (fraction 1− σ). Symptomatic individuals can die because
of the illness at rate α or recover at rate γ. They contribute to
onward cholera transmission by shedding V. cholerae bacteria
into the local aquatic reservoir at a rainfall-enhanced rate
[6,8,41]. We hypothesize that pathogen shedding by infected
individuals is also affected by NPIs, namely that the larger the
amount of recent sanitary interventions, the lower the shedding
rate. The shedding rate thus reads

uiðtÞ ¼ u0[1þ fJiðtÞ] exp �
ðt
t�tw

NPIsiðtÞ
Hi

1� t� t

tw

� �
dt

� �j2
" #

,

ð2:3Þ

where Ji(t) is the incoming rainfall, θ0 is the scaled number of
bacteria shed per quota of the total resident population, ϕ is
the rainfall contamination enhancement parameter and ξ2 is a
shape parameter. NPIs are weighted in the same way as in
(2.2) and similar numerical integration techniques are employed.
Asymptomatic individuals shed less bacteria (say, by a reduction
factor r < 1) than symptomatic and clear the infection at rate γ.
Recovered individuals obtain temporary immunity to cholera
infection before becoming susceptible again at rate ρ. All individ-
uals not showing clinical signs of cholera infection (i.e.
susceptible, asymptomatic and recovered people) are considered
eligible for the vaccine. The vaccination rates are calculated as

ndi ðtÞ ¼
first doses distributed in node i on day t

SiðtÞ þ RiðtÞ þ AiðtÞ ð2:4Þ

and

nddi ðtÞ ¼ second doses distributed in node i on day t
S1i ðtÞ þ R1

i ðtÞ þ A1
i ðtÞ

ð2:5Þ

for first and second doses, respectively. One or two doses of vac-
cine are assumed to effectively protect from infection only a
fraction hd

i ðtÞ and hdd
i ðtÞ of the recipients, respectively. Super-

scripts of the epidemiological compartments S, A and R denote
the number of vaccine doses received.
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Figure 1. Outline of the model compartments and their interactions.
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To summarize, in each node i, our epidemiological model is
governed by the following set of ordinary differential equations:

_Si ¼ mðHi � SiÞ � F iðtÞSi � ndi ðtÞSi þ rRi ð2:6aÞ
_Ii ¼ sF iðtÞSi � ðgþ aþ mÞIi ð2:6bÞ

_Ai ¼ ð1� sÞF iðtÞSi � gþ mþ ndi ðtÞ
� �

Ai ð2:6cÞ
_Ri ¼ gðIi þ AiÞ � mþ rþ ndi ðtÞ

� �
Ri ð2:6dÞ

_S
1
i ¼ ndi ðtÞSi � F iðtÞ 1� hd

i ðtÞ
� �

S1i � mþ nddi ðtÞ� �
S1i þ rR1

i ð2:6eÞ
_I
1
i ¼ sF iðtÞ 1� hd

i ðtÞ
� �

S1i � ðgþ aþ mÞI1i ð2:6fÞ
_A
1
i ¼ ð1� sÞF iðtÞ 1� hd

i ðtÞ
� �

S1i þ ndi ðtÞAi � [gþ m

þ nddi ðtÞ]A1
i ð2:6gÞ

_R
1
i ¼ gðI1i þ A1

i Þ þ ndi ðtÞRi � rþ mþ nddi ðtÞ� �
R1
i ð2:6hÞ

_S
2
i ¼ nddi ðtÞS1i � F iðtÞ 1� hdd

i ðtÞ� �
S2i � mS2i þ rR2

i ð2:6iÞ
_I
2
i ¼ sF iðtÞ 1� hdd

i ðtÞ� �
S2i � ðgþ aþ mÞI2i ð2:6jÞ

_A
2
i ¼ ð1� sÞF iðtÞ 1� hdd

i ðtÞ� �
S2i ðtÞ þ nddi ðtÞA1

i �ðgþ mÞA2
i ð2:6kÞ

_R
2
i ¼ gðI2i þ A2

i Þ þ nddi ðtÞR1
i � ðrþ mÞR2

i ð2:6lÞ

_Bi ¼ �mbBi þ uiðtÞ I
P
i ðtÞ
Hi

ð2:6mÞ

and IP
i ðtÞ ¼ Iti ðtÞ þ r ð1�mÞAt

iðtÞ þm
X
j=i

Q jiAt
jðtÞ

2
4

3
5, ð2:6nÞ
where: i = 1, N indexes the N = 10 Haitian departments con-
sidered here; and Xt

i ðtÞ ¼ XiðtÞ þ X1
i ðtÞ þ X2

i ðtÞ, X∈ {I, A}, is the
total abundance of infected people, either symptomatically
(X = I) or asymptomatically (X =A), regardless of their vacci-
nation status. See the electronic supplementary material for
additional details. The scheme of the model is illustrated in
figure 1.
2.3. Parameter calibration
We employed the DREAMZS algorithm [42,43] to calibrate the
model against empirical data (i.e. reports of local weekly disease
incidence). The algorithm implements several (in our case, three)
Markov chains that efficiently explore the parametric hyperspace
and converge to the posterior distribution. As we have no prior
knowledge regarding the posterior distribution, we initialize
the algorithm with a broad flat uniform distribution for each of
the parameters. For the sake of simplicity, we implemented the
negative residual sum of squares as our objective function, see
electronic supplementary material. Specifically, we calibrate our
model in two phases. Initially, all parameters unrelated to
WaSH interventions are fitted between 20 October 2010 and
28 June 2013. The parametric set that maximizes the objective
function is then applied to the whole period, while WaSH
parameters are calibrated between 28 June 2013 and 30 June 2017.

All Markov chains (see also electronic supplementary
material) converged to a stable posterior distribution, and the



Table 1. List of model parameters, their prior distribution and values associated with the best fit.

definition symbol prior value units

referenced parameters

life expectancy 1/μ — 61.4 [44] year

recovery rate γ — 0.2 [6] day−1

cholera fatality rate α — 0.004 [16] day−1

baseline model parameters

baseline shedding rate θ0 [0; 10] 0.336 day−1

mobile share m [0; 1] 0.152 —

scaling distance D [0; 500] 1.873 km

rainfall contamination ϕ [0; 20] 0.069 day mm−1

loss of immunity rate ρ [0; 1] 0.018 day−1

symptomatic share σ [0; 0.3] 0.022 —

pathogenic decay μB [0; 1] 0.135 day−1

baseline exposure rate β0 [0; 10] 6.643 day−1

prevalence scaling ψ [0; 10] 0.080 —

memory duration t0 [8; 985] 941 day

asymptomatic shedding reduction r [0; 1] 5.21 × 10−5 —

NPI-specific parameters

scaling exponent for exposure ξ1 [0; 5] 0.160 —

scaling exponent for shedding ξ2 [0; 5] 0.095 —

NPIs effectiveness duration tw [0; 365] 235 day
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best fit yielded a Nash–Sutcliffe efficiency (see [6] and electronic
supplementary material) of 0.851 throughout the entire
simulated time span. The calibration was stopped when the
Gelman–Rubin convergence diagnostic index remained steadily
below the threshold of 1.05 (electronic supplementary material).
Table 1 shows the parametric set that endows the model with
the best fit of the computed and observed cholera incidence in
the 10 Haitian departments, while figure 2 shows the best fit
obtained for the simulation. The chosen model is able to
reproduce all epidemic peaks due to the variety of disease-
revamping mechanisms, in particular those due to intense
tropical rainfall washing out open-air defaecation sites, which
are the norm in Haiti [36]. The increase in exposure rates
resulting from the loss of cautious behaviour that may
typically follow a low-incidence period [6] was also con-
sidered. Finally, including NPIs into the adopted model
allows one to properly reproduce the actual real-time
dynamics of the Haitian cholera outbreak. In this way, in
fact, the model can take into account not only the dynamics
of the infection but also human interventions aiming to
stem the propagation of cholera in Haiti. This is therefore
an improvement of results that were obtained by earlier ver-
sions of this model (see e.g. [19]) that did not explicitly
consider WaSH efforts nor hypothesized a shorter duration
of acquired correct behaviour following a period when
cholera transmission was rather sustained.

The calibrated parameters suggest that around 15% of the
population may be considered mobile to the effects of disease
spread, thus contributing to cross-contamination between
different departments. To better grasp the influence of each
parameter on the simulated number of total recorded cholera
infections, we performed a sensitivity analysis (figure 3) where
each parameter was perturbed with a +10% variation. The
most sensitive parameters proved to be the symptomatic fraction
of new infections σ, the pathogens’ natural mortality μB, the
baseline exposure rate β0 and the baseline shedding rate θ0. The
model is also sensitive to the duration of the acquired correct
behaviour t0.

The calibration of the epidemiological model was deemed
satisfactory, as the model reproduces reasonably well the epi-
demic unfolding—even when figures become small and a
stochastic modelling framework might have been more appropri-
ate [3]. The uncertainty range is computed by resampling the
posterior distributions as in [14] (see electronic supplementary
material). An increase in uncertainty can be observed around
early July 2013, due to the resampling of the posterior distri-
butions of the NPI parameters. The loss of immunity rate
equals 0.018 day−1, corresponding to a mean duration of
acquired immunity slightly exceeding two months, which is
lower than the values commonly reported by WHO, which
attest post-symptomatic infection immunity to around 3 years
[45]. However, this parameter averages between symptomatic
and asymptomatic infections, as asymptomatic infections
confer a shorter post-recovery immunity and only 2.2% of the
simulated infections are symptomatic. This figure, which is sub-
stantially lower than estimates such as [46], could be explained
by misreporting of symptomatic or pauci-symptomatic
individuals, which is not explicitly accounted for in this model.
2.4. Stability of disease-free equilibrium and next-
generation matrices

Our derivation follows the approach traced by a number of rel-
evant contributions [26,30,33,35,47,48]. Specifically, we evaluate
our key epidemiological indices, i.e. the effective reproduction
number and the epidemicity index, in a temporal and spatially
explicit manner. The epidemicity index requires the specification
of which states-at-infection (sensu [34]) are included to calculate
the norm of the system output y. We are addressing the
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symptomatically infectious compartment with the output being
defined as follows: [30,31]:

yðtÞ ¼ {IiðtÞ; I1i ðtÞ; I2i ðtÞ, i ¼ 1, . . . , 10}, ð2:7Þ
whose norm is

kyðtÞk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kIðtÞk2 þ kI1ðtÞk2 þ kI2ðtÞk2

q
: ð2:8Þ

The asymptomatic infectious compartment is hereafter disre-
garded due to its estimated low shedding rate compared to the
symptomatic compartment (see the value of parameter r in
table 1), at a great simplification of the relevant algebra. In this
way, the infectious subsystem, which is used for calculating the
reproduction number (see below), is also restricted to the
vector y. To further simplify the analysis of the model, we
assume bacteria to hold faster dynamics than the other state
variables. As such, we impose a local equilibrium condition

dBi

dt
¼ 0, ð2:9Þ

which allows us to directly compute the bacterial concentration
as a linear function of the infectious pool

BiðtÞ ¼ uiðtÞIP
i ðtÞ

mBHi
, ð2:10Þ

where IP
i is the total infectious pool of node i (see equation

(2.6n)). The system shown in equations (2.6) can be easily rewrit-
ten by leaving out equation (2.6m). The force of infection can be
rearranged accordingly

F iðtÞ ¼ ð1�mÞbiðtÞ
uiðtÞIP

i ðtÞ
uiðtÞIP

i ðtÞ þ mBHi
þm

X
j=i

QijbjðtÞ

� ujðtÞIP
j ðtÞ

ujðtÞIP
j ðtÞ þ mBHj

: ð2:11Þ
The derivative of the force of infection with respect to each of
the symptomatically infected stages Idk (d = 1, 2 are the doses of
vaccine received by an infected individual) yields

@F iðtÞ
@Idk

¼
ð1�mÞbiðtÞ uiðtÞmBHi

[uiðtÞIP
i ðtÞþmBHi]

2 if k ¼ i

mQikbkðtÞ ukðtÞmBHk

[ukðtÞIP
k ðtÞþmBHk ]

2 otherwise.

8<
: ð2:12Þ

One can thus compute the generalized Jacobian matrix that is
associated with the modified ODE system along a given trajec-
tory. Let fp be the generic pth ODE equation and Xq the generic
qth state variable. The elements jpq of the Jacobian matrix J are
defined as

j pq ¼
@fp
@Xq

, ð2:13Þ

and J = [ jpq]. To compute the dynamic disease reproduction
number and the epidemicity index, one should only consider
the infectious subsystem, which corresponds to the state vari-
ables pertaining to the infected stages of the model. The
infectious subsystem y can be obtained from the algebraic
transformation y =Wx of the full system state
x ¼ fSi, Ii, . . . , R2

i , i ¼ 1, . . . , 10g, with

W ¼
0n Un 0n 0n 0n 0n 0n 0n 0n 0n 0n 0n
0n 0n 0n 0n 0n Un 0n 0n 0n 0n 0n 0n
0n 0n 0n 0n 0n 0n 0n 0n 0n Un 0n 0n

0
@

1
A,

ð2:14Þ

where Un and 0n symbolize the identity matrix of size n and the
square null matrix of order n, respectively. The dynamics of the
infectious subsystem are thus described by the reduced-order
Jacobian
Jwt ¼ WJtW
T

¼
sF0tS�FUn sF0tS sF0tS

sF0t(Un � hd)S1 sF0t(Un � hd)S1 �FUn sF0t(Un � hd)S1

sF0t(Un � hdd)S2 sF0t(Un � hdd)S2 sF0t(Un � hdd)S2 �FUn

0
B@

1
CA,

ð2:15Þ
where T indicates matrix transposition; F0 is the matrix whose
terms are the derivatives of the force of infection as defined in
equation (2.11); S, S1 and S2 are diagonal matrices whose non-
zero elements represent the abundance of unvaccinated, once-
vaccinated and twice-vaccinated susceptibles in the 10 Haitian
departments; ηd and ηdd are diagonal matrices whose non-zero
elements are the department-specific vaccine efficacies for first
and second doses, respectively; and F ¼ gþ aþ m.

2.5. Computation of the disease reproduction number
We adopt here the next-generation matrix method [47] to com-
pute the effective reproduction number. Specifically, we
introduce a transmission matrix Tt and a transition matrix St so
that their sum yields the Jacobian matrix of the system

Jwt ¼ Tt þ St: ð2:16Þ
The transmission matrix includes the term related to the rate of
appearance of new infections and is computed as

Tt ¼
sF0S sF0S sF0S

sF0(Un � hd)S1 sF0(Un � hd)S1 sF0(Un � hd)S1

sF0(Un � hdd)S2 sF0(Un � hdd)S2 sF0(Un � hdd)S2

0
@

1
A,

ð2:17Þ
and the transition matrix contains the other infectious-related
terms

St ¼
�FUn 0n 0n
0n �FUn 0n
0n 0n �FUn

0
@

1
A ¼ �FU3n: ð2:18Þ

One can thus define the next-generation matrix as

Kt ¼ �Tt(St)
�1 ¼ � 1

F
Tt, ð2:19Þ

and finally obtain the effective reproduction number as the
spectral radius P(·) of the next-generation matrix

RtðtÞ ¼ P(Kt): ð2:20Þ
2.6. Computation of the epidemicity index
Generalized reactivity regulates the tendency of a dynamical
system, observed through a suitable output transformation of
the system state, to temporarily amplify the effects of an
impulsive perturbation to an otherwise asymptotically stable
equilibrium [30,31]. A reactive transient behaviour is connected
to the sign of the derivative of the norm of the system output
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(i.e. in our case, the infectious subsystem) being positive

dkyk
dt

����
t¼0

. 0: ð2:21Þ

The above condition is verified when the largest eigenvalue
(denoted as λmax(·)) of the Hermitian part of the reduced-order
Jacobian (equation (2.15)) is positive

lmax(HðJwt Þ) . 0, ð2:22Þ
where the Hermitian matrix is defined as HðJwt Þ ¼ ðJwt þ JwT

t Þ=2.
We define the epidemicity index as the largest eigenvalue of the
aforesaid Hermitian matrix

etðtÞ ¼ lmax(HðJwt Þ): ð2:23Þ
Apositive value of the epidemicity index thus denotes a short-term
instability of the disease-free equilibrium, which indicates that epi-
demic flare-ups may develop following a perturbation even in the
presence of an asymptotically stable steady state. On the contrary, a
negative value of the epidemicity index ensures that all the eigen-
values of the Hermitian matrix associated with the infectious
subsystem are negative, thus preventing transient epidemic
spikes from happening. Box 1 further introduces the theoretical
basis for a key development of this paper.
3. Results
Figure 4 shows the computed time series of the two
epidemiological indices introduced above, the effective repro-
duction number Rt (§2.5) and the epidemicity index et (§2.6).
The computed effective reproduction number exhibits frequent
upcrossing of the unit threshold due to seasonal infection
revamping via increased exposure to the disease brought in
by washout of pathogens by tropical rainfall patterns. The epi-
demicity index et displays fluctuations synchronized to those
exhibited by Rt, yet, critically, almost always inside a range of
positive values. This indicates that dry seasons, albeit character-
ized by a sub-threshold Rt, still retain epidemic potential
embedded in positive epidemicities. This, in turn, implies that
a perturbation of the system by new infections may result in a
possibly significant transient response by coalescence of sub-
threshold local outbreaks. A linear regression between the epi-
demicity indices and the corresponding effective reproduction
numbers reveals almost perfect correlation (R2≈ 1) and

etðtÞ ¼ b0 þ b1RtðtÞ, ð3:1Þ

with coefficients β0 =−0.204 ± 0.01 [d−1] and β1 = 0.280 ± 0.01
[d−1]. It is interesting to note that, according to the attempted
linear regression, b0 ¼ �F ¼ �ðmþ aþ gÞ and b1 ¼ Fet=zt,
the latter term corresponding to the average value of the ratio
between the spectral radius of the Hermitian part of the trans-
mission matrix and that of the transmission matrix itself (see
box 1). Only small oscillations of the ratio around the mean
can be observed, and this explains the very high correlation
between Rt and et. The variation of the ratio is influenced by
the evolution of the real-time epidemic and the changing
values of parameters. Figure 5 displays the inverse of the
ratio, which, as specified in box 1, represents the subthreshold
value of the reproduction number that would guarantee a



Box 1. Derivation of the analytical relationship between the reproduction number and the epidemicity index.

The reproduction number and the epidemicity index can be mathematically related through some algebraic manipulations.
Let us now consider a model with a single unvaccinated cohort, out of simplicity. The infectious subsystem of the Jacobian
matrix would read

Jwt ¼ sF0S�FUn, ð2:24Þ
where F0 is defined in equation (2.12). The transmission matrix is defined as

Tt ¼ sF0S, ð2:25Þ
while the transition matrix is simply defined as follows:

St ¼ �FUn: ð2:26Þ
The assumption that the infectious pool is much smaller compared to the whole population of a given node i (IP

i � Hi)
allows simplification of equation (2.12) as follows:

@F iðtÞ
@Idk

¼
ð1�mÞbiðtÞ uiðtÞ

mBHi
if k ¼ i

mQikbkðtÞ ukðtÞ
mBHk

otherwise ,

8<
: ð2:27Þ

which can be rewritten in matrix form as

F0 ¼ [ð1�mÞUn þmQ]bðtÞuðtÞ 1
mB

N�1, ð2:28Þ

where Q is the matrix of the connection probabilities defined via the gravity model, β(t) and θ(t) are diagonal matrices whose
non-zero terms are the exposure βi(t) and the shedding θi(t) rates for each department i, and N is a diagonal matrix whose
non-zero elements are the nodal populations Hi. Let us now proceed with the computation of the basic reproduction number
R0 and the basic epidemicity index e0. In this case, the following properties hold: β(t) = β0Un, θ(t) = θ0Un, and, since at the
beginning of the epidemic the infected compartment has an infinitesimal population and all other compartments are to
be assumed as empty, S =N. The first two properties stem from equations (2.2) and (2.3), where the past disease prevalence
and the number of WaSH interventions can be equalled to zero. As a consequence, matrix F0 simplifies as

F0 ¼ b0u0
mB

[ð1�mÞUn þmQ]N�1 ð2:29Þ

and matrix T0 as

T0 ¼ v[ð1�mÞUn þmQ], ð2:30Þ
where ω = σβ0θ0/μB. Letting

M ¼ [ð1�mÞUn þmQ], ð2:31Þ
we obtain Jw0 ¼ vM�FUn and T0 = ωM. The basic reproduction number is thus given by

R0 ¼ PðK0Þ ¼ Pð�T0ðS0Þ�1Þ ¼ 1
F
PðT0Þ ¼ v

F
PðMÞ ¼ v

F
ð2:32Þ

because matrix M is row-stochastic, hence its spectral radius is equal to one. As for the basic epidemicity index,

e0 ¼ PðHðvM�FUnÞÞ ¼ vP
MþMT

2

� �
�F, ð2:33Þ

because the following property holds:

jHðJw0 � lUnÞj ¼ v
MþMT

2
�FUn � lUn

����
���� ¼ v

MþMT

2
� mUn

����
����, ð2:34Þ

where m ¼ lþF. By setting �m ¼ PððMþMTÞ=2Þ, we obtain

e0 ¼ F�mR0 �F: ð2:35Þ
The general case where we consider effective reproduction numbers and epidemicity indices cannot be solved analytically as
matrix Tt contains parameters β, θ and the state variable S that are spatially and temporally heterogeneous. Let ζt = P(Tt ) =
P(σMβ(t)θ(t)(1/μB)N

−1S) and ϵt = P(H(Tt )). The following relation still holds:

et ¼ F
et
zt
Rt �F: ð2:36Þ

This equation allows us to determine the threshold value that the reproduction number should take for the system to attain a
stable, non-reactive disease-free equilibrium (et≤ 0)

Rt � zt
et
: ð2:37Þ

In the example of §4, the mean across all times of the ratio ζt/ϵt is 0.729.
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negative epidemicity index. This condition has beenmet only in
a tiny temporal window (January 2014) as shown in figure 4d.

We tested alternative scenarios to assess the role of NPIs
with regard to the time evolution of the number of infections
and the two epidemiological indices Rt and et. As a bench-
mark, we considered a scenario where no pharmaceutical
interventions were carried out in addition to the baseline scen-
ario which implements the actual NPIs that have been carried
out. Further additional scenarios were considered, correspond-
ing to two-, five- and 10-fold increases in the number of NPIs
with respect to the actual WaSH effort. Results are shown in
figure 6. The scenario with no NPI led, as expected, to
higher case incidence, effective reproduction numbers and epi-
demicity indices. This is a consequence of the higher exposure
and shedding rates produced in the absence of NPIs. However,
a higher disease incidence is, in turn, expected to induce stric-
ter behavioural consequences limiting exposure for this
scenario [3], as imposed by equation (2.2). This explains why
the two considered epiemiological indices drop to values
that are lower than those simulated in other scenarios after a
high-incidence period, such as the one that might have been
observed during summer 2014. Other scenarios, where the
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number of NPIs was increased with respect to the baseline,
show a reduction in cholera incidence during the period of
NPIs deployment, although only five- and 10-fold increases
actually led to elimination (weekly detected cases C < 1)
within the considered period (figure 6). However, even if the
number of infected people has been brought to zero, the
DFE might remain unstable and reactive, namely the increase
in the number of NPI’s might be insufficient to avoid an epi-
demic caused by an injection of new cases, specially during
periods with heavy rainfall. This can be ascertained by carry-
ing on the calculation of Rt and et even after the disease has
been eliminated. As a matter of fact, figure 6 shows that this
is indeed the case: Rt and et are smaller than the values
obtained in the other scenarios but can be above threshold
under certain conditions.

An additional set of scenarios was created by linking the
number of NPIs carried out with recent disease incidence.
Specifically, we assumed that the number of NPIs deployed
on a given day is proportional, via a factor ζ, to the total cho-
lera incidence experienced during the previous week. Different
effort levels have been foreseen, namely ζ∈ {0.01, 0.02, 0.05,
0.1}, in addition to the baseline scenario reproducing what
actually happened. We simulated these scenarios by assuming
that the deployment of NPIs start on 1 November 2011,
roughly 1 year into the 2010s Haitian cholera outbreak. The
outcomes of these scenarios are detailed in figure 7. The two
scenarios with ζ = 0.01 or ζ = 0.02 (one WaSH intervention
every 100/50 weekly cases), after a first successful reduction
in disease prevalence, led to additional infections with respect
to the baseline scenario, as they are not vigorous enough to
effectively eliminate the pathogen, and as the number of inter-
ventions dropped after a low incidence period, new epidemic
waves take hold. The scenarios with ζ = 0.05 or ζ = 0.1 (one
WaSH intervention every 20/10 weekly cases), instead, pro-
duced an effective response, and elimination would actually
be achieved within the year in both cases. As progressively
more and more interventions were deployed, depending on
the recently recorded infections, cases would then be finally
brought to near zero resulting in the extinction of the epi-
demic. However, since the number of NPIs is proportional to
the number of cases, these scenarios imply a strong reduction
of NPIs after the number of infected people has been brought
near zero. This has the paradoxical effect of increasing the risk
of a new epidemic, should an injection of pathogens occur, as
shown by the above-threshold values of Rt and et in figure 7
corresponding to the two scenarios. This result must be con-
trasted with the one of figure 6 where the number of
implemented NPIs is maintained even after the disease elimin-
ation. In addition, when elimination is swiftly reached with a
massive deployment of NPIs, a larger population of the popu-
lation is left susceptible to infection, which contributes to the
higher values of the two epidemiological indices.

To disentangle the role of vaccination and NPIs towards
cholera’s elimination in Haiti, we also developed additional
scenarios to test a progressive vaccination of different
quotas of the Haitian population, assuming a homogeneous
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vaccination across departments and compared these scenario
with the actual vaccine rollout campaign. Specifically, we esti-
mate that only 5.6% of the Haitian population has been
vaccinated before July 2017 (some 878 173 first doses and
555 315 second doses given, see electronic supplementary
material for additional information). Scenarios of vaccine
deployment are shown in figure 8. According to the model,
and to the temporal limitations thereof, the actual vaccination
campaign in the considered period (November 2016 through
June 2017, see electronic supplementary material) did not
show any significant reduction in disease incidence or in
the key epidemiological indices compared to a no-vaccination
scenario. The effective reproduction number and the epide-
micity index are slightly reduced by this vaccination effort.
On the other hand, an earlier start of the campaign (say,
1 year after the outbreak) and a stronger effort (say, involving
20% of the total population) would have been much more
effective in shortening the duration of the epidemic. More
intense vaccination campaigns, potentially reaching 50% or
95% of the total population, would have obviously led to a
faster elimination of cholera, as well as to lower values of
the reproduction number and the epidemicity index.
4. Discussion
Epidemiological indices such as the effective reproduction
number and the epidemicity index help guide the design of
the deployment of control measures such as NPIs and
vaccination campaigns. These indices can be computed
through an array of different methods, typically stemming
from the computation of the Jacobian matrix of the associated
compartmental model [27,33,35,47]. In this respect, we dyna-
mically computed the infectious subsystem and the related
epidemiological indices. We found that, while the effective
reproduction number fluctuates around its critical value
(Rt ¼ 1), the epidemicity index does not, consistently remain-
ing above its critical value (et = 0). Ascending or descending
trends in the epidemicity index closely follow those of the
effective reproduction number. Remarkably, we found (box
1) that these two indices are linearly related under the assump-
tions of this cholera model, owing to their common roots in the
Jacobian matrix. This correlation thus sheds light on the value
that the effective reproduction number should result in the
sytem not only achieving a disease-free equilibrium condition
asymptotically (Rt , 1) but also avoiding transient amplifica-
tions of impulsive perturbations possibly leading to epidemic
flare-ups (et < 0). According to this relationship, the epidemi-
city index becomes negative (i.e. the system ceases to be
reactive) for values of the effective reproduction number that
are on average

Rt � 0:729: ð4:1Þ
This represents a stricter bound for the reproduction number
than the necessary crossing of the unit value. It could be
used as a more ambitious goal for effective disease control.
The epidemicity index therefore assumes a relevance beyond
the assessment of control measures implemented to fight
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cholera in Haiti. Whether or not the extension to other
infectious diseases is straightforward remains to be seen.
Certainly, in the case of cholera and under the stipulations of
the current model, this condition ultimately provides
additional and safer guidance to policymakers engaged in
the design of emergency interventions.

Although the 2010s Haiti cholera outbreak has now been
declared extinct, different containment measures (such as
NPIs and vaccination) have yet to be comparatively assessed.
Since raw disease incidence is not a good short-term indicator
as to whether a stable disease-free condition has been estab-
lished yet, the computation of the effective reproduction
number may provide a better understanding of the effective-
ness of control measures. To that end, we evaluated the
system’s response in terms of the disease incidence, effective
reproduction number and epidemicity index under different
scenarios of NPI and vaccine deployment. Our model also
indicates that increasing the number of NPIs up to five/10-
fold would have led to elimination of the disease from
Haiti, whereas aggressively deploying NPIs from the onset
of the epidemic (one intervention every 10 recorded infec-
tions) appears to be a more effective—in terms of the total
number of interventions deployed—way of eliminating cho-
lera. This result suggests that massively targeting new
infections is indeed a good strategy, which would not only
lead to elimination in a shorter time span, but also result in
a lower number of total interventions deployed. This is some-
what similar to what has actually been done in Haiti with the
colour-alert surveillance mechanism [9]. The importance of
NPIs has also been suggested by [49]. They analysed the
effect of WaSH interventions and vaccinations up to the
actual elimination of the disease from Haiti. They argue
that, since the vaccinations covered only a little part of the
Haitian population and were rather concentrated in a few
communities, WaSH interventions were indeed an efficient
strategy to bring the outbreak to a halt. This argument is
reinforced by the increasing value of the ratio of NPIs per
detected case, in agreement with our findings. However, we
remark that each deployed intervention directly acts on
people’s exposure and on infectious shedding by reducing
them for a given period. These reductions logically cause
the number of new recorded infections to decrease, but also
due to NPIs’ temporally limited effect, both the effective
reproduction number and the epidemicity index end up
increasing above the values they actually took in the baseline
scenario, thus paving the way for a new outburst. WaSH
interventions are therefore to be seen, from our scenarios,
as temporary containment measures that efficiently reduce
disease incidence in the short run. This is reinforced by the
assumption that exposure depends on incidence-mediated
awareness, and would therefore inevitably increase after a
period characterized by a lower number of new recorded
infections. However, since NPIs do not efficiently reduce
the two considered epidemiological indices to sub-threshold
values, without a comprehensive overhaul of the country’s
water provisioning and sanitation infrastructure, they
cannot guarantee possible revamping of the outbreak trig-
gered by a reintroduction of the pathogen in Haitian
waters. To conclude, WaSH interventions are useful actions
that can powerfully drive the number of infections down if
they start soon after the outbreak begins, are massively
deployed across the population, and their distribution is
maintained even beyond the peak of an epidemic wave, to
properly ensure elimination. Ceasing the deployment of
NPIs too early without having immunized a substantial por-
tion of the Haitian population, and an early return to pre-
epidemic conditions where no containment measures are
taken by the policymakers nor the population could warrant
a re-establishment if the pathogen is somehow reintroduced
or has not been completely removed, which would lead to
new infections, new death and new pressure on the health-
care and economic systems. However note that, in the
proposed model, all NPIs have the same temporal duration,
which might not be the case in reality. Some NPIs, especially
those performed during periods of low incidence (such as
construction toilets and water sanitation systems), might
have a long-term impact and help lowering the successive
transmission.

Vaccination may be a more effective tool to promptly eradi-
cate a cholera epidemic. In this case, our model suggests that
immunization of 20% of the Haitian population would have
halted cholera transmission in approximately 2 years. The effec-
tive reproduction number and the epidemicity index would
also have rapidly dropped to values that are lower compared
to the baseline trajectory. In addition, as the vaccinated popu-
lation would maintain a certain degree of acquired immunity
for roughly 5 years after vaccine administration [37,50], a
long-term reduction in the effective reproduction number and
epidemicity index would have been guaranteed. NPIs, instead,
are immediately effective but may only guarantee a temporary
drop in these epidemiological indices. As a consequence, the
country would be partially secured against any reintroduction
of the pathogen only during this relatively brief interval. Our
findings suggest that considering both the epidemicity index
and the effective reproduction number may help rank (and
target) containment interventions not only in the short- but
also in the long term. Overall, we may conclude that only the
enforcement of containment measures of epidemic cholera for-
cing negative values of the epidemicity index underpins a
rapid elimination of an outbreak.

One additional key result of this study is the strong direct
relationship between the reproduction number (either basic
or effective) and the epidemicity index, which may hold
true also for directly transmitted diseases. In fact, for the com-
putations of the epidemiological indices, we introduced the
assumption that the bacterial compartment is at equilibrium
with (hence, proportional to) the infectious pool. Through
this assumption, the mathematical description of cholera
transmission dynamics becomes similar to that of directly
transmitted diseases. Correlation analysis confirmed the
theoretical predictions introduced in box 1. The implications
of this result are noteworthy. While the necessary condition
of attaining an effective reproduction number less than
unity sheds light on the feasibility, in the long run, of reaching
an asymptotically stable disease-free equilibrium, it does not
provide any sufficient information to prevent transient
blooming responses and the coalescence of sub-threshold
outbreaks. This is a direct consequence of the analysis of
whether the infectious subsystem retains its reactivity. The
definition of a linkage between the two indices shows that
the disease reproduction number must necessarily drop to a
well-defined value lower than unity to prevent the system
from being reactive and possibly temporarily amplify transi-
ent perturbations. As a consequence, policymakers should
consider additional, stricter bounds for Rt when designing
their interventions. This may lead to a better and more
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informed deployment of containment measures, such as vac-
cinations or NPIs. In addition, a linkage between the disease
reproduction number and the epidemicity index would allow
one to compute the latter as a function of the former. While
methods to compute the disease reproduction number with-
out calibrating a compartmental model, and directly from
incidence data exist e.g. [20,25], the epidemicity index does
not have a direct computation available to date.

A limitation of this study is certainly represented by the
incomplete availability of epidemiological data regarding
NPIs, which prevented us from carrying out our analyses
across the entire Haitian cholera outbreak. Therefore, it is
not possible for us to fully disentangle the mutual effective-
ness of vaccinations and NPIs towards the elimination of
the Haitian cholera outbreak. This study could be further
improved by considering a variety of models for NPIs and
formally comparing them through statistical indicators such
as the Akaike information criterion [51].
ce
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5. Conclusion
The following conclusions are worth mentioning:

— a deterministic, spatially explicit mathematical model of
epidemic cholera has been fitted with all the tools
needed to account for an array of containment measures.
We have revisited the stability of the disease-free equili-
brium, identifying indices that characterize either long-
or short-term epidemic behaviour (basic and effective
reproduction numbers, R0 and Rt, versus epidemicity
indices, e0 and et). Properly calibrated, the model and its
related indices show a keen ability to reproduce observed
epidemiological space–time patterns in the notable case
of the Haiti 2010–2019 epidemic;

— the evaluation of alternative intervention scenarios
allowed us to rank NPIs and vaccine deployment strat-
egies in terms of their effectiveness towards elimination
of the disease;
— the enforcement of containment measures of epidemic
cholera is effective in prompting disease elimination
only if forcing negative values of the epidemicity index.
Negative epidemicity in fact warrants a rapid elimination
of an outbreak, differently from effective reproduction
numbers below the unit threshold when epidemicity
values remain positive;

— we found that in cholera compartmental models, under a
mild set of assumptions, the effective reproduction
number and the epidemicity index are related through a
linear relationship. Thus we may identify the upper
bound (significantly lower than 1) for the former to war-
rant a negative value of the latter. This result suggests
new avenues for the design of emergency containment
measures.
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