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Abstract

The diagnosis and treatment of soft tissue sarcomas (STS) have been difficult. Of the diverse histological subtypes,
undifferentiated pleomorphic sarcoma (UPS) is particularly difficult to diagnose accurately, and its classification per se is still
controversial. Recent advances in genomic technologies provide an excellent way to address such problems. However, it is
often difficult, if not impossible, to identify definitive disease-associated genes using genome-wide analysis alone, primarily
because of multiple testing problems. In the present study, we analyzed microarray data from 88 STS patients using a
combination method that used knowledge-based filtering and a simulation based on the integration of multiple statistics to
reduce multiple testing problems. We identified 25 genes, including hypoxia-related genes (e.g., MIF, SCD1, P4HA1, ENO1,
and STAT1) and cell cycle- and DNA repair-related genes (e.g., TACC3, PRDX1, PRKDC, and H2AFY). These genes showed
significant differential expression among histological subtypes, including UPS, and showed associations with overall
survival. STAT1 showed a strong association with overall survival in UPS patients (logrank p = 1.8461026 and adjusted p
value 2.9961023 after the permutation test). According to the literature, the 25 genes selected are useful not only as
markers of differential diagnosis but also as prognostic/predictive markers and/or therapeutic targets for STS. Our
combination method can identify genes that are potential prognostic/predictive factors and/or therapeutic targets in STS
and possibly in other cancers. These disease-associated genes deserve further preclinical and clinical validation.
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Introduction

Recent advances in genomic technologies offer an excellent

opportunity to determine the complete biological characteristics of

neoplastic tissues, resulting in improved diagnosis, treatment

selection, rational classification based on molecular carcinogenesis,

and identification of therapeutic targets. The diagnosis and

treatment of soft tissue sarcomas (STS) have been difficult because

STSs comprise a group of highly heterogeneous tumors in terms of

histopathology, molecular signature, histological grade, and

primary site. These tumors have generally been classified into

subtypes according to their histological resemblance to normal

tissue. The Fédération Francaise des Centres de Lutte Contre le

Cancer (FNCLCC) grading system was defined more than 20

years ago and is still the most commonly used grading system for

STS [1,2]. Treatment of STS is based on both histological subtype

and histological grade. The understanding gained regarding the

molecular pathology of cancer in recent decades suggests that

some tumor types exhibit stand-alone recurrent genetic aberra-

tions, such as chromosomal translocations, that result in gene

fusions, e.g., SYT-SSX in synovial sarcoma (SS) [3], TLS-CHOP
in myxoid/round cell liposarcoma (MLS) [4], and KIF5B-RET in

lung adenocarcinoma [5], or somatic mutations, e.g., KIT in

gastrointestinal stromal tumors (GIST) [6] and 26 mutated genes

(TP53, KRAS, EGFR, and 23 other genes) in lung adenocarci-
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noma [7]. The molecular markers specific to each tumor type are

useful for tumor classification [8]. In contrast, several malignant

tumors, such as malignant fibrous histiocytoma (MFH), are

characterized by numerous nonrecurrent, complex chromosomal

aberrations, and they frequently show overlapping histological

features and immunophenotypes that are difficult for pathologists

to interpret [9]. In particular, the diagnosis of MFH has been a

controversial issue [10–13]. MFH is the most common soft tissue

sarcoma in adults. It has a wide range of histological subtypes [13].

For this reason, discrimination between MFH and other STSs is

difficult, but this discrimination is necessary because there are

significant differences in the 5-year survival rates of the STS

subtypes [14]: 100% for well-differentiated liposarcoma (WLS),

71% for synovial sarcoma (SS), 46% for pleomorphic MFH, and

92% for myxofibrosarcoma (MFS). MFH was renamed undiffer-

entiated pleomorphic sarcoma (UPS) in 2002 by the World Health

Organization (WHO) [15]. MFS was considered a subtype of

MFH before this classification; WHO reclassified MFS as another

subtype of STS [15]. Discrimination between UPS and MFS is

particularly difficult [14] because of their histological similarities

and because of the considerable heterogeneity of UPS [13]. UPS

was previously characterized by global gene expression analysis

using analysis of variance (ANOVA) and clustering analysis [13].

Although some possible prognostic factors were identified, the list

of factors was not complete because the study was conducted

without information on patient outcomes. In the present study, we

hypothesized that some genes can serve both as diagnostic markers

for histological subtyping and as prognostic markers of overall

survival in STS. We used a combination of statistical and

bioinformatic methods to identify those genes.

Many statistical and bioinformatic methods have been proposed

for global biological information analysis in the past 3 decades. For

example, basic local alignment search tool (BLAST) [16],

ClustalW [17], BLAST-based algorithm for the identification of

upstream ORFs with conserved amino acid sequences (BAIUCAS)

[18], and G4 DNA motif region finder by R (G4MR-FindeR) [19]

have been used for sequence analysis; hierarchical clustering [20],

fuzzy k-means [21], and fuzzy adaptive resonance theory

(FuzzyART) [22,23] have been used for gene cluster analysis;

gene set enrichment analysis (GSEA) [24], modified signal-to-noise

(S2N9) [25], and projective adaptive resonance theory (PART)

[26,27] have been used for gene selection; fuzzy neural network

(FNN) [28,29] and boosted fuzzy classifier with a SWEEP operator

(BFCS) [30–32] have been used for the construction of prediction

models; and IntPath [33] and Stringent DDI-based Prediction

[34] were used for analysis of pathways and protein–protein

interactions. The use of statistical or bioinformatic analysis is

practical and useful for clinical diagnosis [35–37] and the

identification of marker genes [38–43]. In the present study, we

focused on microarray data analysis; however, the analysis of data

obtained using next-generation sequencing technologies [44] is a

subject of an upcoming project.

Global analysis of gene expression is a powerful method for the

identification of prognostic/predictive factors and/or therapeutic

targets. However, it is often difficult, if not impossible, to identify

definitive disease-associated genes using genome-wide analysis

alone, primarily because of multiple testing problems. In this

situation, knowledge-based approaches, such as knowledge-based

fuzzy adaptive resonance theory (KB-FuzzyART) [45] and

knowledge-based single nucleotide polymorphism (KB-SNP)

[46,47], are effective and interpretable [48–50]. Online Mendelian

Inheritance in Man (OMIM) is a continuously updated catalog of

human genes and genetic disorders and traits. In the present study,

we used OMIM as a knowledge source for narrowing the list of

candidate genes and applied the OMIM-based method to gene

expression data from STS patients. Thus, we identified 25 genes

that showed significant differential expression among histological

subtypes, including UPS, and showed associations with overall

survival. According to the literature, these genes are useful not

only as diagnostic markers for the discrimination of molecular

pathway-based subtypes but also as prognostic/predictive markers

and/or therapeutic targets for STS. Moreover, these genes are

useful for understanding the mechanisms underlying tumor

progression or metastasis and for the rational design of anticancer

Table 1. Characteristics of the 88 patients with soft tissue sarcoma.

Characteristics STS patients (n = 88)

Gender Male 46

Female 42

Age Median 54

MAD 19

Histological type UPS 20

MLS 20

SS 17

MFS 15

LMS 6

FS 5

MPNST 5

Histological grade 1 14

2 23

3 51

Relapse events Metastasis 43

STS: soft tissue sarcoma, MAD: Median absolute deviation, UPS: undifferentiated pleomorphic sarcoma, MLS: myxoid liposarcoma, SS: synovial sarcoma, MFS:
myxofibrosarcoma, LMS: leiomyosarcoma, FS: fibrosarcoma, MPNST: malignant peripheral nerve sheath tumor.
doi:10.1371/journal.pone.0106801.t001
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therapeutics. Therefore, our combination method of knowledge-

based filtering and simulation based on the integration of multiple

statistics can identify potential prognostic/predictive factors and/

or therapeutic targets in STS and possibly in other cancers.

Materials and Methods

Ethics statement
The study was conducted according to the principles expressed

in the Declaration of Helsinki. The ethics committee of the

National Cancer Center approved the study protocol. All patients

provided written informed consent.

Patients and tumor samples
The characteristics of the 88 STS patients (20 with UPS, 15

with MFS, 17 with SS, 20 with myxoid liposarcoma [MLS], 6 with

leiomyosarcoma [LMS], 5 with fibrosarcoma [FS], and 5 with a

malignant peripheral nerve sheath tumor [MPNST]) enrolled in

this study are shown in Table 1. All patients had received a

histological diagnosis of primary soft tissue tumor at the National

Cancer Center Hospital, Tokyo, between 1996 and 2002 [51], as

shown in Table S1. Tumor samples were obtained at the time of

excision and were cryopreserved in liquid nitrogen.

Microarray analysis
For RNA extraction, trained pathologists carefully excised the

tissue samples from the main tumor, leaving a margin free from

the surrounding nontumorous tissue. The elimination of non-

tumorous stromal cells is necessary for gene expression analysis of

carcinomas because tumor tissues contain a significant number of

nontumorous stromal cells, including fibroblasts, endothelial cells,

and inflammation-associated cells. STS contains non-tumorous

Figure 1. A schematic of gene selection and the simulation based on the permutation test. (A) The knowledge (OMIM)-based method.
The list of OMIM numbers related to cancer (e.g., cancer, carcinoma, sarcoma, tumor, and neoplasm) was selected and converted into Affymetrix
probe IDs in Ensembl. (B) Prefiltering of probe sets. This procedure was based on the number of absent calls and the range of signals. A signal range
(95th percentile to 5th percentile) of .2000 was used as a percentile filter. Furthermore, we excluded probe sets for which the number of absent calls
was .50% (44/88). Probe sets related to cancer were selected using the OMIM-based method. (C) Integration of survival analysis and discriminant
analysis. (D) Clinical data from all patients were permutated. Permutated data for 72 STS patients (20 UPS, 15 MFS, 20 MLS, and 17 SS patients) were
extracted from the permutated data of all patients. For these data, p values (p1) were calculated by applying ANOVA to the log-transformed gene
expression data to discriminate among UPS, MFS, MLS, and SS. In addition, permutated data from 88 patients were used for survival analysis. For
these data, p values (p2) were calculated by applying the logrank test to the binarized gene expression data to analyze the outcomes in the STS
group. The integrated statistic p9 was defined as p16p2. The lowest p9 value was selected for each repetition. This procedure was repeated 100,000
times, and an empirical null distribution was constructed. Using the distribution, the actual p9 value obtained from the real data was converted to the
adjusted p value (based on the correction for multiple testing problems).
doi:10.1371/journal.pone.0106801.g001
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stromal cells that are difficult to exclude because STS originates

from mesenchymal cells. However, in STS, the tumor tissue

contains very few non-tumorous stromal cells and therefore

unlikely to confound the analysis. Hence, laser microdissection

was not performed in this study. Total RNA samples extracted

from the bulk tissue specimens were labeled with biotin and

hybridized to high-density oligonucleotide microarrays (Human

Genome U133A 2.0 Array; Affymetrix, Santa Clara, CA, USA)

comprising 22,283 probe sets representing 18,400 transcripts,

according to the manufacturer’s instructions. The scanned array

data were processed using the Affymetrix Microarray Suite v.5.1

software (MAS5), which scaled the average intensity of all the

genes on each array to the target signal of 1000. The microarray

data from the present study are available in the Genome Medicine

Database of Japan (GeMDBJ) [52] (https://gemdbj.nibio.go.jp/

dgdb/) under the accession number EXPR058P.

Data preprocessing
We excluded 68 control probe sets and 2343 genes that were

subject to cross-hybridization according to NetAffx Annotation

Figure 2. Kaplan-Meier curves for 4 histological types of STS.
P value was calculated by logrank test. UPS: undifferentiated pleomorphic
sarcoma, MLS: myxoid liposarcoma, SS: synovial sarcoma, MFS: myxofi-
brosarcoma.
doi:10.1371/journal.pone.0106801.g002

Table 2. Genes extracted using the simulation based on the permutation test.

Affymetrix probe ID Accession no. Gene symbol p value Integrated statistics p9 Adjusted p value

ANOVA Log-rank test

200832_s_at AB032261 SCD1 2.47E-06 6.06E-03 1.50E-08 6.70E-04

200887_s_at NM_007315 STAT1 1.17E-04 1.91E-02 2.24E-06 3.59E-02

201231_s_at NM_001428 ENO1/MBP1 2.27E-08 1.06E-03 2.40E-11 ,1.00E-05

201508_at NM_001552 IGFBP4 3.21E-06 4.01E-02 1.29E-07 3.76E-03

202236_s_at NM_003051 SLC16A1/MCT1 1.12E-04 6.93E-04 7.77E-08 2.34E-03

202870_s_at NM_001255 CDC20 9.26E-07 6.28E-03 5.81E-09 2.90E-04

203065_s_at NM_001753 CAV1 1.33E-10 3.28E-02 4.35E-12 ,1.00E-05

203323_at BF197655 CAV2 5.67E-10 2.35E-02 1.33E-11 ,1.00E-05

203554_x_at NM_004219 PTTG1 7.33E-09 5.64E-03 4.13E-11 ,1.00E-05

207011_s_at NM_002821 PTK7 2.57E-07 1.89E-02 4.86E-09 2.70E-04

207168_s_at NM_004893 H2AFY/H2AX 2.83E-05 1.80E-02 5.11E-07 1.19E-02

207543_s_at NM_000917 P4HA1 1.06E-08 5.73E-04 6.06E-12 ,1.00E-05

208680_at L19184 PRDX1 5.73E-08 1.64E-02 9.37E-10 6.00E-05

208694_at U47077 PRKDC/DNA-PKcs 1.71E-04 1.31E-02 2.25E-06 3.60E-02

208767_s_at AW149681 LAPTM4B 5.47E-05 1.65E-02 9.04E-07 1.81E-02

209030_s_at NM_014333 CADM1/TSLC1 1.80E-10 4.20E-02 7.59E-12 ,1.00E-05

209031_at AL519710 CADM1/TSLC1 2.10E-11 5.68E-03 1.19E-13 ,1.00E-05

209543_s_at M81104 CD34 2.66E-06 1.54E-02 4.10E-08 1.33E-03

210495_x_at AF130095 FN1 3.90E-08 1.78E-02 6.96E-10 2.00E-05

210559_s_at D88357 CDK1/CDC2 7.69E-07 4.30E-02 3.31E-08 1.14E-03

212097_at AU147399 CAV1 1.54E-09 2.95E-03 4.53E-12 ,1.00E-05

212464_s_at X02761 FN1 1.93E-08 1.78E-02 3.44E-10 1.00E-05

217294_s_at U88968 ENO1/MBP1 8.81E-08 2.33E-02 2.05E-09 1.50E-04

217871_s_at NM_002415 MIF 5.67E-08 1.46E-02 8.29E-10 5.00E-05

218308_at NM_006342 TACC3 2.82E-05 2.26E-02 6.38E-07 1.40E-02

218502_s_at NM_014112 TRPS1 1.48E-18 3.99E-02 5.90E-20 ,1.00E-05

218755_at NM_005733 KIF20A/MKlp2 3.01E-06 2.02E-02 6.08E-08 1.94E-03

219918_s_at NM_018123 ASPM 1.22E-05 1.64E-02 2.00E-07 5.51E-03

220942_x_at NM_014367 FAM162A/HGTD-P 4.44E-05 3.21E-02 1.42E-06 2.56E-02

Adjusted p values were calculated using the permutation test (100,000 repeats).
doi:10.1371/journal.pone.0106801.t002
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(www.affymetrix.com). Furthermore, we excluded those genes for

which more than 50% (44/88) of the samples showed an absent

call (i.e., the detection call determined by MAS5 based on the

p value of the one-sided Wilcoxon signed-rank test; an absent call

corresponds to p$0.065, which is the default threshold in MAS5).

An absent call indicates that the expression signal was undetect-

able. Genes showing low variance, i.e., a signal range value (95th

percentile to 5th percentile) of less than 2000, were excluded [40].

Furthermore, we conducted an OMIM-based reduction of the

number of candidate genes. In total, 1412 genes were selected, to

which we applied log-transformation or binarization using the

median value as a threshold for each gene, as shown in Fig. 1. The

2 types of datasets, log-transformed and binarized, were used for

ANOVA and the logrank test, respectively.

Simulation based on the combination of a permutation
test and the integration of multiple statistics

We previously proposed a statistical simulation based on a

permutation test and the integration of multiple statistics [51].

This method was used in the present study. We first calculated p
values using ANOVA to discriminate among histological subtypes,

including UPS, MFS, SS, and MLS. We also calculated p values

by means of the logrank test in the survival analysis of all STS

patients in relation to the 1412 filtered genes. We defined the

integrated statistic p9 as p16p2, where p1 is the p value from

ANOVA and p2 is the p value from the logrank test. The same

STS patients (n = 72; 20 UPS, 15 MFS, 17 SS, and 20 MLS

patients) were used in both of these tests. The integrated statistic p9

could be underestimated by the use of 72 common samples.

Therefore, to cancel this influence, we conducted a simulation

based on the permutation test, as shown in Fig. 1, to estimate the

adjusted p9 values as well as the multiple testing problems.

Statistical analysis
The median value of the gene expression signals for each gene

was calculated, and the patients were distributed into 2 groups

using the median value as a threshold for each gene. Logrank tests

[53] were performed for overall survival of STS patients for each

Table 3. Correlation analysis based on Spearman’s rank correlation coefficient between gene expression data and the histological
grade (or metastasis status).

Affymetrix
probe ID Accession no. Gene symbol With histological grade With metastasis

r p value r p value

200832_s_at AB032261 SCD1 20.0191 8.60E-01 0.0237 8.26E-01

200887_s_at NM_007315 STAT1 20.146 1.73E-01 20.177 9.95E-02

201231_s_at NM_001428 ENO1/MBP1 0.356 6.66E-04 0.247 2.01E-02

201508_at NM_001552 IGFBP4 20.247 2.04E-02 20.211 4.87E-02

202236_s_at NM_003051 SLC16A1/MCT1 0.400 1.12E-04 0.341 1.17E-03

202870_s_at NM_001255 CDC20 0.413 6.27E-05 0.204 5.65E-02

203065_s_at NM_001753 CAV1 20.250 1.87E-02 20.159 1.39E-01

203323_at BF197655 CAV2 20.363 5.11E-04 20.094 3.82E-01

203554_x_at NM_004219 PTTG1 0.402 1.05E-04 0.132 2.20E-01

207011_s_at NM_002821 PTK7 0.265 1.26E-02 0.232 2.95E-02

207168_s_at NM_004893 H2AFY/H2AX 0.411 7.03E-05 0.161 1.35E-01

207543_s_at NM_000917 P4HA1 0.449 1.12E-05 0.424 3.89E-05

208680_at L19184 PRDX1 0.258 1.51E-02 0.111 3.05E-01

208694_at U47077 PRKDC/DNA-PKcs 0.409 7.64E-05 0.229 3.21E-02

208767_s_at AW149681 LAPTM4B 0.329 1.75E-03 0.130 2.27E-01

209030_s_at NM_014333 CADM1/TSLC1 0.196 6.70E-02 0.136 2.05E-01

209031_at AL519710 CADM1/TSLC1 0.231 3.03E-02 0.143 1.85E-01

209543_s_at M81104 CD34 20.363 5.11E-04 20.239 2.52E-02

210495_x_at AF130095 FN1 0.286 6.99E-03 0.096 3.73E-01

210559_s_at D88357 CDK1/CDC2 0.435 2.34E-05 0.259 1.50E-02

212097_at AU147399 CAV1 20.237 2.64E-02 20.163 1.28E-01

212464_s_at X02761 FN1 0.286 6.99E-03 0.0944 3.82E-01

217294_s_at U88968 ENO1/MBP1 0.387 1.97E-04 0.187 8.03E-02

217871_s_at NM_002415 MIF 0.421 4.41E-05 0.308 3.47E-03

218308_at NM_006342 TACC3 0.333 1.52E-03 0.136 2.05E-01

218502_s_at NM_014112 TRPS1 0.276 9.23E-03 0.242 2.31E-02

218755_at NM_005733 KIF20A/MKlp2 0.407 8.35E-05 0.162 1.31E-01

219918_s_at NM_018123 ASPM 0.399 1.16E-04 0.204 5.71E-02

220942_x_at NM_014367 FAM162A/HGTD-P 0.151 1.60E-01 0.239 2.47E-02

doi:10.1371/journal.pone.0106801.t003
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gene. We also calculated Spearman’s rank correlation coefficients to

assess the relationships between gene expression signals and

histological grades [54] or incidence of tumor metastases. We

considered data obtained after 50 months of follow-up as censored

data in the analysis of the logrank test, similar to the procedure

followed in our previous study [51]. Kaplan-Meier curves [55]

based on histological subtype were constructed for all STS patients.

OMIM
OMIM is a continuously updated catalog of human genes and

genetic disorders and traits, with a focus on the molecular

relationship between genetic variation and phenotypic expression.

The list of MIM gene accession numbers associated with keywords

related to cancer was obtained from the OMIM website (http://

www.omim.org/). We used several keywords related to cancer,

including ‘‘cancer,’’ ‘‘carcinoma,’’ ‘‘sarcoma,’’ ‘‘tumor,’’ and

‘‘neoplasm,’’ to create the MIM gene accession number list.

There were 4394 MIM gene accession numbers, as shown in

Table S2. The final MIM gene accession number list was obtained

on January 10, 2014.

Ensembl
Ensembl is a joint project between EMBL-EBI and the Sanger

Centre to develop software that produces and maintains automatic

annotation of eukaryotic genomes [56]. We converted MIM

numbers to the Affymetrix probe set IDs of the Human Genome

Figure 3. Heatmap and hierarchical clustering analyses. Twenty-nine probe sets were extracted using a simulation based on the permutation
test (with adjusted p,0.05). The 29 probe sets were roughly divided into 4 clusters (clusters A–D). Columns represent probe sets, and rows represent
samples. Red and green indicate high and low expression, respectively. UPS: undifferentiated pleomorphic sarcoma, MLS: myxoid liposarcoma, SS:
synovial sarcoma, MFS: myxofibrosarcoma.
doi:10.1371/journal.pone.0106801.g003
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U133A 2.0 Array using information retrieved from Ensembl on

January 10, 2014. There were 5155 Affymetrix probe set IDs, as

shown in Table S3.

Principal component analysis (PCA)
We used PCA to reduce the gene expression profile data to a

two-dimensional dataset. PCA was first proposed in 1901 by

Pearson [57]. This method is a statistical procedure that uses

orthogonal transformation to convert a set of observations of

possibly correlated variables into a set of values of linearly

uncorrelated variables called principal components (PCs). The

number of PCs is less than or equal to the number of original

variables. This transformation is defined in such a way that the

first PC has the greatest possible variance.

Multiple testing correction
The Bonferroni correction is a method used to address the

problem of multiple comparisons (also known as the multiple testing

problem). It is considered the simplest and most conservative

method for control of the family-wise error rate (FWER). False

discovery rate (FDR) controlling procedures, such as the Benjamini-

Hochberg (BH) method [58], are more powerful (i.e., less

conservative) than the FWER procedures, but their use increases

the likelihood of false positives within the rejected hypothesis. In the

present study, the BH method was used to calculate the q value. The

q value is defined as an FDR analog of the p value.

Heatmap and hierarchical clustering analyses
A heatmap was created using the R program (function

heatmap.2 in Package gplots) for the log-transformed and scaled

gene expression data of selected genes. Hierarchical clustering was

also conducted using the Euclidean distance and complete linkage

(default parameters of function heatmap.2).

Results

Kaplan-Meier curves for 4 histological subtypes
Kaplan-Meier curves based on a histological subtype were

constructed for all STS patients, as shown in Fig. 2. This figure

shows that MFS had a good prognosis, MLS and SS had

intermediate prognoses, and UPS had a poor prognosis. Although

the logrank test yielded statistically significant results (p,0.05) in

histological types, we conducted gene expression analysis to select

molecular markers for more accurate diagnosis in accordance with

the analysis.

Extraction of genes that are both diagnostic and
prognostic markers, by means of a simulation using the
permutation test

To extract genes that are both diagnostic markers (for

discrimination of histological subtypes) and prognostic markers

(of overall survival in STS), we applied a simulation based on the

combination of a permutation test and the integration of multiple

statistics into 1412 prefiltered probe sets of microarray data

obtained from STS patients. As shown in Table 2, 29 probe sets,

representing 25 genes, were extracted (adjusted p value ,0.05).

Association analysis of the histological grade (or
metastasis status) and gene expression data for the 25
selected genes

We next used Spearman’s rank correlation analysis to analyze

the association between the gene expression level in STS patients

and the histological grade (or metastasis status), as shown in

Table 3. Table 3 shows that genes with positive r were

upregulated in highly malignant tumors, whereas genes with

negative r were downregulated in highly malignant tumors. The

expression levels of almost all of the 25 genes were associated

with either the histological grade or metastasis. However,

stearoyl-CoA desaturase 1 (SCD1) and signal transducer and

activator of transcription 1 (STAT1) were not associated with

either the histological grade (SCD1: r = 20.0191, p = 0.860;

STAT1: r = 20.146, p = 0.173) or metastasis (SCD1: r = 0.0237,

p = 0.826; STAT1: r = 20.177, p = 0.0995). This result indicates

that SCD1 and STAT1 expression levels can be related to the

overall survival of STS patients but not to metastasis. Therefore,

these data suggest that SCD1 and STAT1 expression levels can

Figure 4. Principal component analysis using 29 probe sets for
4 histological types. The x-axis and y-axis represent the first and
second principal components (PC1 and PC2), respectively. Each dot
represents a sample colored according to its histological type. UPS:
undifferentiated pleomorphic sarcoma, MLS: myxoid liposarcoma, SS:
synovial sarcoma, MFS: myxofibrosarcoma.
doi:10.1371/journal.pone.0106801.g004

Figure 5. Principal component analysis using 9 probe sets for
UPS and MFS. The x-axis and y-axis represent the first and second
principal components (PC1 and PC2), respectively. Each dot represents
a sample colored according to its histological type. UPS: undifferenti-
ated pleomorphic sarcoma, MLS: myxoid liposarcoma, SS: synovial
sarcoma, MFS: myxofibrosarcoma.
doi:10.1371/journal.pone.0106801.g005
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be used in combination with the histological grade to predict the

survival of STS patients.

Hierarchical clustering based on the gene expression
pattern of the 25 selected genes

We performed hierarchical clustering for the 29 selected probe

sets, representing 25 genes and 4 histological subtypes (UPS, MFS,

MLS, and SS), as shown in Fig. 3. The genes were roughly

classified into 4 clusters (clusters A, B, C, and D). Almost all genes

were upregulated in both UPS and MFS. In addition, genes in

cluster A were upregulated in SS, and genes in cluster D were

upregulated in MLS.

Analysis of the distribution of histological subtypes
based on gene expression levels

We performed PCA to calculate the first and the second PCs

using the 29 probe sets. Detailed information on PCA, including

eigenvector, standard deviation, proportion of variance, and

cumulative proportion, is provided in Tables S4 and S5. The

distribution of the 4 histological subtypes of STS on the 2 axes is

shown in Fig. 4. The 4 histological subtypes were clearly classified

into 3 clusters (SS, MLS, and UPS+MFS). This result indicated

that UPS and MFS had histological similarities and similar gene

expression patterns. Therefore, to discriminate between UPS and

MFS, we applied Welch’s t test and the BH method to the gene

expression data of the 29 probe sets, as shown in Table 4. We

extracted 9 probe sets, representing 8 genes (q value ,0.05):

enolase 1 (ENO1)/c-myc-promoter binding protein-1 (MBP1);

prolyl 4-hydroxylase subunit alpha-1 (P4HA1); peroxiredoxin 1

(PRDX1); CD34; family with sequence similarity 162, member A

(FAM162A)/human growth and transformation-dependent pro-

tein (HGTD-P); protein tyrosine kinase 7 (PTK7); and macro-

phage migration inhibitory factor (MIF). We performed PCA to

calculate the first and the second PCs from these 9 probe sets.

Detailed information of PCA, including eigenvector, standard

deviation, proportion of variance, and cumulative proportion, are

shown in Table S5. The distribution of the 2 histological subtypes,

UPS and MFS, on the 2 axes is shown in Fig. 5. UPS and MFS

were classified into approximately 2 clusters. For the contribution

of this classification, MIF, ENO1/MBP1, and CD34 contributed

to the top 3 largest coefficients for PC1, PTK7, PRDX1, and

ENO1/MBP1 contributed to the top 3 largest coefficients for

PC2, and only SCD1 contributed to the largest coefficients for

PC3, as shown in Table S5. MIF, ENO1/MBP1, and SCD1 were

extracted in our previous study [51]. We also applied Welch’s t test

and the BH method to the gene expression data from the 29 probe

sets to discriminate UPS from SS and UPS from MLS, as shown in

Table 4.

Classification of the 25 genes based on pairwise
comparison of histological subtypes

We classified the 25 genes into 7 groups on the basis of 3

comparisons (UPS vs. MFS, UPS vs. SS, and UPS vs. MLS), as

shown in Fig. 6. Only 3 genes, ENO1/MBP1, P4HA1, and

PRDX1, were commonly selected (genes that were selected in the

UPS vs. MFS comparison were also selected in the UPS vs. SS or

UPS vs. MLS comparison). Furthermore, we compared the 25

genes selected in our study with the genes involved in the

complexity index in sarcomas (CINSARC) [59] because the use of

CINSARC (composed of 67 genes) instead of the FNCLCC

grading system [1,2] was recently proposed for predicting

metastasis in STS [59]. In this comparison, only 4 common

genes, that is, pituitary tumor-transforming 1 (PTTG1), abnormal

spindle-like microcephaly-associated protein (ASPM), cell-division

cycle protein 20 (CDC20), and kinesin family member 20A

(KIF20A)/mitotic kinesin-like protein 2 (MKlp2), were extracted.

The differential expression of these 4 genes was statistically

significant (q ,0.05) for UPS vs. SS and for UPS vs. MLS, but not

for UPS vs. MFS. These 4 genes belonged to cluster B, as shown in

Fig. 3. Consequently, the 25 genes were classified into 7 groups on

Figure 6. A Venn diagram of gene classification based on
pairwise comparisons of histological types using Welch’s t test.
Genes inside the red circle were statistically significant (q ,0.05
calculated using Welch’s t test and the BH method) in the comparison
of UPS with SS. Genes inside the green oval were statistically significant
(q ,0.05) in the comparison of UPS with MLS. Genes inside the blue
oval were statistically significant (q ,0.05) in the comparison of UPS
and MFS. Genes inside the pink oval are common to CINSARC and our
25-gene set. For PCA of the 9-probe set, MIF and CD34 highlighted in
red were the first and third largest contributing coefficients to PC1,
respectively. PTK7 and PRDX1 highlighted in blue were the first and
second largest contributing coefficients to PC2, respectively. ENO1/
MBP1 highlighted in purple was the second largest contributing
coefficient to PC1 and the third largest contributing coefficient to PC2.
SCD1 highlighted in green was the largest contributing coefficient to
PC3.
doi:10.1371/journal.pone.0106801.g006

Figure 7. The Kaplan-Meier curve and the logrank test for
STAT1 in UPS patients. The STAT1-positive group (STAT1 expression
level .4871.5) consisted of 14 patients (blue line), and the STAT1-
negative group consisted of 6 patients (red line). A hazard ratio
(exp(B) = 30.2) was calculated using the Cox proportional hazards
model.
doi:10.1371/journal.pone.0106801.g007
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Figure 8. A hypothetical regulation model of metabolic and signaling control in highly malignant STS. (A) Signaling pathways,
excluding cell cycle and DNA repair. (B) Cell cycle and DNA repair pathways. The pink oval indicates the genes selected in the present study. MUFA,
monounsaturated fatty acid; SFA, saturated fatty acid; SCD1, stearoyl-CoA desaturase 1; MIF, macrophage migration inhibitory factor; CXCR, CXC
chemokine receptor; PI3K, phosphoinositide 3-kinase; MAPK, extracellular signal-regulated kinase; ERK, mitogen-activated protein kinase; PTTG1,
pituitary tumor-transforming 1; ASPM, abnormal spindle-like microcephaly-associated protein; CDC20, cell division cycle protein 20; KIF20A, kinesin
family member 20A; ENO1, enolase 1; P4HA, prolyl 4-hydroxylase subunit a; PRDX1, peroxiredoxin 1; FAM162A, family with sequence similarity 162,
member A; STAT1, signal transducer and activator of transcription 1; CDK1, cyclin-dependent kinase 1; TACC3, transforming, acidic coiled-coil
containing protein 3; PRKDC, protein kinase, DNA-activated, catalytic polypeptide; H2AFY, H2A histone family, member Y; SLC16A1, solute carrier
family 16, member 1; VEGF, vascular endothelial growth factor; HIF, hypoxia inducible factor; PLOD2, procollagen-lysine,2-oxoglutarate 5-dioxygenase
2; NF-kB, nuclear factor-kappa B.
doi:10.1371/journal.pone.0106801.g008
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the basis of pairwise comparisons of histological subtypes, as

shown in Fig. 4.

Survival analysis in UPS patients
We used the logrank test to analyze the survival of UPS patients.

We selected the best p value for various thresholds (30th, 40th,

50th, 60th, 70th, and 80th percentiles) of gene expression signals in

UPS patients for each probe set when the gene expression signals

were binarized. Adjusted p values were obtained by adjusting the

data for the multiple testing problem (6 thresholds629 probe sets)

based on the permutation test, as shown in Table S6. Only STAT1
showed a statistically significant association with survival in UPS

(logrank p value 1.8461026 and adjusted p value 2.9961023 after

the permutation test). Fig. 7 shows that STAT1-positive and

STAT1-negative groups had clearly different survival curves based

on the Kaplan-Meier method.

Discussion

In the present study, we conducted a simulation based on a

permutation test to extract genes that are both diagnostic markers

(for discrimination of histological subtypes) and prognostic markers

(for overall survival in STS). As shown in Table 2, 25 genes were

extracted, and their adjusted p values were statistically significant

(adjusted p,0.05). We analyzed studies related to these 25 genes

and found many reports suggesting that these 25 genes are

effective prognostic/predictive factors or therapeutic targets, as

shown in Table S7, according to the literature (See Supplementary

Discussion).

Although we did not try to identify the molecular mechanisms

behind the 25 selected genes, several published studies have

examined pathways related to these 25 genes, as shown in Table

S7 and Fig. 8. These 25 genes are roughly classified into 4 types,

namely, hypoxia-related genes (MIF, SCD1, P4HA1, ENO1/

MBP1, FAM162A/HGTD-P, SLC16A1/MCT1, FN1, and

STAT1), cell cycle- and DNA repair-related genes (ASPM,

CDK1/CDC2, CDC20, KIF20A/MKlp2, PTTG1, TACC3,

PRDX1, PRKDC/DNA-PKcs, and H2AFY/H2AX), growth

factor signal transduction-related genes, and other genes. Cell

cycle- and DNA repair-related genes, hypoxia-induced genes, and

growth factor signal transduction-related genes are key players in

tumor growth, angiogenesis, metabolism, invasion, and metastasis

in various types of cancer. In fact, these processes are attenuated

by the inhibition or silencing of many of these 25 genes, as shown

in Table S7. These genes are therefore possible prognostic/

predictive markers and/or therapeutic targets.

STAT1 expression was found to be strongly associated with

survival in UPS patients. STAT1 interacts directly with p53 and

induces cell growth arrest and apoptosis, as shown in Fig. 8.

Although STAT1 is repressed by HIF-1, the STAT1-positive

group among the UPS patients had a better prognosis, even when

hypoxia-related genes were upregulated. Therefore, STAT1 is a

possible novel, independent prognostic/predictive factor of STS,

particularly UPS.

In the diagnosis of STS, classification of UPS is the most

controversial topic. Among the 25 selected genes, hypoxia-related

genes (MIF, SCD1, P4HA1, ENO1/MBP1, FAM162A/HGTD-
P, SLC16A1/MCT1, FN1, and STAT1) are present in this study.

In particular, the genes MIF, SCD1, P4HA1, ENO1/MBP1, and

FAM162A/HGTD-P are differentially expressed between UPS

and MFS, as shown in Fig. 6 and Table 4. Furthermore, STAT1 is

a prognostic marker in UPS patients, as shown in Fig. 7.

Therefore, these hypoxia-related genes are promising prognostic

and therapeutic targets and, if validated, may improve the

treatment/diagnosis of this type of cancer. Further research is

needed regarding the hypoxia-related pathways in highly malig-

nant STS.

We manually constructed a hypothetical regulation model

(Figure 8) of metabolic and signaling control in highly malignant

STS. Nevertheless, according to the literature, a part of these

networks could be automatically predicted by pathway and

interaction analyses. For example, pathways of the cell cycle and

the DNA damage response were identified by IntPath [33,60,61]

with statistical significance (q value ,0.05), as shown in Table S8.

Interaction networks of the cell cycle (ASPM, CDK1, CDC20,

KIF20A, PTTG1, PRKDC, and TACC3) and HIF-1 (MIF,

ENO1, and PRDX1) were identified by means of STRING [62],

as shown in Fig. S1. Nonetheless, these tools should be used with

appropriate parameters [34,60,61]. Such tools are more effective

methods when large numbers of candidate genes are extracted.

In summary, we analyzed microarray gene expression data from

88 STS patients using a combination method involving knowl-

edge-based filtering and a simulation based on the integration of

multiple statistics to reduce multiple testing problems. Our

combination method automatically identified 25 genes in the gene

expression data from STS. These genes showed significant

differential expression between different histological subtypes,

including UPS, and showed associations with survival in STS.

Furthermore, we conducted a bibliographic survey in terms of

cancer progression for the 25 identified genes, and substantial

evidence was uncovered in the literature. These genes were

roughly classified into 4 types, namely, hypoxia-related genes, cell

cycle- and DNA repair-related genes, growth factor signal

transduction-related genes, and other genes. STAT1 showed a

statistically significant association with the survival of UPS patients

(logrank adjusted p = 0.00299). Although only a few studies have

investigated the association of these genes with survival in STS,

many recent studies have reported that these genes are prognostic

factors and/or therapeutic targets in other types of cancers.

Therefore, these results suggest that our combination method is

capable of identifying genes that are potential prognostic/

predictive factors and/or therapeutic targets in STS and possibly

in other cancers. These disease-associated genes deserve further

preclinical and clinical validation.

Supporting Information

Figure S1 The pathways predicted by STRING from the
25 selected genes.

(PDF)

Table S1 Clinical data of the 88 patients with soft tissue
sarcoma. UPS: undifferentiated pleomorphic sarcoma, MLS:

myxoid liposarcoma, SS: synovial sarcoma, MFS: myxofibrosar-

coma, LMS: leiomyosarcoma, FS: fibrosarcoma, MPNST: malig-

nant peripheral nerve sheath tumor, Tumor metastasis indicates

the incidence of tumor metastasis in STS patients.

(XLS)

Table S2 The MIM number list.

(XLS)

Table S3 Selected Affymetrix probe IDs.

(XLS)

Table S4 Information on PCA, including the eigenvec-
tor, standard deviation, proportion of variance, and
cumulative proportion for 29 probe sets. PCA: principal

component analysis, PC: principal components.

(XLS)
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Table S5 Information on PCA, including the eigenvec-
tor, standard deviation, proportion of variance, and
cumulative proportion for 9 probe sets. PCA: principal

component analysis, PC: principal components.

(XLS)

Table S6 Survival analysis in UPS using the logrank
test. Adjusted p values were calculated using the permutation test

(100,000 repeats) from logrank p values.

(XLS)

Table S7 Gene or pathway annotations and likelihood
as prognostic/predictive factors and/or therapeutic
targets. Adjusted p values were calculated using the permutation

test (100,000 repeats) from logrank p values.

(XLS)

Table S8 Pathway analysis in IntPath. k: genes from the

overlap between genes in the list and genes in the pathway, n: the

number of genes in the input gene list, m: the number of genes in

the identified pathways, N: the total number of genes. The p

values were calculated using the hypergeometric test; the q values

were calculated from the p values using the Benjamini-Hochberg

(BH) method.

(XLS)

Information S1

(PDF)
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