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Abstract

The purpose of this investigation was to ascertain whether nitric oxide (NO) released into

the circulation by a noninvasive technology called whole body periodic acceleration (WBPA)

could increase mucociliary clearance (MCC). It was based on observations by others that

nitric oxide donor drugs increase ciliary beat frequency of nasal epithelium without increas-

ing mucociliary clearance. Tracheal mucous velocity (TMV), a reflection of MCC, was mea-

sured in sheep after 1-hour treatment of WBPA and repeated after pretreatment with the NO

synthase inhibitor, L-NAME to demonstrated action of NO. Aerosolized human neutrophil

elastase (HNE) was administered to sheep to suppress TMV as might occur in cystic fibrosis

and other inflammatory lung diseases. WBPA increased TMV to a peak of 136% of baseline

1h after intervention, an effect blocked by L-NAME. HNE reduced TMV to 55% of baseline

but slowing was reversed by WBPA, protection lost in the presence of L-NAME. NO

released into the circulation from eNOS by WBPA can acutely access airway epithelium for

improving MCC slowed in cystic fibrosis and other inflammatory lung diseases as a means

of enhancing host defense against pathogens.

1.0 Introduction

Airway inflammation occurs in asthma, chronic obstructive pulmonary disease (COPD) and

cystic fibrosis (CF). Although inflammation is most commonly linked to bronchoconstriction

and airway hyper-responsiveness, mucociliary clearance (MCC) may also be diminished. Evi-

dence supporting this comes from clinical observations impaired MCC during exacerbations

of asthma [1, 2], COPD [3] and CF [4] as well as experimental data that inhaled inflammatory

mediators, such as neutrophil elastase slows whole lung MCC and tracheal mucus velocity

(TMV). [5, 6] TMV reflects changes in whole lung clearance measured with radiolabeled

human serum albumin [7, 8] Effective mucus transport depends on the coordinated relation-

ship among ciliated surface epithelium, the mucous (gel) layer, and the periciliary fluid (sol)
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layer. [9] Inflammatory mediators can disrupt this process predisposing to mucus plugging,

infection, and decreased pulmonary function.

It is important to determine means to block and/or reverse slowed MCC. Administration

of aerosolized neutrophil elastase (HNE), an inflammatory mediator that contributes to

impaired mucus clearance in asthma, COPD, and CF can serve as a model to determine effec-

tiveness. [5] Elastase is a known mucus secretagogue, [10] that has cilio-inhibitory properties

[11] and by stimulating epithelial sodium channels can reduce periciliary fluid layer therby

contributing to mucus stasis [12]. These collective actions of elastase on the various compo-

nents of mucociliary function are consistent with our in vivo observations that inhaled elastase

reduces MCC and TMV for prolonged periods. [5] Further, such effects can be prevented and

reversed with natural and synthetic elastase inhibitors, including α1-protease inhibitor, [13]

secretory leukocyte protease inhibitor, [14] and synthetic human neutrophil elastase (HNE)

inhibitor [13] as well as beta-adrenergic agonists [5]. The latter appear to act through a NO

pathway. [15]

Whole Body Periodic Acceleration (WBPA) which utilizes a motion platform to apply

repetitive, sinusoidal, head to foot motion to the horizontally positioned body stimulates

eNOS for release of NO into the circulation in humans and animal models through increased

shear stress to the vascular endothelium. [16–18] In sheep, this technology modulated antigen

induced inflammatory responses such as inhibiting nuclear factor kappa beta activity. [19] The

purpose of the current investigation was to determine whether NO delivered via the blood

stream could access airway epithelium to increase TMV and provide protection against

human neutrophil elastase (HNE) induced slowed MCC. [20, 21]

2.0 Methods

2.1 Animal Preparation

All procedures used in this study were approved by the Mount Sinai Animal Research Com-

mittee, which is responsible for ensuring humane care and use of experimental animals,

under protocol number 17-22-A-03. The study complies with the ARRIVE Guidelines for in

vivo animal research reporting. (S1 Table) Five adult ewes weighing 20–40 kg were restrained

in an upright position in a specialized body harness and placed within a modified shopping

cart with heads immobilized. Nasal intubation was carried out with a cuffed endotracheal

tube (ETT, ID = 7.5 mm; Mallinckrodt Medical Inc, St. Louis, MO). The cuff of the tube was

placed just below the vocal cords and position verified with a flexible bronchoscope. After

intubation, the animals were allowed to equilibrate for a period of 30 min before TMV mea-

surements began. To minimize the possible impairment of TMV caused by inflation of the

ETT cuff, a deflated cuff tube was utilized throughout the study except for the short periods

of HNE challenge. [22] Inspired air was warmed and humidified with an ultrasonic nebulizer

(Ultra-neb 99, The Devilbiss Co, Somerset, PA) during the treatment with WBPA, and a

Bennett Humidifier (Puritan-Bennett, Lenexa, KS), the rest of the time between TMV

measurements.

2.2 Measurement of TMV

This method has been published previously by our laboratory and involves the use of Teflon

particles (~1 mm in diameter, 0.8 mm thick, and weight from 1.5 to 2 mg) introduced via a

modified suction catheter into to the ETT. TMV was measured from the video recordings of

the disks velocities. [5] [23]

WBPA and TMV
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2.3 Administration of aerosols

The administration of aerosols has also been previously reported by our laboratory in detail.

This involves a jet nebulizer (Raindrop Nebulizer, Puritan-Bennett, Carlsbad, CA), with a

dosimeter system and ventilator.[5, 23]

2.4 Reagents

Human neutrophil elastase (HNE; Elastin Products, Owensville, MO) was diluted in 3 ml of

phosphate-buffered saline (PBS; pH 7.4) to a concentration of 0.1 units/ml and completely

delivered as an aerosol (20 breaths/min). N-Nitro-L-arginine methyl ester hydrochloride

(L-NAME; Sigma-Aldrich, St. Louis, MO) was given as an intravenous injection; the dose per

animal was 25 mg/kg in 20 ml of 0.9% NaCl as previously described. [19]

2.5 Motion platform

Whole-body periodic acceleration (WBPA, aka pGz) was administered with a motion platform

that was adapted to support a sheep restrained within the cart. The animal in cart was secured

to the platform for the designated treatment times depending on the specific protocol. Acceler-

ation parameters for all studies were set to 120 cpm and Gz of ±0.2. [19] For control studies,

the animals in carts were placed on the platform for the appropriate time without motion.

2.6 Protocol

The series of experiments described below were conducted in the same group of 5 sheep sepa-

rated by approximately one week for each series of investigations. In these experiments, a base-

line TMV measurement was obtained 30 min after intubation.

In the first series of experiments, the effect of WBPA was evaluated on resting (basal) TMV

and then determined if the stimulatory effects were related to production of NO. Baseline

TMV was obtained and the animals were treated with WBPA for 1 hour. TMV was measured

at 0.5, 1 and 2 h after stopping WBPA. This protocol was repeated in the presence of the NO

inhibitor, L-NAME. After obtaining baseline TMV, L-NAME (25 mg/kg, i.v.) was adminis-

tered and after 30 min the sheep were treated with WBPA for 1 h. Serial TMV measurements

were then obtained at 0.5, 1 and 2 h after stopping WBPA. Finally, we studied the time course

of the TMV response to L-NAME alone. For these experiments, a baseline TMV was obtained

and then the sheep were given L-NAME and TMV was measured at 0.5, 1, 2, and 3h after

L-NAME administration.

The second series of experiments were carried out to determine if WBPA could reverse

HNE-induced slowing of TMV. This was followed by an investigation as to whether reversal of

the HNE-induced slowing of TMV could be blocked by L-NAME. For the initial studies, base-

line TMV was obtained and then the animals were challenged with an aerosolized dose of

HNE (0.3 units). TMV was serially measured, from 60 to 90 minutes after HNE challenge until

TMV decreased to at least 40% of baseline. Once this reduction in TMV was achieved, treat-

ment with WBPA for 1 hour was initiated. Serial TMV measurements were obtained at 0.5, 1,

2, 3 and 4 h after stopping WBPA.

The effect of L-NAME (25 mg/kg) on the WBPA reversal of HNE-induced depression of

TMV was determined after TMV had decreased by 40%. Treatment with L-NAME was then

followed by a 1h treatment with WBPA. TMV measurements were serially obtained at 0.5, 1,

2, 3 and 4 h after stopping WBPA. At the conclusion of all experiments, the animals were

returned to their herd. None of the experiments involved terminal endpoints.

WBPA and TMV
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2.7 Statistics

Statistical analysis was performed by using a commercially available program (SigmaStat for

Windows, version 2.03; SPSS Inc, Chicago, IL). Comparisons of baseline TMV measurements

were made with Kruskal-Wallis analysis of variance on ranks. For each experiment or trial

(within-group analysis), data were analyzed across time, using one-way ANOVA for repeated

measurements. If the null hypothesis was rejected, pairwise comparisons were made by using

Tukey’s test for multiple comparisons. Comparisons of experiments at specific time intervals

were evaluated by using a t-test for two samples. A value of P� 0.05 was considered signifi-

cant, using two-tailed analysis. All values in the text and figures are reported as means ± SE.

3.0 Results

The baseline TMV values for the different experiments are listed in Table 1. The baseline val-

ues for the start of each series of experiments did not statistically differ from each other.

Fig 1 depicts the changes in TMV after treatment with WBPA alone and when L-NAME

was given prior to WBPA. Within 0.5h after stopping WBPA, TMV increased to 114 ± 4%

above baseline and TMV continued to increase to a maximum of 136 ± 9% 1h after treatment.

This increase in TMV persisted until the end of the 2h measurement. When L-NAME was

given prior to WBPA, the stimulatory effect was completely blocked at all times (p<0.05). As

depicted in Fig 1, TMV values after WBPA in the presence of L-NAME remained below

baseline.

Fig 2 shows the TMV response to L-NAME alone. L-NAME caused an immediate reduc-

tion in TMV 30 minutes post-injection (67 ± 13%; p< 0.05 vs. baseline). TMV then returned

toward baseline values. Although the 1h and 2h mean values were below the initial starting

TMV, these values did not differ statistically from the baseline values. Three hours after

L-NAME. TMV was significantly lower than baseline.

Fig 3 shows the effects of WBPA without and with L-NAME on the HNE-induced reduc-

tion in TMV. As seen in aforementioned studies, administration of HNE slowed TMV which

reached similar levels in the two experimental groups (WBPA = 55 ± 2% vs. L-NAME +

WBPA 50 ± 3%; p>0.05). Treatment with WBPA reversed the HNE-induced TMV depression

with a maximum effect at 30 minutes (112 ± 6%) post-WBPA. The protective effect of WBPA

lasted for three hours. In the presence of L-NAME, WBPA had no effect.

4.0 Discussion

This study provides the first evidence that WBPA stimulates TMV as an in vivo marker of

MCC. This effect was blocked by L-NAME indicating NO dependence. It also demonstrates

that blood borne NO and its metabolites can access airway epithelium. WBPA reversed HNE-

dependent slowing of TMV, comparable to responses for both experimental pharmacological

agents and clinically available drugs.

Table 1. Baseline TMV for the 5 series of studies.

WBPA Elastase + WBPA L-NAME + WBPA 2Elastase +

L-NAME + WBPA

L-NAME

Mean ± SE 9.4±0.5 9.5±0.5 11.3±1.4 10.6±0.7 10.6±1.5

N 5 5 5 5 5

Values are means ± SE in mm/min. n, number of sheep. TMV, tracheal mucus velocity

https://doi.org/10.1371/journal.pone.0224764.t001

WBPA and TMV
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In the present study, the peak stimulatory effect of WBPA on TMV (136% above baseline)

in awake sheep is slightly greater than the previously reported increase of TMV (74 to 111%

above baseline) observed with aerosolized beta adrenergic agonists, isoproterenol and carbu-

terol in anesthetized dogs [24]. Our prior studies indicate that neutrophil elastase is involved

in the antigen-induced reduction in MCC [13] and that when inhaled, it also slows TMV.

Bronchodilators have proven to be partly effective in reversing MCC slowing after elastase

inhalation. As seen in Fig 2, WBPA reversed HNE-induced slowing of TMV and also increased

the value of TMV above baseline. This result has not been previously observed with any other

treatment modality. Consistent with our previous results, this WBPA-effect was completely

blocked by L-NAME pre-treatment.

The current study expands previous reported results from our laboratory of the diminution

of airway resistance in allergic sheep with WBPA. It had been demonstrated that 1-hour of pre-

treatment with WBPA protects against allergen-induced bronchoconstriction in allergic

sheep, probably mediated by the activity of NO in the regulation of mast cell activation. Fur-

ther, serial treatments with WBPA over four days protected sheep from developing airway

hyper responsiveness after an antigen challenge. [19]

Fig 1. Changes in Tracheal Mucous Velocity with WBPA. Changes in tracheal mucus velocity (TMV), expressed as a percentage of baseline, after

treatment with 1 hour of WBPA (n = 5) alone and WBPA after treatment with L-NAME before WBPA (n = 5). There was significant increase of TMV

(�p< 0.005 vs baseline) at 0.5, 1, and 2 hours post WBPA. L-NAME significantly blunted the effect († p< 0.01 WBPA vs L-NAME+WBPA). Values are

mean ± SE. (ANOVA).

https://doi.org/10.1371/journal.pone.0224764.g001
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WBPA has beneficial effects on the diverse manifestations of airway inflammation that pro-

duce slowed MCC, bronchoconstriction and airway hyper responsiveness by increasing NO

bioavailability. The impact on MCC of serial WBPA treatments in humans and the combina-

tion therapy of an inhaled beta agonist with WBPA remain to be investigated.

Bronchopulmonary colonization by Pseudomonas aeruginosa causes persistent morbidity

and mortality in cystic fibrosis (CF). Chronic P. aeruginosa infection in the CF lung is associ-

ated with antibiotic-tolerant bacterial aggregates known as biofilms. Disruptions of biofilms

have potential to overcome biofilm-associated antibiotic tolerance in CF and other biofilm-

related diseases. [25, 26] Submicromolar NO concentrations alone disrupted biofilms within

CF sputum and significantly decreased ex vivo biofilm tolerance to tobramycin and tobramy-

cin combined with ceftazidime. In a small randomized clinical trial, 10 ppm NO inhalation sig-

nificantly reduced P. aeruginosa biofilm aggregates compared with placebo across one week

treatment.[25] Therefore, low dose NO (nMol/L) achieved with WBPA has the potential to

serve as adjunctive therapy in CF.

As limitations to the present study is that we have not characterized whether or not longer

or shorter durations of WBPA, can confer greater or less benefits respectively. The action of

WBPA releasing NO into circulation as measured by descent of the dicrotic notch of the

Fig 2. Change in Tracheal Mucous Velocity Due to NO Inhibition. Changes in TMV after the administration of L-NAME, 25 mg/kg intravenously

(n = 5). Significant difference (‡p<0.05) was present between baseline vs. 0.5 and 3 hours after administration. Although the 1h and 2h mean values

were below the initial starting TMV, these values did not differ statistically from the baseline values. Values are mean ± SE (ANOVA).

https://doi.org/10.1371/journal.pone.0224764.g002
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human finger pulse begins within 15 to 25 seconds after beginning WBPA. [18] The duration

of NO action is complicated because NO rapidly binds to circulating proteins and is slowly

released to the body in a heterogeneous manner. The current study showed that WBPA stimu-

lates TMV as well as protects against HNE-induced slowing of TMV is in large part due to

increase of NO bioavailability. However, the motion platform that produced WBPA has major

limitations for human applications. It was too expensive, limited solely to use in the supine

posture, and non-portable owing to its large footprint and weight (211Kg). To overcome these

limitations, a portable device weighing approximately 5.5 Kg, that can be self-administered

was fabricated which is called the GENTLE JOGGER (JD), It incorporates microprocessor

controlled, DC motorized movements of foot pedals placed within a chassis to repetitively tap

against a semi-rigid surface for simulation of locomotion while the subject is seated or lying in

a bed. It is placed on the floor for seated and secured to the footplate of a bed for supine appli-

cations. Its foot pedals rapidly and repetitively alternate between right and left pedal move-

ments to actively lift the forefeet upward followed by active downward tapping against a semi-

rigid bumper placed within the chassis. In this manner, it simulates feet impacting against the

ground during locomotion. Each time the passively moving foot pedals strike the bumper, a

Fig 3. Change in Tracheal Mucous Velocity after Aerosolized human neutrophil elastase and treatment with WBPA. Changes in TMV after

aerosolized human neutrophil elastase (HNE), and subsequent treatment with either WBPA (n = 5) or L-NAME followed by WBPA (n = 5). There was

a significant increase of TMV (‡ p<0.001) at 0.5, 1, 2, and 3 hours post WBPA compared to HNE. L-NAME significantly blunted the effect († p< 0.001

HNE-WBPA vs HNE+L-NAME+WBPA). Values are mean ± SE. (ANOVA).

https://doi.org/10.1371/journal.pone.0224764.g003
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small pulse is added to the circulation as a function of pedal speed ranging from about 120 to

190 steps per minute. This technology produces pulsatile shear stress (friction) to the endothe-

lium that increases release of nitric oxide into the circulation from eNOS. As a human applica-

tion, JD decreases the rapid onset of increased systolic and diastolic blood pressures associated

with human physical inactivity in both supine and seated postures. [27]

We conclude that NO released into the circulation from eNOS via vascular pulsatile shear

stress from WBPA acutely accesses the airway epithelium, improving slowed MCC. The latter

has significant clinical implications in CF and other inflammatory lung diseases with decreased

MCC.

Supporting information

S1 Table. The ARRIVE guidelines checklist. This table contains the ARRIVE guidelines

checklist for animal research reporting for in vivo experiments.

(PDF)
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