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Abstract: As key inflammatory biomarkers C-reactive protein (CRP) and interleukin-6 (IL6) play an
important role in the pathogenesis of non-inflammatory diseases, including specific cancers, such as
breast cancer (BC). Previous genome-wide association studies (GWASs) have neither explained the
large proportion of genetic heritability nor provided comprehensive understanding of the underlying
regulatory mechanisms. We adopted an integrative genomic network approach by incorporating our
previous GWAS data for CRP and IL6 with multi-omics datasets, such as whole-blood expression
quantitative loci, molecular biologic pathways, and gene regulatory networks to capture the full
range of genetic functionalities associated with CRP/IL6 and tissue-specific key drivers (KDs) in
gene subnetworks. We applied another systematic genomics approach for BC development to
detect shared gene sets in enriched subnetworks across BC and CRP/IL6. We detected the topmost
significant common pathways across CRP/IL6 (e.g., immune regulatory; chemokines and their
receptors; interferon γ, JAK-STAT, and ERBB4 signaling), several of which overlapped with BC
pathways. Further, in gene–gene interaction networks enriched by those topmost pathways, we
identified KDs—both well-established (e.g., JAK1/2/3, STAT3) and novel (e.g., CXCR3, CD3D, CD3G,
STAT6)—in a tissue-specific manner, for mechanisms shared in regulating CRP/IL6 and BC risk.
Our study may provide robust, comprehensive insights into the mechanisms of CRP/IL6 regulation
and highlight potential novel genetic targets as preventive and therapeutic strategies for associated
disorders, such as BC.

Keywords: CRP/IL6; breast cancer; multi-omics integration; system biology; molecular pathways;
gene network; key drivers

1. Introduction

Chronic inflammation plays an important role in the pathogenesis of non-inflammatory
diseases, including metabolic syndrome [1,2] and specific types of cancers, such as colorec-
tal, liver, and breast cancers [3,4]. In particular, for carcinogenesis and cancer progression,
C-reactive protein (CRP) and interleukin-6 (IL6) are key cancer-promoting inflamma-
tory cytokines that are interrelated in oncogenesis and tumor growth through different
molecular pathways in response to acute and chronic inflammation [4]. In detail, innate
immune activation promotes the production of such pro-inflammatory markers, creating a
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tissue-specific microenvironment high in reactive oxygen and nitrogen species, resulting
in DNA damage and alterations in nearby cells [5–7]. Specifically, the two cytokines have
yielded a congruent association with the risk of breast cancer (BC) [8–11], although their
carcinogenetic mechanisms are not fully understood.

Systemic development of those inflammatory markers can be influenced by not only
environmental [12–14] but also genetic and epigenetic factors [15,16]. Despite advances
in the understanding of genetic variance and gene–environment (G × E) interactions in
relation to those biomarkers, common genetic variants from genome-wide association
studies (GWASs) explain a small proportion of inter-individual variability (CRP < 5%;
IL-6 < 2%) [17,18], indicating that a large proportion of heritability is undetermined.

Conventional GWASs cannot easily address several crucial issues. For example, a
genomic study at the genome-wide level examines single genetic markers one at a time,
revealing a small number of top genetic variants which explain a limited proportion of
genetic heritability due to severe multiple testing corrections, suggesting the importance
of group-level approaches in genomic studies [19]. Also, GWASs may not investigate
tissue-specific gene–gene (G × G) interactions, which have received growing attention
as a possible source for the missing heritability. Further, they cannot address functional
characterization of the genetic variants/loci; thus, the molecular mechanisms by which
the genetic perturbations influence the tested phenotype in downstream signaling cas-
cades, further being involved in the complex process of related-disease development, are
not elucidated.

Many pathway- and network-based approaches integrating GWAS findings with
genetic and genomic expression data have demonstrated a powerful ability to detect the
missing heritability of quantitative phenotypes and to unravel the genomic functionality
on the basis of enriched molecular signaling cascades and genomic involvement in an
associated-disease molecular process [20–25]. Further, gene regulatory network analysis
in a tissue-specific manner can capture causal regulatory relationships between genes by
accounting for G × G interactions in different pathologic conditions and identify key driver
(KD) genes as important regulators of the particular enriched pathways.

For these reasons, we adopted an integrative genomic network approach (Figure S1)
by incorporating our previous GWAS data for CRP and IL6 [26] with functional genomics
data, including whole-blood expression quantitative loci (eQTLs, which capture functional
regulation of gene expression); molecular biologic pathways; and G × G interaction
information from data-driven gene networks in the key tissues involved in CRP/IL6, to
detect top regulatory pathways and tissue-specific KDs in gene subnetworks that play a
key role in regulating CRP and IL6 phenotypes. We applied an additional systems genomic
approach to integrate independent GWAS data [27,28] for BC development with multi-
omics datasets and explored the gene sets in enriched molecular subnetworks that overlap
with those in CRP/IL6-relevant gene networks. Our multi-omics data analyses may reveal
hidden mechanisms that are not apparent from individual top GWAS signals alone, by
identifying the topmost significant molecular pathways and by detecting the full range
of the functionalities of key genes in the subnetworks and their regulation from strong to
subtle, which are reflected by the genetic perturbations of CRP/IL6. We further explored
potential molecular mechanisms shared by CRP/IL6 and BC development. Our findings
may thus provide system-level novel insights into CRP/IL6 from a molecular perspective
and potential preventive and/or therapeutic strategies for associated diseases such as BC.

2. Materials and Methods
2.1. GWAS Data for CRP and IL6

Full details of the Women’s Health Initiative (WHI) database of Genotypes and Pheno-
types (dbGaP) are given elsewhere [29,30]. We used the data of GWAS for CRP and IL6 [26]
that we previously performed by using the WHI Harmonized and Imputed GWASs coordi-
nated by the dbGaP in a joint imputation and harmonization effort across 6 GWASs within
the WHI study [30]. Healthy postmenopausal women (age ≥ 50 years) were enrolled in
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the WHI study at >40 designated clinical centers in the U.S. from 1993 to 1998 and had
been followed up through 29 August 2014, with a 16-year mean follow-up. All participants
provided written informed consent. Our earlier GWAS included 10,798 women who re-
ported their race or ethnicity as non-Hispanic white, with which we performed a GWAS
meta-analysis for CRP and IL6 across the 6 GWASs for G × E interactions. Our study was
approved by the institutional review boards of each participating clinical center of the WHI
and by the University of California, Los Angeles.

2.2. Genotyping and CRP/IL6 Phenotypes

Genome-wide genotyping was performed at the Fred Hutchinson Cancer Research
Center in Seattle, WA, with different platforms across the WHI GWASs, and further nor-
malized to Genome Reference Consortium Human Build 37, imputed via 1000 genomes
reference panels, and harmonized with pairwise concordance among all samples [31].
The minimum cutoff of allele frequency averaged 1.5% across the GWASs. A total of
21,784,812 autosomal single-nucleotide polymorphisms (SNPs) were analyzed in our GWAS
by adjusting for age and 10 genetic principal components [26]. The tested phenotypes
include fasting serum levels of CRP (in mg/L) and IL-6 (in pg/mL).

2.3. Mergeomics

To detect gene sets in molecular pathways and key regulators in gene networks that
were perturbed by genetic variations associated with CRP/IL6, we used Mergeomics [32],
a robust computational pipeline that integrates multi-omics datasets such as statistical sum-
maries of phenotype associations and molecular networks. Mergeomics has been shown
to outperform other gene set–enrichment methods [32]. For example, it can overcome
heterogeneity between datasets from different studies, providing confirmatory biologic
signals across data types and studies.

2.3.1. Mapping SNPs to Genes

To link GWAS signals to SNPs in the pathways, we used two different mapping
methods and generated two sets of SNP–gene maps: chromosomal distance– and whole
blood eQTL–based mapping. First, standard chromosomal distance–based mapping to
genes was used to generate a distance-based map within 50 kb of the gene region. Next, we
used eQTL-based mapping, which contains expression single-nucleotide polymorphisms
(eSNPs) associated with gene expression (i.e., eQTLs). The eSNPs within the eQTLs
can capture the functional relationships between GWA SNPs and expressed genes in a
tissue-specific manner. We used whole-blood eQTL–based mapping because it mainly
reflects gene regulation in immune cells [19]. We selected cis-eSNPs (within 1 Mb of
the gene region at a false discovery rate [FDR] < 0.05) to detect mechanistic clues in
peripheral blood mononuclear cells where the gene expression intersected the CRP/IL6-
eSNPs. In addition, we corrected linkage disequilibrium (LD) structure by including SNPs
with strong associations with phenotypes in LD (R2 > 0.5).

2.3.2. Marker-Set Enrichment Analysis (MSEA)

Our MSEA approach was based on canonical pathways that are largely derived from
biochemical reactions, cellular signaling, and functional categories and that are relatively
straightforward to annotate corresponding gene networks. We applied a knowledge-based
pathway approach using 1827 canonical pathways from the Reactome, Biocarta, and the
Kyoto Encyclopedia of Genes and Genomes (KEGG) databases [33,34]. We conducted
the MSEA using the Mergeomics package, a well-established pathway method, to test for
enrichment of genes for CRP/IL6 in the relevant pathway on the basis of modified chi-
square statistics which adapt the summarized cutoff of the p value over a range of quantiles
of marker selections [32,35]. A FDR < 0.05 was chosen to be statistically significant.

To capture core gene sets from overlapping pathways across the two phenotypes, we
used the Meta-MSEA approach in Mergeomics to perform meta-analysis. With identified
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pathways within the Meta-MSEA framework, we further constructed independent super-
sets by combining overlapping pathways with gene overlap ratio r > 0.15 and FDR < 0.05
and finally created functionally categorized supersets (seven for distance mapping and
eight for eQTL mapping).

2.3.3. Tissue-Specific Gene Regulatory Networks and Weighted KD Analysis (wKDA)

Next, we applied the wKDA strategy in the Mergeomics pipeline to detect key regu-
lator genes within the CRP/IL6 supersets, which are mapped to gene-regulatory subnet-
works; these key genes thus potentially lead to the regulation of CRP/IL6 in molecular
biologic cascades. For this analysis, we used (a) Bayesian gene-regulatory networks
composed of human transcriptome datasets and known functional gene relationships
from blood and adipose, liver, and muscle tissues and (b) protein–protein interaction net-
works (PPIs) [36,37]. We performed the wKDA [32,38,39] to identify KDs whose network
neighbors are enriched for genes in the supersets on the basis of modified chi-square
statistics [32,35] at FDR < 0.05. Thus, the topmost KDs are potential regulators of CRP/IL6-
related genes and the phenotypes themselves.

2.3.4. MSEA and wKDA for BC Development

Finally, we conducted an additional MSEA and wKDA within Mergeomics using
independent GWAS data [27,28] for BC development. We investigated potential molecular
pathways and KDs in subnetworks that are shared with those for CRP/IL6.

3. Results
3.1. Phenotype-Specific Pathways and Common Supersets Shared by CRP and IL6

First, we performed phenotype-specific MSEA for CRP and IL6 in distance-based
and eQTL-based mapping. Among those significant pathways with a FDR < 0.05 for
the enrichment of gene sets for CRP (Tables S1 and S2), 23 pathways were shared by
distance-based (22% of 103 gene sets) and eQTL-based mapping (32% of 71 gene sets)
(Figure S2). These included hematopoietic cell lineage; peptide hormone, amino sugar,
and lipid metabolisms; calcium-dependent skeletal myogenesis; and cytokine signaling in
the immune system. For IL6-specific pathways (Tables S3 and S4), 11 common pathways
were found among the significantly enriched pathways (FDR < 0.05) that overlapped
between distance-based (10% of 114 gene sets) and eQTL-based (20% of 55 gene sets)
mapping (Figure S3). As was the case in the CRP-specific pathways, amino acid trans-
port/metabolism was observed in the IL6-specific pathways. The IL6-unique pathways
included signaling by receptor tyrosine kinase erb-b4 (ERBB4), O-glycosylation of mucins
that have antimicrobial activity as a mucosal barrier, and transcription function such as
metabolism of non-coding RNA. Involvement of CRP and IL6 in the immune system is not
surprising considering that they function as inflammatory markers.

We next conducted a meta-MSEA across CRP and IL6 in either distance-based or
eQTL-based mapping to detect core gene sets that were enriched in the shared pathways.
Because the knowledge-driven molecular pathways identified through meta-analysis have
redundant gene sets on similar functions, we combined the overlapped pathways into
functionally categorized independent supersets. In particular, distance mapping–based
meta-MSEA (Figure 1) detected seven supersets (FDR < 0.05) among 40 common individual
pathways that were shared about 40% by CRP and IL6, including well-known CRP/IL6
pathways (e.g., immunoregulatory interactions between lymphoid and non-lymphoid
cells and selective expression of chemokine receptors during T-cell polarization) as well
as lesser-known pathways, including gene expression in pancreatic beta cells, striated
muscle contraction, and peptide hormone and iron/potassium channels metabolism. In the
eQTL mapping–based meta-MSEA (Figure 2), we found eight supersets (FDR < 0.05) that
functionally merged 22 common individual pathways (40%) shared by CRP and IL6; of
those, one (chemokine receptors during T-cell polarization) overlapped with the distance
mapping–based supersets. The eQTL mapping–specific supersets included well-known
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immune pathways, such as interferon γ (IFNγ) and Janus kinase-signal transducer and
activator of transcription (JAK-STAT) signaling, as well as general cellular pathways, such
as calcium/G protein–coupled receptor (GPCR) signaling. Of note, the eQTL-based shared
supersets included lipid and glucose metabolisms and nuclear signaling by ERBB4 (also
known as human epidermal growth factor receptor 4 [HER4]), which play critical roles in
carcinogenic progression of specific cancers, including BC.

We further conducted a meta-MSEA of both distance- and eQTL based–mapping
types across CRP and IL6 (Figure S4), detecting 22 common pathways, most of which over-
lapped with those supersets identified from the meta-analysis in each mapping. In detail,
they included cellular-based pathways (e.g., transforming growth factor-β); chemokine
receptors and their signaling; immune responses (e.g., IL12/STAT4 signaling in T-helper 1
and IL10 signaling); ERBB4 signaling (e.g., NOTCH1); JAK-STAT signaling; and the down-
stream activation of ERBB4, JAK-STAT, and GPCR signaling (e.g., mitogen-activated pro-
tein kinase [MAPK]). These indicate that each mapping type contributes to revealing
immune–response pathways in the meta-analysis across the two phenotypes, whereas
eQTL-mapping provides more informative downstream signaling (e.g., ERBB4, JAK-STAT,
GPCR), suggesting that functional eSNPs associated with gene expression in whole blood
better captured cellular-level mechanisms that regulate CRP/IL6.
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Figure 2. Comparison of significant pathways (false discovery rate [FDR] < 0.05) between C-reactive protein (CRP) and
interleukin-6 (IL6) phenotypes (CRP/IL6, expression quantitative trait loci [eQTL]–based mapping; GPCR, G protein–
coupled receptor; JAK-STAT, Janus kinase-signal transducer and activator of transcription.).

Putative KD Genes for the CRP/IL6–Associated Supersets

With those supersets shared across CRP and IL6 in each mapping style, we subse-
quently performed wKDA to detect the important hub genes (i.e., KDs) that regulate
neighbor genes in the G × G interaction subnetworks associated with CRP/IL6. We ob-
tained tissue-specific KDs from PPIs as well as blood and adipose, liver, and muscle tissues,
each of which reflects different molecular mechanisms regulating CRP/IL6. The tissue-
specific topmost KDs for the supersets shared by CRP/IL6 (Tables 1 and 2 for distance- and
eQTL-based mapping, respectively) and their representative subnetworks (Figures 3–6) are
shown. In particular, adipose tissue–specific distance-based KDs (Table 1 and Figure 3A)
in the immune regulations/chemokine receptor subnetworks include CD3G, CD3D, CD2,
LCK, SH2D2A, and STAT4; and in the iron subnetwork, one primary KD, CD84, was
detected. Those networks were interrelated mainly by CD3D. In adipose tissue–specific
eQTL-based KDs (Table 2 and Figure 3(B1,B2)), two different subnetworks were involved:
(a) RTP4 and FCER1G in IFNγ signaling and (b) GPD1 in glucose metabolism. Of note, the
RTP4 in the IFNγ subnetwork was connected to FCER1G by 1 gene (OASL); both FCER1G
and OASL reached the genome-wide significance level.

In addition, liver tissue-specific distance-based KDs (Figure 4A) in the immune regula-
tion/chemokine receptor subnetworks included C9, CFI, C8A, C4BPA, CFP, and IL2RB. It is
interesting that CD3G is a KD shared by adipose and liver tissues in the immune regulatory
networks. Also, similar to the wKDAs of adipose tissue-specific eQTL mapping, the liver
tissue-specific eQTL-based wKDAs (Figure 4(B1)) yielded IFNγ and glucose metabolism
subnetworks, but with different sets of KDs (PTPRC, RAC2, PHF11, and IFIH1 for IFNγ;
ANXA2, AKR1D1, LYRM5, CYP2C19, and S100A10 for glucose metabolism). Further, those
KDs were involved in the GPCR subnetwork. When the JAK-STAT subnetwork was en-
larged (Figure 4(B2)), several KDs (TNFAIP2, TLR2, IRF1, and EVL) were found to be
interrelated with calcium (KD: MAPK7) and lipid (KD: MTMR11) subnetworks.
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Further, our PPI-specific wKDA in distance mapping (Figure 5) detected differ-
ent sets of KDs than the adipose/liver tissue-specific distance-based wKDAs in the im-
mune/chemokine receptor-regulatory subnetworks (HLA–A/B/E/G in immune regula-
tions; PTPN11/JAK1 in chemokine receptor expression). However, LCK and STAT3 in
the chemokine-receptor subnetwork overlapped with those in the corresponding adipose
tissue-specific subnetwork. Those immune-regulation networks were interrelated with
iron (KD: ATP6V1D, ATP6V0C, and INSR) and potassium channels (KD: KCNAB2) and had
several GWA genes in their peripheral nodes. In eQTL-based PPI-specific wKDA (Figure 6),
several KDs (JAK1, STAT1/3/4, and LCK) in the JAK-STAT signaling overlap with those
in the chemokine-receptor subnetwork of both eQTL- and distance-based PPI wKDAs,
implying their congruent roles in immune responses. Of note, TYK2, within the eQTL
mapping, shares the two subnetworks of JAK-STAT and chemokine receptor regulations,
and JAK2 shares the three subnetworks, including ERBB4 signaling as well as the two
aforementioned immune subnetworks.

Table 1. MSEA Meta-analysis of CRP and IL6 pathways (distance-based mapping) and corresponding tissue specific–
network key drivers.

Top 10 Key Drivers £

Module € Description Module Size Adipose Blood Liver Muscle PPI

rctm0567 ..

Immunoregulatory
interactions

between
lymphoid and
non-lymphoid

cells

120 **, 70 ¶,
126 ¥, N/A,

126 §

CD3G *, CD2, LCK,
STAT4 CD8B *

C4BPA *, C8A *,
C9 *, CFI *, CFP,
CSF1R, CFH *,

C8B *, C5 *,
CFB *

N/A

HLA-A, B2M *,
HLA-E, HLA-G,
HLA-B, HLA-C,

CD28, CD80,
C4A, HLA-F

M4047 ..

Selective
expression of

chemokine
receptors

during T-cell
polarization

76 **, N/A, 80
¥, N/A, 83 §

CD3D *, M26056,
SH2D2A, LCK *,
CD2 *, CD3G *,

TNFRSF18, CD5,
ITGAL, CXCR3

N/A CD3G *, IL2RB N/A

STAT3, LCK *,
PTPN11 *,

JAK1, PTPN6 *,
PIK3CA *, IL4 *,

JAK2 *, IL2 *,
SHC1

rctm0627 .. Iron uptake
and transport

62 **, N/A,
N/A, N/A,

62 §

DPEP2, PLD3,
CD84, ATF3 N/A N/A N/A

TFRC *, INS *,
ATP6V1D *,
ATP6V0C *,

INSR *

rctm0854 ..
Peptide

hormone
metabolism

N/A, N/A,
N/A, N/A,

121 §
N/A N/A N/A N/A

INS *, STX4,
SLC2A4, GCG *,
GCGR, AVPR2,
RHO, VAMP2 *,
NPS, SNAP23

rctm1368
Voltage-gated

potassium
channels

N/A, N/A,
N/A, N/A,

54 §
N/A N/A N/A N/A KCNAB2 *

rctm1178 Striated muscle
contraction

60 **, N/A, 53
¥, 50 †, 53 §

MYLPF, TTN *,
HRC, TPM1 *,

TNNT3 *, TNNI2 *,
TNNC2 *, MYPN,
KBTBD10, TCAP *

N/A MYL1 *, TTN *,
TNNI2 *

TPM3 *, TNNI1 *,
MYL2 *, MYL3 *,

TNNT1 *, TNNC1
*, MYH3 *, TPM1

*, CYFIP2,
ATP2A2, MYH7

DMD *, TPM1
*, ACTN3 *,

TPM4 *, TPM2
*, ACTN2 *,

TPM3 *,
ACTA1, ITGA1,

MYL9

CRP, C-reactive protein; IL6, interleukin 6; MSEA, marker-set enrichment analysis; N/A, not available; PPI, protein-to-protein interaction
network. € Modules marked with two periods (..) are those that are merged. £ Key drivers are presented in ascending order of false
discovery rate. ** Number of genes in adipose-specific network pathways. ¶ Number of genes in blood-specific network pathways.
¥ Number of genes in liver-specific network pathways. † Number of genes in muscle-specific network pathways. § Number of genes in
PPI-based network pathways. * Member gene of the particular pathway in tissue-specific gene-regulatory network analysis.
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Table 2. MSEA Meta-analysis of CRP and IL6 pathways (whole blood eQTL mapping) and corresponding tissue specific–
network key drivers.

Top 10 Key Drivers £

Module € Description Module Size Adipose Blood Liver Muscle PPI

M4047 ..

Selective
expression of

chemokine
receptors

during T-cell
polarization

N/A, N/A,
N/A, N/A,

20 §
N/A N/A N/A N/A

STAT3, JAK1, STAT4,
STAT1, LCK, IL4,

JUN, IL1B, STAT6,
JAK2 *

rctm0613
Interferon

gamma
signaling

26 **, N/A,
26 ¥, 22 †,

28 §

RTP4,
FCER1G N/A

PTPRC, RAC2,
PHF11, AIF1, IFIH1,

IFI44, FCGR1A,
THEMIS2, CSF1R,

ISG15

RTP4

SP100, HLA-A, IRF1,
HLA-DQA1, IRF2,

B2M *, IRF9 *,
FCGR1A, IRF7,

HLA-F

M17411
JAK-STAT
signaling
pathway

N/A, N/A,
48 ¥, N/A,

49 §
N/A N/A

TNFAIP2, TLR2,
IRF1, LCP2, EVL,

ZFP90, RAC2
N/A

JAK1 *, JAK2 *,
STAT3 *, STAT1,

TYK2 *, JAK3,
STAT5A, STAT6, IL4,

PTPN11

rctm0800
Nuclear

signaling by
ERBB4

N/A, N/A,
N/A, N/A,

23 §
N/A N/A N/A N/A NOTCH1, NOTCH4

rctm0647

Lipid
digestion,

mobilization,
and transport

N/A, N/A,
25 ¥, N/A,

25 §
N/A N/A MTMR11, CD36 N/A APOB, APOA1,

APOE

rctm0501
..

Glucose
metabolism

31 **, N/A,
30 ¥, N/A,

31 §
GPD1 N/A

ANXA2, AKR1D1,
LYRM5, CYP2C19,

S100A10, EHHADH,
SLC47A1, ERMP1,

SLC10A1, CD36

N/A

PGM1 *, ENPP1,
GSK3B, PYGB *,

PPP2R5C, PPP1CA,
PPP2CB *

M2890 ..
Calcium
signaling
pathway

N/A, N/A,
67 ¥, N/A,

76§
N/A N/A

MAPK7, PLCG2,
SYK, P2RY6, GPSM3,

ARHGDIB
N/A

PRKCA *, ITPR1 *,
GNAZ *, ITPR3 *,
GNAI1, ITPR2 *,
HRAS *, GNAO1,
GNB5, MAPK3 *

rctm0475
..

GPCR
downstream

signaling

N/A, N/A,
156 ¥, N/A,

183 §
N/A N/A

PTPRCAP, FPR1 *,
NM_011087, TRPM2,
AF071180, AK016231,

X51547, U96688,
X15592, PIK3R5

N/A

S1PR4, C5AR1, CCL5
*, CXCL10, CX3CR1,

GPR18 *, CCR7,
GPR183, CCL21,

P2RY14 *

CRP, C-reactive protein; eQTL, expression quantitative trait loci; GPCR, G protein–coupled receptor; IL6, interleukin 6; JAK-STAT, Janus
kinase-signal transducer and activator of transcription; MSEA, marker-set enrichment analysis; N/A, not available; PPI, protein-to-protein
interaction network. € Modules marked with two periods (..) are those that are merged. £ Key drivers are presented in ascending order of
false discovery rate. ** Number of genes in adipose-specific network pathways. ¥ Number of genes in liver-specific network pathways.
† Number of genes in muscle-specific network pathways. § Number of genes in PPI-based network pathways. * Member gene of the
particular pathway in tissue-specific gene-regulatory network analysis.
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Figure 6. PPI-specific gene-regulatory networks of top KDs in meta-analysis of CRP and IL6 on eQTL-based mapping. (CRP,
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We further performed a MSEA and subsequent wKDAs for BC development using
an independent GWA dataset and detected pathways and KDs in subnetworks that were
shared by gene supersets of CRP/IL6 (Table S5). Although ERBB4 signaling overlapped
BC and CRP/IL6, no significant KD was detected in the BC subnetwork. In addition to
glucose metabolism with PYGB, a KD gene overlapping BC and CRP/IL6, the BC pathways
included immune regulatory interactions/chemokine receptor mechanisms/JAK-STAT
signaling with their KDs (CD3D, CD3G, IL2, IL4, JAK1/2/3, STAT6, and TYK2), all of which
overlapped key regulatory genes in the CRP/IL6-assocaited gene networks.

4. Discussion

Accumulating evidence from population-based genomic studies [20,40,41] supports
that multiple genes together in biological pathways and gene-regulatory networks, com-
pared with the individual genes, coordinate better in revealing the underlying mechanism
of quantitative phenotypes and disease risks. For this reason, we integrated the GWAS data
from standard GWAS analyses with multi-omics data, including eQTLs, knowledge-based
canonical pathways, and tissue-based gene networks and detected diverse sets of genes
within the biologic pathways across CRP and IL6 phenotypes. Also, among the hundreds of
genes involved in the particular pathways, we identified important gene regulators of the
topmost significant pathways to prioritize genes and uncover novel regulatory mechanisms
of CRP/IL6 that may not have been detected without such a systems-biology study.

In detail, we identified several shared pathways across the two phenotypes in distance-
and eQTL based-mapping, both separately and together. In particular, immune regulatory
interactions between non-lymphoid and lymphoid cells clearly reflect the IL6/CRP im-
mune responses. For example, activated macrophages, one of the non-lymphoid immune-
regulation cells, produce proinflammatory cytokines, including IL6 [42]. IL6 is the main
stimulator of other inflammatory proteins/cytokines such as CRP, largely by promoting
their production in hepatocytes [43]. Next, by combining with its soluble receptor (sIL-6Rα),
IL6 elicits the development of cellular-specific immune responses, including end-stage
B-cell differentiation and T-cell activation [44]. Thus, IL6 is important in the transition
between non-lymphoid and lymphoid immune regulation. In addition, the IFNγ signal-
ing detected in our study mediates inflammation and cell-mediated immune responses.
For example, IFNγ activates macrophages, which in turn induce cytokines (e.g., CRP/IL6)
to facilitate accumulation of immune cells at inflammation sites [45]. IFNγ signaling is
also involved in cell differentiation and apoptosis and in anti- and pro-tumorigenesis.
In detail, low expression of major histocompatibility complex (MHC) antigen leads tu-
mor cells to evade the host immune response against tumor cells, and treatment with
IFNγ activates the MHC antigens, resulting in tumor regression [46]. IFNγ treatment
also upregulates chemokines such as CXCL9 and CXCL10 [47,48], which are important in
recruiting T cells into tumors of various origin, including breast, colorectum, ovary, and
lung [49,50]. By contrast, IFNγ has a pro-tumorigenic effect by interacting with a number
of chemokines, activating JAK-STAT signaling, which leads to increased programmed
death-ligand 1 (PD-L1) surface display [51–53]. A large amount of PD-L1 in cancer sites
allows cancer cells to evade T cells’ anti-tumor activity.

As noted above, chemokines and their receptors and JAK-STAT signaling, both of
which were associated with CRP/IL6 in our study, are involved in the inflamed immune
cell–enriched tumor microenvironment [50,54]. Particularly, CXCR3 chemokine receptor,
along with ligands CXCL9 and CXCL10, is a major regulator of T cells infiltration to target
tumor cells [55]. One of our KDs detected in the chemokine receptor process is CXCR3,
which is a promising target for regulating immune-related tumorigenesis. Also, JAK-
STAT signaling reflects the protein–protein interactions in a cell that are largely involved
in immunity, cell division, apoptosis, and tumor formation [56]. Specifically, JAK-STAT
signaling, triggered by the IL6/sIL-6Rα complex, activates extracellular signal-regulated
protein kinase 1 and 2 and phosphoinositide 3-kinase downstream pathways that have
been implicated in tumor cell growth [54,57–59]. Further, a JAK2 inhibitor, blocking
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IL6/JAK-STAT signaling, represses the secretion of CRP [60], confirming our finding that
this pathway is well linked to IL6/CRP phenotypes.

Moreover, we detected ERBB4 signaling as one of the topmost significant pathways
shared by CRP/IL6 and BC development; this finding is supported by previous studies
reporting that (a) human pro-inflammatory macrophages stimulating CRP/IL6 production
induces ERBB4 expression and (b) CRP/IL6 correlates with breast tissue aromatase levels
in women diagnosed with BC and those with a high risk of BC [61]. Finally, ERBB4 has
been inhibited as a therapeutic target for BC by pan-ERBB tyrosine kinase inhibitors such
as lapatinib [62]. The KDs NOTCH1 and NOTCH4 that we detected in the ERBB signaling
subnetwork can be further studied as novel targets for modulating the CRP/IL6 axis and
the risk of BC.

With those topmost pathways associated with CRP/IL6, we further examined regula-
tory connections between genes and pathways in G × G interaction networks. Identifying
KD genes in a tissue-specific manner in the gene networks can uncover key regulatory
components in an effort to identify tissue-specific drug targets and biomarkers for CRP/IL6
and associated diseases such as BC. We detected many known regulators in the pathways of
immune regulation/chemokine receptor expression: CD3D, CD3G, CD2, LCK, and SH2D2A
in adipose tissue and IL2RB in liver tissue, all of which are associated with the T-cell recep-
tor/CD3 complex and thus involved in T-cell development and signal transduction [63–68];
C8A, C9, CFI, and CFP in liver tissue, which encode the components of the complement
pathways in the immune system [69–72]; and HLA-A/B/E/G in PPI-specific subnetworks,
which belong to the MHC Class I, leading cytotoxic T cells to recognize peptides from the
endoplasmic reticulum membranes [73–76]. Among all of these, CD3D and CD3G, forming
CD3-delta and gamma complex, respectively, were found in our study as KDs shared by
BC development. Whereas several studies have reported the role of CD3 cells in promoting
immunosuppressive capacity in hepatocellular [77], urothelial [78], and non–small cell
lung [79] carcinomas, studies for BC risk are lacking, warranting further studies of those
regulatory genes as promising drug targets in immune-associated BC carcinogenesis.

Also, we detected well-established genes (e.g., RTP4, FCER1G, and IRF1) [80–83]
in IFNγ signaling. In particular, IRF1 was detected in both IFNγ and JAK-STAT signal-
ing; this finding is supported by the previous report that IRF1 encodes IFN regulatory
factor 1, which is involved in IL12 signaling mediated by STAT [82]. In addition, we
found key regulatory genes in JAK-STAT signaling, many of which overlapped immune
regulatory chemokine receptor–associated genes, indicating their great involvement in
the immune system. JAK1/2/3 are specifically targeted by FDA-approved drugs such
as tofacitinib and ruxolitinib for treatment of autoimmune diseases [84–86]. Also, STAT3
leads to the transcription of IL6-responsive genes, resulting in leukocyte infiltration and
inflammation [87,88]; thus, it has been served as an effective drug target for malignant and
inflammatory diseases [54]. In our study, we detected STAT6 in addition to JAK1/2/3 as
KDs shared by BC development. Previous studies have revealed that STAT6 exerts its effect
via IL4-mediated biologic responses [89], is involved in impairing metastasis of BC cells to
the lungs [90], and is associated with a better prognosis for BC patients [91]. This suggests a
critical role of STAT6 in immune-mediated cancer progression, and it can thus be considered
a promising drug target or biomarker for BC prevention and/or treatment.

The GWAS database we used in this study may not capture the full array of unknown
biology related to CRP/IL6/BC risk. Also, we omitted directional analyses and did not
detect epistatic interactions among the regulatory genes. Further, our data focused on
individuals of European ancestry, so the generalizability of our findings to other popu-
lations is limited. Nonetheless, our study has detected well-known pathways and KDs
related to the phenotypes, which have been targeted by FDA-approved drugs, indicating
that our systematic multi-omics data approach is robust and productive. In addition,
consistent with previous findings [35,92], most of the KDs we detected were not the top
GWAS hits, supporting evolutionary constraints [93,94]. However, those KDs that have



Biomolecules 2021, 11, 1379 15 of 19

central properties in the gene networks exert strong effects on phenotype regulation and
associated-disease risk, thus they may be better candidates for drug targets and biomarkers.

5. Conclusions

Overall, we detected both shared and unique biologic pathways across CRP/IL6 and
BC development. The gene-regulatory networks enriched by CRP/IL6 pathways revealed
in a tissue-specific manner a number of key driver genes, of which both well-established
(e.g., JAK1/2/3 and STAT3) and novel (e.g., CXCR3, CD3D, CD3G, and STAT6) drug
targets were recognized for their shared mechanisms in regulating CRP/IL6 and BC risk.
Our study, if validated in an independent large genomic study, may contribute to the better
revelation of novel genetic targets for CRP/IL6 regulation, which would enable preventive
and therapeutic strategies for the associated disorders, such as BC.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom11091379/s1, Figure S1: Schematic diagram of the study. (CRP, C-reactive protein;
eQTL, expression quantitative trait loci; GWAS, genome-wide association study; IL6, interleukin-6;
MSEA, marker-set enrichment analysis; PPI, protein-to-protein interaction; SNP, single nucleotide
polymorphism). Figure S2: Comparison of significant pathways (false discovery rate [FDR] < 0.05)
for C-reactive protein (CRP) phenotype between 50-kb distance–based and expression quantitative
trait loci [eQTL]–based mapping. Figure S3: Comparison of significant pathways (false discovery rate
[FDR] < 0.05) for interleukin 6 (IL6) phenotype between 50-kb distance–based and expression quanti-
tative trait loci [eQTL]–based mapping. Figure S4: Comparison of significant pathways (false discov-
ery rate [FDR] < 0.05) between C-reactive protein (CRP) and interleukin-6 (IL6) phenotypes across
distance–based and expression quantitative trait loci [eQTL]–based mapping. Note: The yellow-
highlighted pathways overlap with those from the meta-analysis of CRP and IL-6 in either mapping
or their downstream cascades. Table S1: MSEA analysis of CRP pathways (CRP, 50-kb distance–based
mapping; pathways arranged by ascending FDR). Table S2: MSEA analysis of CRP pathways (CRP,
eQTL-based mapping; pathways arranged by ascending FDR). Table S3: MSEA analysis of IL6 path-
ways (IL6, 50-kb distance–based mapping; pathways arranged by ascending FDR). Table S4: MSEA
analysis of IL6 pathways (IL6, eQTL-based mapping to genes; pathways arranged by ascending FDR).
Table S5: Tissue-specific shared pathways and KD genes across BC development and CRP/IL6.
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