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Abstract

Warm ischemia-reperfusion injury remains a crucial issue in transplantation following the cardiac death of donors.
Previously, we showed that surfactant inhalation during warm ischemia mitigated ischemia-reperfusion injury. This study
investigated the mechanisms of surfactant inhalation protection of the warm ischemic lung after reoxygenation with
ventilation alone. In an isolated rat lung ventilation model, cardiac arrest was induced in the CTRL (control) and SURF
(surfactant treatment) groups by ventricular fibrillation. Ventilation was restarted 110 min later; the lungs were flushed, and
a heart and lung block was procured. In the SURF group, a natural bovine surfactant (SurfactenH) was inhaled for 3 min at
the end of warm ischemia. In the Sham (no ischemia) group, lungs were flushed, procured, and ventilated in the same way.
Afterwards, the lungs were ventilated with room air without reperfusion for 60 min. Surfactant inhalation significantly
improved dynamic compliance and airway resistance. Moreover, surfactant inhalation significantly decreased inducible nitric
oxide synthase and caspase-3 transcript levels, and increased those of Bcl-2 and surfactant protein-C. Immunohistochem-
ically, lungs in the SURF group showed weaker staining for 8-hydroxy-29-deoxyguanosine, inducible nitric oxide synthase,
and apoptosis, and stronger staining for Bcl-2 and surfactant protein-C. Our results indicate that surfactant inhalation in the
last phase of warm ischemia mitigated the injury resulting from reoxygenation after warm ischemia. The reduction in
oxidative damage and the inhibition of apoptosis might contribute to the protection of the warm ischemic lungs.
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Introduction

To deal with the shortage of donor organs in lung transplan-

tation, donation after cardiac death (DCD) has been introduced

worldwide as a potential strategy to increase the donor pool. Since

lung transplantation from uncontrolled DCD donors was first

successfully performed in 2000 [1], several programs have

subsequently reported acceptable outcomes comparable to dona-

tion after brain death [2,3]. However, warm ischemia inevitably

occurs in DCD donors after cardiac arrest and may cause

ischemia-reperfusion (I-R) injury after transplantation.

The presence of the airway has made it possible to protect graft

lungs by inflation [4,5], ventilation with oxygen [5,6], and drug

administration, even after circulation has stopped in DCD donors.

Moreover, we previously reported the protective effects of

preprocurement ventilation [7] and the inhalation of several drugs

[8–10].

A pulmonary surfactant is primarily composed of phospholipids

and surfactant proteins, and functions to reduce the surface

tension in the alveoli through forming a monolayer at the air-lipid

interface. This mechanism prevents alveolar collapse [11,12] and

protects the lung. Surfactants have been administered in clinical

settings to patients with severe primary graft dysfunction after

transplantation [13,14] and for donor lungs [15]. However,

surfactant function has been reported to deteriorate with

increasing warm ischemic time intervals [12]. Recently, we

reported that surfactant inhalation in the last phase of warm

ischemia attenuated I-R injury in an ex vivo rat lung perfusion

model [16] and in a canine lung transplantation model [17]. We

found that prerecovery surfactant inhalation improved graft lung

function, maintained adenine nucleotide levels, and prevented

cytokine production, resulting in attenuation of warm I-R injury

[16]. Van Putte et al. also reported that exogenous surfactant

resulted in anti-inflammation, which was accompanied by

decreased apoptosis [18]. Hence, surfactant inhalation could serve

as a potential method to reduce the severity of I-R injury.

However, both reports demonstrated that various factors could

have potentially induced I-R injury.

I-R commonly corresponds to anoxia-reoxygenation in organ

transplantation [19]. However, the I-R injury in lungs is

physiologically different from that in other organs with systemic

circulation. First, the lung cells are able to maintain aerobic

metabolism by using the oxygen in the alveoli even after the

cessation of circulation [4,5]. Second, the lungs can undergo

reoxygenation without reperfusion, if only with ventilation.

Consequently, the lung affords a unique opportunity to separate

the effects of reperfusion and reoxygenation on tissue function.

We hypothesized that surfactant inhalation could mitigate

hypoxia-reoxygenation injury. Here, the study aim was to clarify

the effect of surfactant inhalation against injury resulting from

reoxygenation with ventilation alone after warm ischemia to

explore the mechanism of surfactant against I-R injury.
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Materials and Methods

Ethics Statement
Specific pathogen-free inbred male Lewis rats weighing 285–

305 g (Japan SLC, Hamamatsu, Japan) were used in these studies.

All animals received humane care in compliance with the

Principles of Laboratory Animal Care formulated by the National

Society for Medical Research, and the ‘‘Guide for the Care and

Use of Laboratory Animals,’’ prepared by the Institute of

Laboratory Animal Resources and published by the National

Institute of Health (NIH Publication 85–23, revised 1996). The

study protocol was approved by the Ethical Committee of the

Graduate School of Medicine at Kyoto University, Japan.

Surfactant and Aerosol Delivery
A 30-mg/ml surfactant solution was obtained by dissolving

beractant (SurfactenH, Mitsubishi Tanabe Pharma Corporation,

Osaka, Japan) with normal saline (0.9%) and then aerosolized by a

nebulizer (AGAL1000, Aerogen, Ireland), which was put into the

inspiratory loop of the ventilator. In this system, the diameters of

,90% and ,60% of the aerosolized particles were maintained

below 10 mm and 3.0 mm, respectively. In each experiment for the

SURF (surfactant treatment) group, 0.4 mL of fluid was loaded

and aerosolized for 3 min.

Study Design
Rats were anesthetized with an intraperitoneal injection of

sodium pentobarbital (50 mg/kg), intubated after tracheotomy,

and ventilated with ambient air at positive pressure. Isolated rat

lung ventilation was performed using a Hugo-Sachs Elektronik-

Harvard Apparatus (Model 829; March-Hugstetten, Germany), as

previously reported [16]. The animals were randomly allocated to

three groups: Sham, CTRL, and SURF. In the CTRL and SURF

groups, after a medial abdominal incision and a median

sternotomy were performed, cardiac arrest was induced by

ventricular fibrillation. The ventricular fibrillation was induced

by a fibrillator attached directly to the right atrium and apex of the

heart and continued for 7 min at 2.00 V. Cardiac arrest was

defined as the complete immobility of the ventricles. After

confirmation of cardiac arrest, the ventilator was stopped, and

the lungs were completely collapsed. The chest was closed with

skin staplers and then placed in a Styrofoam box. After 110 min of

cardiac arrest period, the lungs were completely re-expanded

below the pressure of 30 cmH2O, and positive pressure ventilation

was restarted. The pulmonary artery was cannulated directly, and

the lungs were flushed with 20 ml of 37uC low-potassium dextran

solution (PerfadexH, Vitrolife, Uppsala, Sweden) at a pressure of

20 cmH2O, and drained through an incision at the apex of the left

ventricle. The cannula of the pulmonary artery was pulled out,

and the heart and lung block was subsequently procured and

placed in the artificial thorax. The test lung was then ventilated

with room air at negative pressure under the following conditions:

Figure 1. Physiological lung functions during ventilation. (A) Airway resistance. (B) Dynamic compliance. **p,0.01 or ***p,0.001 between the
Sham (open circles) and CTRL groups (boxes). {p,0.05 or {{p,0.01 or {{{p,0.001 between the CTRL and SURF groups (solid circles). 1p,0.05
between the Sham and SURF groups. Data are expressed as mean values 6 SD (BL = baseline).
doi:10.1371/journal.pone.0072574.g001

Figure 2. Adenine nucleotide levels. ATP, adenosine triphosphate;
ADP, adenosine diphosphate; AMP, adenosine monophosphate; dw, dry
weight. Data are shown as mean 6 SD.
doi:10.1371/journal.pone.0072574.g002
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respiratory rate = 60 cycles/min; peak inspiratory and expiratory

chamber pressures = –8 and –4 cmH2O, respectively; ratio of

inspiratory duration = 50%. The artificial thorax and the airway

were water-jacketed to maintain the temperature at 37uC
throughout the experiment. In the SURF group (n = 5), the

surfactant was inhaled for 3 min just after the beginning of

negative pressure ventilation. In the CTRL group (n = 5), no

inhalation was performed. In the Sham group (n = 5), the lungs

were flushed with PerfadexH, and thereafter procured and

ventilated in the same way. At the end of the inhalation, the

time was set as baseline, and the evaluation was commenced with

airway resistance (cmH2O/ml) and dynamic compliance (ml/

cmH2O) continuously monitored for 60 min.

Adenine Nucleotide Levels
Pieces of the right middle and lower lobes of each lung were

collected immediately after flushing the pulmonary vascular bed

Figure 3. mRNA expression of cytokines after reperfusion. (A) iNOS mRNA levels. (B) Caspase-3 mRNA levels. (C) Bcl-2 mRNA levels. (D) Bax
mRNA levels. (E) SP-C mRNA levels. All values are expressed as the mean 6 SD.
doi:10.1371/journal.pone.0072574.g003

Figure 4. Caspase Activation Assay. All values are expressed as the
mean 6 SD.
doi:10.1371/journal.pone.0072574.g004

Figure 5. Immunohistochemical staining and the assessment
for oxidative damage (original magnification 400 6). (A) Sham
group. (B) CTRL group. (C) SURF group. In the 8-OHdG staining, the ratio
of 8-OHdG-positive cells was significantly lower in the Sham and SURF
groups than that in the CTRL group (D). All values are expressed as the
mean 6 SD.
doi:10.1371/journal.pone.0072574.g005
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with warm saline (37uC) at the end of the evaluation. The

adenosine triphosphate (ATP), adenosine diphosphate (ADP), and

adenosine monophosphate (AMP) levels were measured by high-

performance liquid chromatography, as previously described [16].

Messenger RNA (mRNA) Expression
Left lung specimens were collected after the 60 min of

evaluation. Five genes were examined by real-time reverse

transcription-polymerase chain reaction as previously described

[16]. Quantities of the genes of interest were calculated from

corresponding standard curves and are presented here relative to

the amount of glyceraldehyde-3-phosphate dehydrogenase

(GAPDH).

Caspase Activation Assay
Caspase-3/7 activities were measured using Caspase-GloH 3/7

Assay kit (Promega, Madison, WI, USA) according to manufac-

turer’s instructions. Briefly, the supernatant of each specimen were

seeded in 96-well plates and Caspase-Glo 3/7 reagent was added

to each well in a 1:1 ratio and incubated for 60 minutes before

measuring luminescence as relative light units (RLUs) using a

GloMaxH-Multi Detection System (Promega, Madison, WI, USA).

Caspase activity was normalized to the protein concentration using

the Bradford protein assay. Caspase activity was represented as

ratio to that in the Sham group.

Pathological Evaluation
After 60 min of evaluation, 10% formalin was instilled

intratracheally into the right upper and mediastinal lobes, which

were subsequently embedded in paraffin and investigated by

hematoxylin-eosin (H–E) staining.

Immunohistochemical Analysis
The avidin-biotin complex method was used for immunohisto-

chemical staining, as previously reported [20,21]. The primary

antibodies for incubation were as follows; 8-hydroxy-29-deoxy-

guanosine (8-OHdG): Anti-8-OHdG monoclonal antibody N45.1

(JaICA, Shizuoka, Japan), inducible nitric oxide synthase (iNOS):

Rabbit Anti-Human iNOS Polyclonal Antibody (Spring Biosci-

ence, Pleasanton, USA), Bcl-2: Bcl-2 (C-2): sc-7382 (Santa Cruz

Biotechnology, Santa Cruz, USA), SP-C: SP-C (FL 197): sc-13979

(Santa Cruz Biotechnology). Quantification of the immunohisto-

logical data was performed blindly by 2 independent investigators

(J.S. and D.N.) as a mean of the ratio of 8-OHdG-, iNOS-, and

Bcl-2-positive cells to total cells in 10 randomly chosen high-power

fields (HPF) per section at a magnification of 4006. Because SP-C

was produced by only alveolar type II cells, SP-C staining was

assessed as a mean number of the SP-C-positive cells in the same

manner.

TUNEL Assay
Apoptotic cells were stained by the terminal deoxynucleotidyl

transferase-mediated dUTP nick-end labeling (TUNEL) technique

using an apoptosis in situ detection kit (Wako Jyunyaku, Osaka,

Japan), as previously reported [7]. Apoptosis was expressed as a

mean of the ratio of TUNEL-positive cells to total cells in the same

manner as the immunohistochemical analysis.

Statistical Analysis
All statistical analyses were performed using StatView 5.0

software (Abacus Concepts, Berkeley, California). All values are

presented as the mean 6 the standard deviation. Data were

evaluated using one-way analysis of variance (ANOVA), Scheffe’s

post-hoc multiple comparison test to explore differences between

the groups. A p value ,0.05 was considered statistically

significant.

Results

The body weights were similar between the Sham, CTRL, and

SURF groups (29764.0 g, 29666.2 g, and 29565.0 g, respec-

tively). All lungs were ventilated and evaluated successfully in

60 min.

Physiological Parameters
In the CTRL group, airway resistance increased and dynamic

compliance decreased during the latter half of the evaluation

period, and were significantly higher and lower than those in the

Sham group (p,0.001 and p,0.01 at 60 minutes after evaluation

period). However, in the SURF group, the airway resistance and

dynamic compliance were maintained at almost the same levels as

those at the initiation of the evaluation, and were significantly

lower and higher, respectively, than those in the CTRL group

(p,0.001 and p,0.05 at 60 minutes, respectively; Figure 1A and

B).

Adenine Nucleotide Levels
After 60 min of ventilation, although we did not have statistical

significance, the ATP levels in the SURF group tended to be

higher than that in the CTRL group. The differences in ADP and

AMP levels between the groups did not reach significance

(Figure 2).

Evaluation of mRNA Expression
After 60 min of ventilation, the mRNA expression of iNOS and

caspase-3 was significantly lower in the Sham and SURF groups

than that in the CTRL group (Figure 3A and B). Meanwhile, the

B-cell lymphoma-2 gene product (Bcl-2) mRNA levels in the

SURF group were significantly higher than those in the CTRL

Figure 6. Immunohistochemical staining for iNOS (original
magnification 400 6). (A) Sham group. (B) CTRL group. (C) SURF
group. Arrows indicate iNOS positive cells. The ratio of iNOS-positive
cells to total cells was significantly lower in the SURF group than in the
CTRL group (D). All values are expressed as the mean 6 SD.
doi:10.1371/journal.pone.0072574.g006
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Figure 7. TUNEL assay (original magnification 4006). (A) Sham group. (B) CTRL group. (C) SURF group. The ratio of apoptotic cells to total cells
in the Sham and SURF groups was significantly lower than that in the CTRL group (D). All values are expressed as the mean 6 SD.
doi:10.1371/journal.pone.0072574.g007

Figure 8. Immunohistochemical staining for Bcl-2 (original
magnification 400 6). (A) Sham group. (B) CTRL group. (C) SURF
group. Arrows indicate Bcl-2 positive cells. The ratio of Bcl-2-positive
cells was significantly higher in the SURF group than that in the CTRL
group (D). All values are expressed as the mean 6 SD.
doi:10.1371/journal.pone.0072574.g008

Figure 9. Immunohistochemical staining for SP-C (original
magnification 4006). (A) Sham group. (B) CTRL group. (C) SURF
group. The amount of SP-C-positive cells in the CTRL and SURF groups
was significantly lower than that in the Sham group, however, that in
the SURF group was significantly higher than that in the CTRL group
(D). All values are expressed as the mean 6 SD.
doi:10.1371/journal.pone.0072574.g009
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group (Figure 3C). Bcl-2 associated X-protein (Bax) mRNA levels

did not differ between the study groups (Figure 3D). The SP-C

mRNA levels in the SURF group were significantly lower than

that in the Sham group and higher than that in the CTRL group

(Figure 3E).

Caspase Activation Assay
After 60 min of ventilation, there was a threefold increase in

Caspase-3/7 activity in the CTRL group compared to that in the

Sham group. Caspase-3/7 activity in the SURF group was more

than twice as much as that in the Sham group, but was

significantly lower than that in the CTRL group (Figure 4).

Pathological Examination
The lungs of 3 groups had a relatively normal structure, with no

evident differences between the groups.

Oxidative Damage After Reoxygenation
Oxidative damage was evaluated immunohistochemically by

examining 8-OHdG expression [22]. The CTRL group

(Figure 5B) showed more intense nuclear staining for 8-OHdG

than the Sham and SURF groups (Figure 5A and C). Moreover,

the ratio of 8-OHdG-positive cells was significantly lower in the

Sham and SURF groups than that in the CTRL group (Figure 5D).

Immunohistochemical Staining for iNOS
In all groups, the staining for iNOS was weak and unclear

(Figure 6A, B, and C). However, the ratio of iNOS-positive cells

was significantly lower in the SURF group than that in the CTRL

group (Figure 6D).

TUNEL Assay
The ratio of apoptotic cells to total cells in the Sham and SURF

groups was significantly lower than that in the CTRL group

(Figure 7A, B, C, and D).

Immunohistochemical Staining for Bcl-2
The ratio of Bcl-2-positive cells was significantly higher in the

SURF group than that in the CTRL group (Figure 8A, B, C, and

D).

Immunohistochemical Staining for SP-C
The staining of type II cells was sporadic in the CTRL group

(Figure 9B), but homogeneous and clear in the Sham and SURF

groups (Figure 9A and C). The amount of SP-C-positive cells in

the CTRL and SURF groups was significantly lower than that in

the Sham group, however, that in the SURF group was

significantly higher than that in the CTRL group (Figure 9D).

Discussion

In this study, we investigated whether surfactant inhalation in

the last phase of warm ischemia could mitigate injury resulting

from reoxygenation in an isolated rat lung ventilation model. We

found that a reduction in oxidative stress and inhibition of

apoptosis may contribute to maintaining the viability of alveolar

type II cells, leading to the protection of warm ischemic lungs.

Initially, we explored the anti-oxidative effects of surfactant

inhalation after resuming only the ventilation. Nitric oxide (NO) is

a vasodilator and bronchodilator molecule with a critical role in

numerous physiologic and inflammatory processes in the lung

[23], and iNOS is present in various cell types and increased by a

variety of inflammatory stimuli [24]. Large amounts of NO

generated by iNOS can be toxic and pro-inflammatory [25], and

may promote peroxynitrite radical formation [26]. In the current

study, surfactant inhalation significantly decreased iNOS produc-

tion, resulting in the reduction of oxidative damage. Van Putte

et al. reported that surfactant treatment decreased iNOS expres-

sion at 30 min of reperfusion in a rat lung ischemia-reperfusion

model, consistent with our results [18]. Moreover, Miles et al.

showed that lung surfactant inhibited lipopolysaccharide (LPS)-

induced NO production by alveolar macrophages, that the effect is

due to a reduction in iNOS protein levels, and that SP-B was the

surfactant component responsible for the reduction [27]. Based on

these findings, we believe that surfactant prevents iNOS produc-

tion, leading to a decrease in the down-regulation of surfactant by

iNOS. Consistent with this theory, in the current study, the SURF

group maintained predominance in the dynamic compliance.

Increased lung apoptosis has been shown to be one of the

mechanisms through which iNOS and inducible NO cause I-R

lung injury [28]. When NO is supplied in excess, as in hypoxia-

reoxygenation situations, the part of it released from NOS can

rapidly react with superoxidase to form peroxynitrite, an oxidizing

agent [29]. This species can cause lipid peroxidation, apoptosis,

alterations in DNA, and protein nitration and oxidation, all of

which can lead to profound cellular disturbances [30]. Therefore,

based on our data demonstrating that surfactant reduced oxidative

damage, we hypothesized that surfactant may induce apoptotic

proteins. We used assays for activated caspase-3 activity, a

terminal effector of apoptosis [31], and found that surfactant

inhalation significantly reduced caspase-3 mRNA levels and

caspase-3/7 activity, consistent with van Putte et al. [18]. This

result could explain the reduced apoptotic cells in the SURF

group. Bcl-2 is a well-studied antiapoptotic protein, and is thought

to inhibit apoptosis by stabilizing the outer mitochondrial

membrane, preventing release of cytochrome c into the cytosol

and thereby blocking caspase activation [32]. In the current study,

mRNA and protein expressions of Bcl-2 in the SURF group were

significantly higher than those in the CTRL group. Prior studies

have demonstrated that Bcl-2 overexpression in donor grafts is

cytoprotective [31,33,34]. Further, caspase-3-dependent cleavage

of Bcl-2 promotes further caspase activation as part of a positive

feedback loop for executing the cell [35]. Reduced caspase-3

activity by surfactant inhalation might cut off the feedback loop for

apoptosis.

Mitochondrial membrane permeability is directly controlled by

the Bcl-2 family of proteins primarily through regulating the

formation of apoptotic protein-conducting pores in the outer

mitochondrial membrane [36]. The inhibition of apoptosis could

lead to the maintenance of cell viability. Furthermore, ATP

synthesis, coupled to cellular respiration, occurs in the mitochon-

dria, and irreversible damage at the level of oxidative phosphor-

ylation can lead to cell death by energy deprivation [37]. The

current study showed that surfactant inhalation led not only to the

inhibition of apoptosis but to the maintenance of ATP levels. In

addition, the levels of SP-C, a marker of cell viability of type II

cells, were also maintained more in the SURF group than in the

CTRL group.

Our study had several limitations. First, a small animal ex vivo

model was used as opposed to an actual lung transplantation

model. Second, no cold preservation was applied, which is always

required clinically; and the lungs were ventilated with negative

pressure. Third, the lungs were completely collapsed during warm

ischemia, which is different from clinical settings.

In conclusion, we confirmed that only 3 min of surfactant

inhalation in the last phase of warm ischemia mitigated the injury

resulting from reoxygenation in an isolated rat lung ventilation

Surfactant Inhalation against Warm Ischemic Injury
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model. The reduction in oxidative damage and the inhibition of

apoptosis may contribute to the protection of the warm ischemic

lungs in our study. Hence, surfactant inhalation could be a

convenient and effective method for improving graft function in

lung transplantation from DCD donors.
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