
Advances in the Exploration of the Epigenetic Relevant Chemical
Space
Diana L. Prado-Romero and José L. Medina-Franco*

Cite This: ACS Omega 2021, 6, 22478−22486 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Epigenetic drug discovery is a promising avenue to
find therapeutic agents for treating several diseases and developing
novel chemical probes for research. In order to identify hit and lead
compounds, the chemical space has been explored and screened,
generating valuable bioactivity information that can be used for
multiple purposes such as prediction of the activity of existing
chemicals, e.g., small molecules, guiding the design or optimization
of compounds, and expanding the epigenetic relevant chemical
space. Herein, we review the chemical spaces explored for
epigenetic drug discovery and discuss the advances in using
structure−activity relationships stored in public chemogenomic
databases. We also review current efforts to chart and identify
novel regions of the epigenetic relevant chemical space. In particular, we discuss the development and accessibility of two significant
types of compound libraries focused on epigenetic targets: commercially available libraries for screening and targeted chemical
libraries using de novo design. In this mini-review, we emphasize inhibitors of DNA methyltransferases.

1. INTRODUCTION

Epigenetics has a central role in understanding the inheritance,
development, and progression of diseases. Modulation and, in
particular, inhibition of epigenetic targets was considered as an
approach for cancer treatment. Several conditions are currently
associated with the misregulation of epigenetic targets, such as
depressive disorders, multiple sclerosis, diabetes, or Alzheimer’s
disease.1 Epigenetic target inhibitors are attractive not only for
drug development but also as chemical tools to understand the
underlying mechanisms of epigenetic regulation.2 Currently,
there are 10 Food and Drug Administration (FDA)-approved
drugs related to epigenetic targets, and there are several others
under clinical development.3 Likewise, there are several
chemical probes focused on epigenetic targets. Figure 1 shows
the chemical structures of representative epigenetic drugs.
DNA methyltransferases (DNMTs) are major epigenetic

targets with therapeutic relevance (Figure 1). The enzyme
family of DNMTs promotes the covalent addition of a methyl
group from S-adenosyl-L-methionine (SAM) to the 5-carbon of
cytosine, mainly within CpG dinucleotides, yielding S-adenosyl-
L-homocysteine (SAH). Alterations in the functions of DNMT1,
DNMT3A, and DNMT3B are related to tumorigenesis and
other diseases.4 Several reviews have been published regarding
the status of the DNMTs inhibitors proposed so far.5 Figure 2
shows chemical structures of representative DNMT inhibitors
and compounds associated with a demethylating activity.
Identifying inhibitors of epigenetic targets, including

DNMTs, is an active area of research. Screening compound

libraries and optimization of hit and lead compounds, from
either synthetic or natural sources, has led to the population of
the so-called epigenetic relevant chemical space (ERCS).6 More
and more chemical libraries have been tested biologically, and
the information has been deposited in public libraries such as
ChEMBL and other chemogenomic databases as reviewed
recently.1 Consequently, the structure−activity relationships
(SAR), or, more specifically, the structure−epigenetic activity
relationships (SEAR), have increased, paving the way for
developing predictive models. Although several drug discovery
strategies are being successfully implemented and developed to
augment the epigenetic relevant chemical space, some
approaches have been used on a limited basis. Examples are
de novo design and assembly of focused libraries from
commercial sources for acquisition and experimental screening.
Herein, we review advances on the application of SEAR

available in public chemogenomics databases. We also discuss
techniques to chart novel and unexplored regions of chemical
space to identify potential hits, e.g., augment the ERCS. In
particular, we discuss avenues to design or test focused chemical
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libraries, use de novo design of molecules, or systematically
explore the chemical space of large natural product databases.
The mini-review is divided into five sections. After this
introduction, section 2 presents trends in computational
approaches toward epigenetic drug discovery. Section 3
discusses advances in the generation and use of the SAR from
epigenetic databases. The following section addresses the
opportunities to expand the ERCS. Finally, section 5 presents
conclusions and future directions. In general, we emphasize
DNMT inhibitors that have been the primary focus of our
group’s research.

2. TRENDS IN COMPUTER-AIDED DEVELOPMENT OF
EPIGENETIC TARGETING COMPOUNDS

Different computational techniques followed by experimental
validation have been used to chart the chemical space, searching
for novel epigenetic targeting compounds. In addition, the
significant increase in epigenetics-related data boosted computa-
tional methods applied to this field, giving rise to the
subdiscipline “epi-informatics” that has progressed for more
than 5 years.1 Current trend in epi-informatics includes the
generation and maintenance of target-compound databases, the
structure-based design of multiepigenetic targets, the develop-
ment of predictive models using machine learning, and
molecularmodeling (including docking andmolecular dynamics
simulations) of hit candidates and active molecules to

understand better their activity at the molecular level. Other
trends, such as de novo and fragment design, are further
commented on in section 4.
Regarding DNMT inhibitors, Table 1 summarizes current

trends for their design and discovery. The major techniques are
docking-based and pharmacophore-based virtual screening, as
previously pointed out.7 Nevertheless, pharmacophore models
have considered structure-based and ligand-based methods.
These last included information from nucleoside analogues but
also from non-nucleoside inhibitors. The most recent studies
involved fragment-based design. The chemical structures of
selected DNMT inhibitors developed recently are shown in
Figure 2. One of the most notable developments is compound
4b, with inhibitory activity in the low micromolar range (IC50 =
4.1 μM). This inhibitor also presents selectivity for DNMT1
versus DNMT3A/3B, as demonstrated experimentally.

3. ADVANCES ON STRUCTURE−EPIGENETIC
ACTIVITY RELATIONSHIPS AND THEIR
APPLICATIONS

As commented above, the screening of chemical libraries has
expanded. A large amount of SEAR is the basis of computational
chemogenomics and is a rich source to develop predictive
models that help design and identify novel inhibitors.1 In this
area, a recent development is a free Web server to predict the
epigenetic activity of small organic molecules across a panel of
55 epigenetic targets of therapeutic relevance. The server called
Epigenetic Target Profiler (ETP)13 is available at http://www.
epigenetictargetprofiler.com/. It was developed based on
extensively validated machine learning models trained on
biological activity data deposited in ChEMBL.14 ETP imple-
ments the best performing model for epigenetic target
prediction, as identified from a systematic comparison of
machine learning models built on molecular fingerprints of
different designs. Full details of the development and
implementation of ETP are described in detail elsewhere.13,14

It is anticipated that ETP will help guide the identification of
compounds with epigenetic activity.

4. OPPORTUNITIES TO EXPAND THE EPIGENETIC
RELEVANT CHEMICAL SPACE

The number of synthetically viable organic compounds exceeds
166 billion molecules. However, as for many other targets of
therapeutic relevance, just a tiny fraction of that chemical space
has been screened, and there is a need to keep expanding the
ERCS, balancing novelty with relevance in medicinal chemistry.

4.1. Focused Libraries Commercially Available for
Screening. Recently, commercially available compound
libraries focused on epigenetic targets15 have emerged. Table
2 summarizes representative commercial libraries focused on
epigenetic targets, including the number of compounds and the
main targets. In total, there are over 53,000 compounds. Most of
them are commercialized as epigenetic-focused libraries in
general. However, few include subsets of compounds directed
for specific targets such as histone-modifying enzymes and
DNMTs like DNMT1 or DNMT3B.
Figure 3 shows a visual representation of the chemical space of

the 11 compound libraries in Table 2. Before the visualization,
the chemical structures of the compound data sets were curated
using a standard and published protocol.16 The principal
component analysis was done based on six properties of
pharmaceutical relevance: molecular weight, number of

Figure 1. Chemical structures of representative epigenetic drugs.
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Figure 2.Chemical structures of nucleoside analogues, inhibitors of DNAmethyltransferases, DNMTs (blue square). Molecular structures of DNMT
inhibitors, identified and developed from different sources: organic synthesis (yellow), natural products (green), and virtual screening (red).

Table 1. Design and Discovery of DNMT Inhibitors

strategy source target resultsa ref

pharmacophore-based virtual screening
and similarity searching

specs DNMT3A (PDB ID: 4U7T) compounds 40 and 40_3 with inhibitory
activity (IC50 = 46.5 and 41 μM)

8

pharmacophore-based virtual screening Maybridge DNMT1 (PDB ID: 3PTA) identification of three novel hits: JFD01881,
RJC02836, and RJC02837

9

pharmacophore and docking-based
virtual screening

in-house database DNMT1 (PDB ID: 3SWR) one derivative from an identified compound:
4b (IC50 = 4.1 μM)

10

fragment-based design natural products from
PubChem

DNMT1 (PDB ID: 4WXX) two proposals of lead compounds:HAMI 9 and
HAMI 14

11

fragment-based design and fragment
merging with SAH

natural products’ fragments
from PubChem

DNMT1 (PDB ID: 3AV5, 3AV6,
3PTA, 3SWR, 4WXX)

most promising hit: MAHI1 11

fragment-based design natural products’ fragments
from PubChem

DNMT1 (PDB ID: 3AV5) potential drug lead: C-7756 12

aThe chemical structures of selected compounds are shown in Figure 2.
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rotatable bonds, number of hydrogen bond donors and
acceptors atoms, topological polar surface area (TPSA), and
octanol−water partition coefficient (LogP). The total variance
captured by the first two principal components is 72%. The

properties that contributed most to the first two principal
components were TPSA and LogP. The visualization indicates
that most libraries have comparable and drug-like properties, as
designed and prefiltered by the chemical companies selling the

Figure 3. Visual representation of the chemical space of 11 compound libraries focused on epigenetic targets in Table 2. The visualization was done
with a principal component analysis of six autoscaled properties of pharmaceutical relevance. Each compound library is plotted using the same
coordinates. The plot on the bottom-right corner shows all 11 compound libraries plotted on the same graph. The percentage of variance recovered by
each principal component is indicated along the X- and Y-axis.
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libraries. Compounds in the Enamine collection populate a
more constrained region of the chemical space compared with
other libraries such as APExBIO and SelleckChem, covering
broader areas of the property-based chemical space.
Recently, the need to include privileged substructures present

in the collection of approved drugs for clinical use in the focused
libraries for epigenetic drug discovery has been highlighted.15

4.2. De Novo Design.The main goal of de novo design is to
generate new molecules with desired properties. Herein, we
focus on the design of bioactive hits. A schematic summary of de
novo design is presented in Figure 4. The method has four
general stages. First of all, primary target constraints are
established. These refer to the information related to ligand−
receptor interaction.17 Three-dimensional (3D) coordinates are
needed to determine the constraints. The information could be
obtained from the 3D structure of the target (X-ray or nuclear
magnetic resonance), a homology model, or a pharmacophore
model. The last one enables the use of known ligands to define
primary target constraints, even if the 3D structure of the
receptor is not available. Second, atoms or fragments could be
the building blocks of the new molecules. Atom-based
construction will likely give more diversity to the chemical
space. However, proposed structures usually are synthetically
challenging or unfeasible. In that sense, fragment-based
approaches could overcome this disadvantage as they are
typically larger and retain more chemical information. Frag-
ments are drawn from sources like general screening databases,
natural products, or focused libraries (vide supra). Once the

building blocks are established, the algorithm continues to the
ligand construction. This stage requires a seed atom or fragment.
Techniques for molecular assembly include growing, linking,
alignment-based, lattice-based, reaction-based, and graph-based
methods.18 Some software programs or algorithms also have
strategies to address the issue of combinatorial search explosion,
like breadth-first and depth-first search, Monte Carlo search
combined with Metropolis criterion or evolutionary algorithms.
Finally, the scoring function guides the ligand construction and
defines the best candidate compounds. Functions could also
consider the 3D structure of the target (structure-based) or
information from known ligands (ligand-based). In general,
structure-based methods are classified into force-field, knowl-
edge-based, and empirical functions. Table 3 lists examples of de
novo design programs. The description of the algorithm
includes the selected building blocks, the technique for the
ligand construction, the search strategy for the combinatorial
problem, and the scoring function. Earlier de novo design
programs considered atoms preferably as building blocks until
synthetic tractability became an issue. Consequently, most
recent programs typically consider fragments. Synthetic
feasibility quantified with different approaches is also addressed.
Current programs include fragment databases generated from
already known drug-like compounds (LEA3D) or incorporate a
new score to evaluate synthetic accessibility (PhDD). Current
programs also incorporate genetic algorithms to optimize the
searching (Table 3).

Figure 4. Schematic representation of major components involved in automated de novo drug design.

Table 3. De Novo Design Programs

algorithm

program year building blocks ligand construction search strategy scoring function refs

LUDI 1992 fragments growing, linking Breadth-first search empirical 19,20
LEA3D 2005 fragments growing, linking genetic algorithm user-defined fitness function 21
PhDDa 2010 fragments linking random fit value (alignment with pharmacophore model) 22
eLEA3Da 2010 fragments growing, linking genetic algorithm user-defined fitness function 23
DOGS 2012 fragments reaction-based deterministic process similarity with reference ligand 24
DENOPTIMa 2019 fragments graph-based genetic algorithm customizable fitness function 25
LigBuilder V3a 2020 fragments growing, linking genetic algorithm empirical 26

aFree software for academic use.
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In epigenetic drug discovery, de novo design has been applied
to find new inhibitors of the (CREB (cAMP responsive element

binding protein) binding protein) bromodomain, using the
program LUDI (a structure-based approach).27 In this example,

Table 4. Epigenetic Target Profiling of Public Compound Libraries of Natural Productsa

target
BIOFACQUIM

(510)b
MEGx
(3707)b

NuBBEDB
(1995)b Fungi (178)b

Marines
(5371)b

Cyanobacteria
(235)b

COCONUT
(350,070)b

APEX1 433 3405 1614 139 4109 151 237,341
ATM 322 2812 1255 116 4233 203 258,867
AURKA 75 712 338 21 717 7 60,780
AURKB 137 850 535 44 1301 68 97,705
BRD2 310 2414 1143 119 3407 141 209,233
BRD4 117 1129 416 63 1515 141 100,391
BRPF1 0 15 19 0 12 0 2113
CARM1 38 294 171 4 403 31 64,177
CDK1 264 1519 871 81 2071 103 127,126
CDK2 44 401 177 20 894 37 40,350
CDK5 32 170 87 18 242 3 11,396
CDK7 3 16 5 1 90 3 7850
CHEK1 3 49 15 6 144 3 8989
CHUK 0 0 1 0 4 0 336
CREBBP 26 181 83 18 415 59 50,678
DAPK3 1 6 16 0 17 1 1559
DNMT1 0 0 0 0 0 0 3 (KNOWN)
DOT1L 0 4 0 0 5 15 3199
EHMT2 4 17 9 9 40 13 6828
EP300 132 1009 451 88 2080 98 119,920
EZH2 24 200 84 19 396 61 34,732
HDAC1 100 1236 352 57 1365 113 98,671
HDAC10 8 151 39 9 302 85 21,772
HDAC11 27 281 130 17 483 60 28,158
HDAC2 47 302 212 37 661 72 47,019
HDAC3 27 184 132 21 516 54 48,494
HDAC4 28 178 76 15 435 44 40,606
HDAC5 7 86 30 7 163 20 21,118
HDAC6 51 453 202 32 812 66 49,533
HDAC7 44 252 123 25 490 25 38,319
HDAC8 103 453 405 37 874 22 53,706
HDAC9 0 20 5 0 48 0 5223
JAK2 14 112 95 13 355 10 28,058
KAT2B 4 20 7 3 71 10 8507
KDM1A 55 244 223 16 410 72 47,451
KDM4A 1 15 9 0 13 0 2343
KDM4C 54 549 248 28 855 51 85,910
KDM4E 266 1654 818 77 1994 40 115,675
KDM5A 64 409 160 21 770 79 64,053
KDM6B 0 0 0 0 0 0 9
L3MBTL1 0 0 0 0 0 0 336
PARG 0 0 0 0 0 0 197
PARP1 144 1434 610 85 2469 171 168,852
PKN1 50 267 129 12 220 27 28,310
PRKAA1 15 11 16 0 28 0 3600
PRKCB 77 570 218 63 1432 51 56,473
PRKCD 182 1799 685 106 2700 87 112,135
PRKDC 107 820 352 39 1193 65 90,455
PRMT3 0 2 0 0 0 0 797
RPS6KA5 17 87 86 1 105 1 6038
SIRT1 5 52 27 4 108 13 8878
SIRT2 13 13 9 0 20 11 2190
SIRT3 0 0 0 0 0 0 72
TOP2A 3 2 5 0 16 0 1026
USP7 30 350 114 11 592 17 29,020

aCompounds classified as potentially active with the free server Epigenetic Target Profiler. bNumber of compounds in each library.
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the authors added new fragments to the core of the compound
CPI-637. The search was guided with the information on crucial
residues. As a result, structures with similar binding affinities to
the original molecule were obtained. These results state the
applicability of de novo design to aim the discovery of novel
epigenetic drugs.
4.3. Profiling of Large Libraries of Natural Products. As

with several other therapeutic targets, natural products are
sources of compounds or starting points to inspire the
development of active compounds with epigenetic targets.
Natural products have been the sources of inhibitors of DNMTs
and molecules with demethylating activity (Figure 2).28 One of
the most recent DNMT1 inhibitors identified from natural
sources is theaflavin,5 a polyphenol compound in black tea and
previously identified as an inhibitor of DNMT3B. The
importance of natural products as sources of epigenetic
compounds, the increasing availability of large natural product
databases in the public domain,29 and overall significance of the
emerging “natural products informatics” (e.g., rational applica-
tion of informatics approaches to enhance natural product-based
drug discovery) encourages the continued systematic virtual
screening of natural products databases to identify compounds
with potential epigenetic inhibitory activity, including DNMT
inhibitors.
To illustrate this point, Table 4 summarizes the predicted

classification of seven natural product libraries in the public
domain. The predictions were made with the algorithms
implemented in the free server ETP described in section 3.
The natural product databases used in the epigenetic target
prediction (e.g., epigenetic target fishing) were the same files
previously curated and used in diversity profiling reported in
detail elsewhere.30 As discussed in those studies, the databases
include a collection of 510 natural products isolated and
characterized in Mexico (BIOFACQUIM), 3707 compounds
from a screening library (MEGx), 1995 natural products from
Brazil (NUBBEDB), 178 fungi metabolites (Fungi), 5371 marine
natural products, 235 cyanobacterial metabolites, and 350,070
molecules from the Collection of Open Natural Products
(COCONUT). As discussed elsewhere, COCONUT is one of
the largest public collections of natural products available today.
Table 4 reports the number of compounds predicted as “active”
(defined in ETP as molecules with at least IC50 = 10 μM) with
confidence in the range quartiles 1−4.14 The predictions were
made with the consensus model Morgan::SVM−RDK::SVM as
described elsewhere.14 Results of the profiling indicated that
three compounds (nucleoside analogues) in COCONUT had
reported epigenetic activity withDNMT1 (including Vidaza and
S-(5′-adenosyl)-L-homocysteine, Adohcy). However, there are
no other compounds with predicted activity against DNMT1.
Similar trends were predicted for other targets such as KDM6B,
PARG, and SIRT3. Since the classification predicted with ETP is
based on the experimental data deposited in ChEMBL, the low
number of predicted active compounds can be related to the
insufficient amount of information available in public (but this is
expected to change when more screening data are deposited on
public databases). In contrast, APEX1, followed by ATM and
BRD2, were the epigenetic targets with the largest number of
predicted active compounds per library (e.g., 60% of the
compounds in COCONUT). The next logical step is to conduct
additional computational studies to select the most promising
compounds and experimentally test the activity of the natural
products with the epigenetic target(s) of interest.

5. CONCLUSIONS AND FUTURE DIRECTIONS

The ERCS is expanding, as reflected by the increase in the
number of SEAR. The ERCS’ expansion is being driven by (1)
novel and multiple compound libraries focused on epigenetic
targets, ready for experimental testing, and (2) the growing
interest to build de novo chemical libraries focused on
epigenetic targets. The concurrent growth in the experimental
screening information has encouraged the development of
machine learning models, now implemented into a free Web
server to predict small molecules epigenetic activity, including
natural products, and guide the design of novel compounds. It is
anticipated that as the increase of screening data continues,
more predictive models will be developed. Perspectives in the
field include augmenting the implementation of de novo design
of compounds as candidate epi-drugs, experimental screening of
the focused libraries already available for testing, and continuing
epigenetic target profiling (e.g., inverse virtual screening) of
natural product databases followed by testing of the computa-
tional hits and further refinement using other approaches such as
structure-based virtual screening.
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