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Abstract

Down-regulation of GABAergic inhibition may result in the generation of epileptiform activities. Besides spike-triggered
synchronous GABA release, changes in asynchronous release (AR) following high-frequency discharges may further regulate
epileptiform activities. In brain slices obtained from surgically removed human neocortical tissues of patients with
intractable epilepsy and brain tumor, we found that AR occurred at GABAergic output synapses of fast-spiking (FS) neurons
and its strength depended on the type of connections, with FS autapses showing the strongest AR. In addition, we found
that AR depended on residual Ca2+ at presynaptic terminals but was independent of postsynaptic firing. Furthermore, AR at
FS autapses was markedly elevated in human epileptic tissue as compared to non-epileptic tissue. In a rat model of epilepsy,
we found similar elevation of AR at both FS autapses and synapses onto excitatory neurons. Further experiments and
analysis showed that AR elevation in epileptic tissue may result from an increase in action potential amplitude in the FS
neurons and elevation of residual Ca2+ concentration. Together, these results revealed that GABAergic AR occurred at both
human and rat neocortex, and its elevation in epileptic tissue may contribute to the regulation of epileptiform activities.
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Introduction

During active states in the cerebral cortex, cortical neurons

receive both excitatory and inhibitory synaptic inputs. Proper

balance of these inputs [1,2] is important for neuronal respon-

siveness to incoming inputs [3,4] and for sensory processing [5,6].

Disruption of this balance may cause malfunctioning of the

network, leading to various brain disorders such as epileptic

seizures [7,8]. The main inhibitory neurotransmitter in the cortex

is GABA, which is normally released from axonal terminals of

inhibitory interneurons and mainly activates GABAA and GABAB

receptors, leading to cortical inhibition [9]. The balance between

excitation and inhibition largely depends on proper regulation of

the activities of these interneurons and the excitatory pyramidal

cells (PCs) [10–13].

Molecular and functional changes in GABA receptors [14,15]

or selective loss [16–20] or dormancy [21–23] of inhibitory

interneurons may result in hyperexcitability of neuronal networks

and contribute to epileptogenesis. However, there are also several

lines of evidence showing no substantial change in the basal

GABAergic transmission in epileptic tissues [24–27]. It is possible

that other changes in the properties of inhibitory synapses

associated with high-frequency discharges may be involved in

generating and regulating the network activities, including the

epileptiform activity.

Under most circumstances, action potential (AP) is initiated at

the axon initial segment and propagates to the presynaptic

terminals, triggering neurotransmitter release within milliseconds

[28]. This tightly coupled or synchronized transmitter release with

presynaptic AP generation ensures precise signaling in the

complex neural network. However, prolonged asynchronous

release (AR) for hundreds of milliseconds following presynaptic

AP burst has been observed at some excitatory and inhibitory

synapses, particularly after high-frequency firing of presynaptic

neurons [29–32]. At GABAergic synapses, AR may provide long-

lasting inhibition and reduce the discharge probability and

precision in postsynaptic neurons, leading to desynchronization

of network activities. A recent study demonstrated that, after a

burst of APs, fast-spiking (FS) interneurons in the rat neocortex

show AR at their output synapses, including FS autapses and FS-
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PC synapses [33]. AR at FS autapses results in self-inhibition and

consequently excitation of its target cells, while that at FS-PC

synapses causes inhibition of target PCs. Therefore, regulation of

the AR-induced self-inhibition in FS neurons and inhibition in

PCs may contribute to the proper excitation-inhibition balance in

the cerebral cortex. In this study, we examine whether AR occurs

in human epileptic neocortical tissue and whether AR is subjected

to change after the induction of epileptic seizures.

We obtained human cortical tissues from small brain blocks that

were surgically removed to cure intractable epileptic patients and

brain tumor patients. Since the surgery is considered a therapy of

the last resort for patients that had frequently suffered severe

epileptic seizures, the cortical tissue should have experienced

chronic epileptiform activities. We found that although AP burst-

evoked AR occurred in all GABAergic synapses of FS interneu-

rons (including FS autapses, FS-FS and FS-PC synapses) in these

human epileptic tissues, FS autapses exhibited the strongest AR

among these synapses. Further experiments in rats revealed similar

differences in AR at different synapses. Importantly, as compared

with control tissues, AR is significantly stronger in epileptic tissues,

indicating that AR at GABAergic synapses might be subjected to

modulation by epileptic seizures and involved in regulating

epileptiform activities.

Results

AR at FS Autapses and FS-FS Synapses in Human Cortical
Slices

Human neocortical tissues from 52 patients (aged 5–42 y) with

frontal or temporal lobe epilepsy were sliced and examined by

electrophysiology within 2–10 h after surgical removal. Whole-cell

recording was performed on single FS neurons or synaptically

connected FS-FS and FS-PC pairs in layer 5.

We first examined the properties of asynchronous release (AR)

of GABA at autapses made by single FS neurons on themselves. In

about 22% of FS neurons tested (n = 85/392), we consistently

observed elevated spontaneous synaptic events immediately after

high-frequency firing evoked by DC current injection through the

recording pipette in current-clamp mode (Figure 1A). By using a

high-Cl2 pipette solution (75 mM Cl2), inhibitory postsynaptic

potentials (IPSPs) were depolarizing events at the resting

membrane potential (,270 mV). Consistent with previous

findings in rodents [34], we found that in voltage-clamp mode

(Vhold = 270 mV) single AP could trigger an inward current in the

same recorded cell that peaked within 2 ms and could be

completely blocked by the bath application of picrotoxin (PTX,

50 mM; n = 15), a GABAA receptor antagonist (Figure 1B). This

indicates the existence of monosynaptic autaptic connections in

these human FS interneurons. These unitary inhibitory postsyn-

aptic currents (IPSCs) had a failure rate of 0.360.3% and an onset

latency of 0.8460.07 ms; the rise time and decay time constant

were 0.5960.08 and 3.960.5 ms, respectively (n = 12 FS neurons).

The amplitudes of these IPSCs were relatively large

(255.8653.6 pA) because we selectively examined the effects of

PTX on FS neurons with obvious autaptic unitary IPSCs, ensuring

accurate measurements of the IPSC kinetics after subtraction

(control – PTX, Figure 1B). In another set of recordings, we

applied PTX for every FS neuron recorded to examine the

probability of autaptic connections; we found that 9/14 cells

(64.3%) had autaptic synapses, slightly less than that found in

rodents [34].

Similarly, in voltage-clamp mode, the spontaneous events

following trains of high-frequency stimulation (.50 Hz) in FS

neurons were also completely abolished by PTX, indicating that

these events were also GABAA receptor-mediated spontaneous

IPSCs (sIPSCs) (Figure 1B). In physiological conditions, GABAer-

gic responses normally hyperpolarize postsynaptic neurons, and

therefore it is unlikely that FS neuron firing could drive other

neurons to fire APs [13,35,36]. Thus, these sIPSPs or sIPSCs are

unlikely to be caused by recurrent polysynaptic events but rather

are attributable to AR at autapses. In response to a train of

stimulation (20 APs at 200 Hz), post-train AR (PT-AR) lasted for

187611 ms and had a total number of 17.761.6 spontaneous

events (n = 74, Figure 1C; see Materials and Methods). We then

varied the stimulation frequency and the number of APs and

found that the duration and event number of PT-AR progressively

increased with increasing stimulus intensity (two-way ANOVA

analysis, p,0.001 for both AP frequency and number, n = 49;

Figure 1C–D). Due to the difficulties of identifying individual AR

events among action currents (FS autapses) or synchronous IPSCs

(FS-FS and FS-PC synaptic connections, shown below) that

occurred during the high-frequency train stimulation, we only

analyzed the properties of PT-AR in this study. Together, these

results revealed the existence of robust AR at FS autapses in

human epileptic neocortical tissue, indicating a long-lasting self-

inhibition of FS neurons during high-frequency firing.

In addition to their autaptic connections, FS neurons also form

inhibitory synaptic connections onto other FS neurons (Figure 2A–

B). We found chemical synapses in 12/39 (30.8%) FS-FS pairs

(intersomatic distance,50 mm), including 11 uni-directional con-

nections and one bi-directional connection. Among these 39 pairs,

nine pairs (23.1%) showed electrical coupling and three pairs

(7.7%) were both chemically and electrically connected. The

unitary IPSCs had a failure rate of 1.360.5%, an average peak

amplitude of 58.1613.5 pA and an onset latency of

0.9560.11 ms; the rise time and decay time constant were

0.7860.03 and 4.560.6 ms, respectively (n = 11). We found that

high-frequency firing in presynaptic FS neurons also evoked long-

lasting AR, detected as sIPSCs in the postsynaptic FS neuron

Author Summary

The balance between excitation and inhibition in the
cerebral cortex is important for multiple brain functions.
Down-regulation of GABA-induced inhibition disrupts this
balance and may lead to epileptic seizures. Asynchronous
release of GABA is known to occur at certain GABAergic
synapses and represents release of inhibitory neurotrans-
mitter that is not precisely timed to presynaptic action
potentials. Whether asynchronous release is subject to
change after the induction of epilepsy remains unclear. In
this study, using simultaneous recordings from inhibitory
fast-spiking neurons and excitatory pyramidal cells, we
found that asynchronous release occurred at the output
synapses of fast-spiking neurons in both human and rat
neocortex. The occurrence of asynchronous release
depended on the level of residual calcium at the
presynaptic terminals but not on postsynaptic spiking.
Further experiments using cortical tissue derived from
human patients with intractable epilepsy and from a rat
model of the disorder revealed an elevation of asynchro-
nous release in epileptic cortex, possibly resulting from an
increase in action potential amplitude of fast-spiking
neurons and changes in calcium dynamics in their axon
terminals. Taken together, these results demonstrate that
asynchronous release is a fundamental property shared by
neocortical fast-spiking neurons regardless of species, and
the enhancement of asynchronous release in epileptic
tissue suggests a role for it in regulating epileptic activities.

Asynchronous GABA Release in Epileptic Neocortex
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(n = 10/10 pairs, Figure 2C). Similarly, AR at FS-FS synapses

depended on the intensity of presynaptic stimulation. Increasing

the frequency or the number of presynaptic APs increased the

duration and total number of PT-AR (Figure 2C–D). The average

duration and number of events were 64.868.6 ms and 3.260.6,

respectively, in response to 20 APs at 200 Hz in presynaptic FS

neurons and increased to 117623 ms (paired t test, p,0.01) and

7.061.4 (p,0.01) when the number of APs were increased to 40

(n = 10 FS-FS pairs; Figure 2D). The PT-AR frequency was also

significantly increased (Student’s t test; Figure 2E). Interestingly, in

comparison with FS autapses, both the duration and the number

of PT-AR were significantly smaller in FS-FS synapses (K-S test,

p,0.001). Together, these results indicate that although weaker

than in FS autapses, asynchronous GABA release also occurs in

synaptically connected FS neurons, providing long-lasting inhibi-

tion within this population of cortical inhibitory neurons.

AR in FS-PC Synapses in Human Cortical Slices
Next, we investigated the occurrence of AR in FS synapses onto

excitatory PCs (Figure 3). Again, after bursts of APs in the presynaptic

FS neuron, we frequently observed AR during and following the AP

burst-triggered synchronous release (n = 61/66 pairs). In current-

clamp mode, a train of APs evoked by step current injection in FS

neuron evoked both autaptic (through FS autapses) and synaptic

(through synapses from FS neuron to PC) AR in a stimulus intensity-

dependent manner (Figure 3A). Close examination of these PT-AR

events revealed that the FS-PC synaptic AR was much weaker than

autaptic AR, by showing shorter duration and less AR events after FS

neuron firing (Figure 3B–C).

To further elucidate the differences between FS autaptic and

FS-PC synaptic AR, we performed dual recordings in voltage-

clamp mode. Single stimulation (0.3,0.5-ms step command from

270 to 40 mV) evoked monosynaptic IPSCs in both FS neuron

(Figure 1) and PC (Figure 4A). Among 343 FS-PC pairs tested, we

found 79 FS-to-PC (23.0%) and 32 PC-to-FS (9.3%) connected

pairs, and five (1.5%) bi-directionally connected pairs. FS-PC

IPSCs had a failure rate of 0.0360.03%, an average peak

amplitude of 90.9610.2 pA, an onset latency of 1.0060.04 ms,

rise time of 0.7960.04 ms, and decay time constant of 8.560.7 ms

(n = 51 pairs). As shown in Figure 4B–C, both autaptic and FS-PC

synaptic AR show dependence on the number and frequency of

FS neuron discharges (ANOVA, p,0.001). In sharp contrast to

autapses, PT-AR at FS-PC synapses had shorter duration

(98.869.6 versus 187611 ms) and less IPSC events (6.160.8

versus 17.761.6, n = 51 FS-PC pairs and 74 FS neurons with

autaptic connections) in response to presynaptic firing of 20 APs at

200 Hz. Cumulative frequency distribution of all these recordings

revealed significant differences in the duration and total number of

events of PT-AR between FS autapses and FS-PC synapses (K-S

test, p,0.001 for both duration and events; Figure 4D). Consis-

tently, in 22 FS-PC pairs that showed both autaptic and synaptic

connections, the duration and total events of PT-AR at autapses

Figure 1. AR in FS autapses in human epileptic neocortical tissue. (A) Left, magnetic resonance imaging (MRI) of a patient’s brain with glioma
(red boxes) in the temporal lobe. This patient also showed severe epileptic seizures. Top, coronal plane; bottom, horizontal plane. Right, typical firing
pattern of an FS neuron obtained from the periglioma tissue. Step current injection evoked a train of APs at ,100 Hz without adaptation. Note the
increase in spontaneous events after the AP train (inset). Pipette solution contained 75 mM Cl2. (B) Both single AP-evoked synchronous release (left)
and AP burst-evoked PT-AR (right) in the FS neuron could be blocked by GABAA receptor blocker picrotoxin (PTX, 50 mM). Single APs were evoked by
brief (0.3,0.5 ms in duration) step commands from 270 to 40 mV. (C) Example current traces showing the dependence of PT-AR duration and total
number of events on the number and the frequency of APs. Inset, expansion for clarity. (D) Group data (two-way ANOVA analysis, p,0.001 for both
AP frequency and number).
doi:10.1371/journal.pbio.1001324.g001

Asynchronous GABA Release in Epileptic Neocortex
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were significantly larger than those of FS-PC synapses (n = 22,

p,0.001, paired t test; Figure 4E). Examination of the PT-AR

frequency revealed that FS autapses exhibited significantly higher

frequency than FS-PC synapses (Figure 4F).

To examine whether the strength of PT-AR depends on the

size of AP-triggered synaptic responses, we normalized the PT-

AR duration by the average peak amplitude of unitary IPSCs

(synaptic strength). We found that although PT-AR duration in

autaptic connections was longer than that in FS-PC connec-

tions, the normalized PT-AR duration showed no significant

difference between the two types of connections (Figure 4G),

indicating a dependence of AR duration on synaptic strength.

Consistently, PT-AR duration showed a positive linear corre-

lation with the average IPSC amplitude, and the slopes were

0.53 and 0.54 ms/pA for FS autapses and FS-PC synapses,

respectively (Figure 4H). Similar results were observed in the

total number of PT-AR events. This analysis revealed the

dependence of AR strength on the size of synchronous synaptic

Figure 2. AR in FS-FS synapses in human cortical tissue. (A) Example FS-FS pair. Step current injection induced high-frequency discharges in
the presynaptic FS neuron and synaptic events in the postsynaptic FS neuron. Arrowheads indicate the AR events after the stimulus. (B) Same pair as
in (A). Overlay of unitary IPSCs evoked by single APs. (C) Example current traces showing the dependence of AR on the number and the frequency of
presynaptic APs. (D) Group data of FS-FS pairs. (E) Plot of PT-AR frequency (bin size: 50 ms) as a function of time since the stop of stimulus (20 or
40 APs at 200 Hz). * p,0.05; ** p,0.01.
doi:10.1371/journal.pbio.1001324.g002

Asynchronous GABA Release in Epileptic Neocortex
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responses that may be attributed to the differential AR strength

at different types of synapses.

We next analyzed the dependence of AR differences between

FS autapses and FS-PC synapses on the clinical parameters of

patients (sex, age, time since seizure onset, cause of disease,

occurrence frequency, and seizure duration). We found no obvious

dependence of PT-AR duration differences in the two types of

connections on these parameters (Figure S1); that is, the duration

at FS autapses was always significantly longer than that at FS-PC

synapses if we categorized the patients by these parameters.

Interestingly, we detected a small but significant difference in PT-

AR duration at autaptic connections between patients with seizure

duration of 1–3 min and those $3 min (Figure S1), suggesting a

role of AR in regulating epileptic activities.

Together, these results demonstrated that, in human epileptic

tissue, AR also occurred at FS-PC synaptic connections but was

substantially weaker than that in FS autaptic connections.

Ca2+ Dependence of AR in Human Cortex
Accumulation of Ca2+ in presynaptic terminals during trains of

stimulation could be responsible for the occurrence of AR in

hippocampus [32] and somatosensory cortex [33]; we therefore

investigated the role of background or residual Ca2+ in the

occurrence of AR in human neocortex. In the presence of EGTA-

AM (100 mM), a membrane permeable Ca2+ chelator, FS autaptic,

and FS-FS/FS-PC synaptic AR in human cortical tissues were

completely blocked after 15-min drug application (Figure 5). The

PT-AR in FS autapses was decreased to 25.6610.2% of control (t

test, p,0.001, n = 12, Figure 5A). In FS-FS synapses, EGTA-AM

blocked the release after the train (PT-AR) and reduced the release

during the train (Train) as well as the peak amplitude of the first

IPSC (IPSC1) in the train (PT-AR: 13.866.8%, p = 0.003; Train:

36.1610.7%, p = 0.005; IPSC1: 50.2627.4%, p = 0.08, n = 4;

Figure 5B). We observed similar results in FS-PC synapses; PT-

AR, Train, and IPSC1 were decreased to 4.464.1%, 31.061.3%,

and 37.165.6% of control, respectively (p,0.001 for all compar-

isons, n = 5, Figure 5C). As shown in Figure 5C–D, PT-AR events

in FS-PC pairs were completely abolished by the application of

EGTA-AM. The blockade of PT-AR events was accompanied by

an increase in short-term depression of the synchronous IPSCs in

response to 40 APs at 200 Hz (Figure 5D), consistent with the

finding that EGTA sharpens the initial decay phase of calcium

transient [37].

Further recordings showed that the replacement of normal

ACSF with Ca2+-free ACSF completely blocked the occurrence of

IPSCs, including the PT-AR in FS-PC synapses (unpublished

data), suggesting that AR requires Ca2+ entry through Ca2+

channels. Together, these results indicate that AR was dependent

on the buildup of intracellular Ca2+ during the train of stimulation.

Comparison of AR between Non-Epileptic and Epileptic
Human Tissues

Previous studies demonstrated that alteration of GABAergic

inhibition could contribute to epileptogenesis. We speculated that

Figure 3. AR in FS-PC synapses in human cortical tissue. (A) Example FS-PC pair recording. In current-clamp mode, trains of APs in presynaptic
FS neuron (black) triggered not only autaptic sIPSPs but also synchronous IPSPs and prolonged asynchronous IPSPs in the postsynaptic PC (red).
Inset, regular firing pattern of the PC. (B,C) Expansion of the traces in the shadowed boxes shown in (A). Note that FS autapses had longer PT-AR
duration and more events than FS-PC synapses. Arrowheads indicate single AR events.
doi:10.1371/journal.pbio.1001324.g003

Asynchronous GABA Release in Epileptic Neocortex
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the asynchronous GABA release from FS output synapses may

undergo changes in the epileptic brain tissue. Furthermore, the

findings in epileptic cortical tissues described above may be due to

lengthy treatments of patients with anti-epileptic drugs. We thus

performed recordings from FS neurons of surgically removed non-

epileptic peri-tumor tissues and compared the AR properties with

those of epileptic tissues.

Similar to the epileptic tissue, the autaptic AR occurred after a

train of APs evoked by current injections (Figure 6A) or voltage

steps (Figure 6B) in FS neurons, and the strength of AR depended

on the stimulation intensity (Figure 6B). However, the average PT-

AR duration (103611 ms) and total events (8.161.0) of autaptic

AR (20 APs at 200 Hz, n = 20) were significantly lower than the

values found in the epileptic tissue (187611 ms and 17.761.6

Figure 4. AR strength depended on the type of synaptic connections. (A) Overlay of unitary IPSCs in the postsynaptic PC evoked by single
APs in the presynaptic FS neuron. (B) Example current traces (same FS-PC pair as in A) showing the dependence of AR strength at both autaptic and
FS-PC synaptic connections on the stimulus intensity. Box, expanded trace for clarity. Note that AR could occur during (arrows) and after (arrowheads)
the train of stimulation. (C) Group data showing the dependence of AR strength on the number and the frequency of presynaptic APs in FS-PC pairs
(two-way ANOVA analysis, p,0.001). (D) Cumulative frequency distribution indicates that FS autapses had longer PT-AR duration and more events
than FS-PC synapses (p,0.001 for both parameters). (E) Group data from FS-PC pairs (n = 22) that exhibited both autaptic and synaptic connections.
(F) Group data showing that FS autapses had significantly higher PT-AR frequency than FS-PC synapses. (G) Bar plot of the normalized PT-AR duration
(normalized to the average peak amplitude of unitary IPSCs). This normalization reveals the dependence of PT-AR duration on the synaptic strength.
(H) Plot of the PT-AR duration as a function of synaptic strength. One outlier data point (688, 238) from autaptic connections has been excluded. Solid
lines are linear fits (Black: r = 0.50, p = 0.07; red, r = 0.57, p,0.001). * p,0.05; ** p,0.01; *** p,0.001.
doi:10.1371/journal.pbio.1001324.g004

Asynchronous GABA Release in Epileptic Neocortex
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events, n = 74; K-S test, p,0.001 for both parameters; Figure 6C).

Significant differences in AR properties were also observed when FS

neurons fired 40 APs at 200 Hz (K-S test, p,0.05, Figure 6D). In

addition, the non-epileptic tissue had lower PT-AR frequencies than

the epileptic tissue (Figure 6E). Thus, asynchronous GABA release

at FS autaptic connections is elevated in human epileptic patients.

Enhancement of AR in a Rat Model of Epilepsy
Next, we sought to examine whether or not there are differences

in AR between FS autapses and FS-PC synapses in cortical slices

obtained from adult rats and whether AR is subjected to change

after the induction of epileptic seizures (Figure 7). In these

experiments, we employed the pilocarpine model of status epilepsy

Figure 5. AR from human FS neurons was Ca2+ dependent. (A) Bath application of EGTA-AM (100 mM) could block PT-AR in FS autaptic
connections. Left, example traces pre- (black) and post- (red) drug application. Right, group data from 12 FS neurons with autaptic connections. (B)
EGTA-AM blocked AR in FS-FS synaptic connections. Left, FS1 stimulation (top) evoked barrages of IPSCs in FS2 (middle, black) that outlasted the train
stimulation. Middle, EGTA-AM not only blocked the PT-AR (arrow) but also reduced the amplitude of IPSCs during the train (Train). Bottom, the red
trace (post-EGTA-AM) shown in the middle was scaled to the peak of control trace to show the absence of PT-AR (arrowhead). Right, group data from
4 FS-FS pairs. IPSC1 indicates the peak amplitude of the first IPSC in the train. (C) EGTA-AM blocked PT-AR in FS-PC synaptic connections. Note the
absence of PT-AR in the scaled trace (arrowhead). Right, group data from 5 FS-PC pairs. The number of quanta released during (Train) and after the
train (PT-AR) was calculated using deconvolution analysis (see Materials and Methods). (D) Left, PT-AR frequency before (black) and after (red) EGTA-
AM perfusion; right, short-term depression was accelerated after EGTA-AM application. Only the first 12 IPSCs were shown. * p,0.05; ** p,0.01.
doi:10.1371/journal.pbio.1001324.g005

Asynchronous GABA Release in Epileptic Neocortex
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(see Materials and Methods) that mimics human temporal-lobe

epilepsy [38,39]. Recordings from FS neurons or FS-PC pairs in

control and pilocarpine-treated rats showed that the connectivity

probabilities from FS to neighboring PCs (,50 mm apart) were

33.7% (n = 29/86) and 37.3% (n = 38/102) for control and

pilocarpine-treated rats, respectively, much higher than those in

the opposite directions (PC-to-FS, 3.5% for control, n = 3/86;

1.0% for model animals, n = 1/102).

Consistent with previous reports [32,33], we found that, in

prefrontal cortical slices from control rats, the strength of AR in FS

autapses was dependent on the intensity of stimulation. In response

to 20 APs at 200 Hz, PT-AR had an average duration of

53.964.2 ms and an average number of 3.360.4 events (n = 47).

These values increased to 11069 ms and 9.761.1 events,

respectively, when the number of APs was increased to 40

(Figure 7A). Similar results were observed in FS-PC synaptic

connections (20 APs: 36.864.4 ms and 1.860.3 events; 40 APs:

79.568.5 ms and 5.960.9 events; n = 25 pairs; Figure 7A). Again,

cumulative frequency distribution of the recordings by the PT-AR

duration and events showed that FS autapses exhibited significantly

stronger PT-AR than FS-PC synapses (K-S test, p,0.001 and

p,0.05 for duration and events, respectively; n = 47 FS neurons

with autapses and 25 FS-PC pairs; Figure 7A–B). Together with the

findings obtained from human tissue, these results indicate that the

dependence of AR strength on the type of synaptic connections is a

fundamental property of FS neuron output synapses.

Because postsynaptic spiking may cause an elevation of

intracellular Ca2+ and send retrograde signals to presynaptic

terminals to regulate synaptic transmission [40], we then

investigated whether the AR strength was dependent on postsyn-

aptic spiking. In FS-PC pairs, the PT-AR duration and number of

events showed no substantial changes after paired stimulations in

the presynaptic FS neuron and the postsynaptic PC (40 APs at

200 Hz in both cells simultaneously; Figure S2). The PT-AR

duration was 76.4613.4 and 76.2613.5 ms (paired t test,

p = 0.98), and the total number of PT-AR events was 5.661.4

and 5.061.2 for control (firing in FS neuron only) and paired

firing (p = 0.36, n = 6 FS-PC pairs), respectively. This result

indicates that postsynaptic spiking is not required for the

occurrence of AR from presynaptic FS neurons.

Figure 6. Difference in AR strengths between non-epileptic and epileptic human tissue. (A) Left, a DIC image of the recorded FS neuron
(arrow) and neighboring cells in a slice obtained from non-epileptic human tissue. Arrowhead indicates a pyramidal neuron. Right, example recording
shows that AR events occurred after a train of APs evoked by step current injection. (B) PT-AR duration and total number of events depended on the
number of APs (voltage clamp). Same cell as in (A). (C) Cumulative distribution of the PT-AR duration (top) and events (bottom) from the tested FS
neurons with autaptic connections (20 APs at 200 Hz). n = 20 and 74 for non-epileptic and epileptic tissues, respectively. (D) Similar plot as in (C)
except for 40 APs (n = 21 and 55, respectively). (E) Plot of the PT-AR frequency (bin size: 50 ms) as a function of time since the stop of the train
stimulation. Note that PT-AR frequency in the epileptic tissue (gray) was significantly higher than that in the non-epileptic tissue (black). * p,0.05;
** p,0.01; *** p,0.001.
doi:10.1371/journal.pbio.1001324.g006
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Next, we analyzed the strength of AR and synchronous release

in pilocarpine-treated rats. Similar to control rats, we also

observed that the strength of PT-AR was different between FS

autapses and FS-PC synapses, with stronger PT-AR detected at FS

autapses (Figure 7A–B). No significant difference in the peak

amplitude of single AP-evoked unitary IPSCs was observed

(78.9616.3 pA in control versus 62.0612.9 pA in model rats,

n = 25 and 32, respectively; t test, p = 0.07) in FS-PC pairs,

indicating that the basic neurotransmission was unchanged in this

model of epilepsy.

Importantly, we found that AR at both FS autaptic and FS-PC

synaptic connections were significantly increased in pilocarpine-

treated rats (Figure 7B). In response to 40 APs at 200 Hz, the

average duration and number of events were increased to

180621 ms and 15.461.9 events in FS autaptic connections (K-

S test, p = 0.002 and p = 0.005, n = 35) and to 126616 ms and

9.661.7 events in FS-PC synapses (p = 0.015 and p = 0.066,

n = 32). Cumulative frequency distributions of recordings obtained

from epileptic animals by PT-AR duration and events showed a

rightward shift in comparison with those from control rats

Figure 7. Enhancement of AR in the pilocarpine model of epilepsy. (A) Example FS-PC pair recordings in control and pilocarpine-treated rats.
(B) Cumulative frequency distribution of the tested FS autaptic and FS-PC synaptic connections by the PT-AR duration (top) and PT-AR events
(bottom). Control (Ctrl): n = 47 FS autaptic connections (black) and 25 FS-PC synaptic connections (red); Pilocarpine (Pilo): n = 35 and 32, respectively.
(C) Bar plot of the PT-AR duration and events normalized to the average peak amplitude of unitary FS-PC IPSCs. p = 0.02 and p = 0.005, respectively.
(D) Plot of the PT-AR frequency (bin size: 50 ms) as a function of time since the stop of the train stimulation. Left, FS autaptic connections; right, FS-PC
synaptic connections. Note that PT-AR frequency in pilocarpine rats was significantly higher than that in control rats. (E) Normalized IPSCs during the
train stimulation (40 APs at 200 Hz) in control and pilocarpine rats (n = 23 and 25 pairs for control and pilocarpine rats, respectively). (F) Correlation
between PT-AR properties (duration and events) and the time course of IPSC depression (t). The t value was calculated by an exponential fit of the
normalized IPSCs as shown in (E). Note that PT-AR duration and number of events increase with increasing depression time course. Two outlier data
were not binned.
doi:10.1371/journal.pbio.1001324.g007
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(Figure 7B). We next normalized the duration and number of

events to the peak amplitude of unitary IPSCs (synaptic strength);

this normalization also showed a significant PT-AR increase in

pilocarpine-treated rats (t test, p = 0.02 and p = 0.005, respectively;

Figure 7C). The mean frequencies of PT-AR events in both FS

autaptic and FS-PC synaptic connections were also significantly

larger in epileptic animals (Figure 7D). Further analysis on the

ratio of PT-AR to total release (PT-AR/Total, Figure S3) revealed

a significant increase from 3.860.5% (control rats, n = 24 FS-PC

pairs) to 7.660.9% (pilocarpine rats, n = 32 pairs; p,0.001) for FS

neurons firing 20 APs at 200 Hz. Similar results were obtained

when FS neurons fired 40 APs (Figure S3).

A recent study demonstrated that AR occurred in response to

high-frequency second-long stimulation of the presynaptic FS

interneuron [33]; we therefore examined whether there is a

difference between the FS autaptic and FS-PC synaptic AR after

these strong stimulations. In human neocortical slices (Figure S4),

firing of 300 APs at 150 Hz in FS neuron caused long-lasting AR

in both FS autapses (n = 18 FS neurons) and FS-PC synapses

(n = 10 pairs). Consistent with the results described above

(Figure 4F), we also observed differences of AR frequency in the

two types of connections. Again, comparison between control and

pilocarpine-treated rats showed that AR frequency in both FS

autapses and FS-PC synapses was significantly increased in

epileptic animals (Figure S4).

Although the basal transmission exhibited no significant change

in model animals, the short-term depression of synchronous

release at FS-PC synapses in response to stimulation of 40 APs at

200 Hz (Figure 7E) were significantly reduced in model animals.

Further analysis revealed a close correlation between PT-AR

strength and the time course t of IPSC depression; the PT-AR

duration and events showed an increase with increasing time

course (Figure 7F). Short-term plasticity is tightly coupled to the

concentration of presynaptic Ca2+ [41]; reducing residual Ca2+

levels could significantly accelerate short-term depression

(Figure 5D, also see [42]). The reduction of short-term depression

may therefore reflect an elevation of residual Ca2+ concentration

at the presynaptic axon terminals, in line with the enhancement of

AR in model animals.

Together, these results obtained from rats indicate that the

strength of AR at FS neuron axon terminals was elevated in

epileptic neocortical tissue, possibly resulting from an increase in

residual Ca2+ levels.

Role of AP Waveform Changes in Mediating AR
Enhancement

Changes in AP waveforms can regulate Ca2+ entry during APs

[43], so we next investigated whether AP waveforms of FS neurons

were altered in model animals (Figure 8). We analyzed APs (fired

at ,200 Hz) evoked by 500-ms current steps and found that

although the AP threshold (1st AP: 246.060.7 mV in control

versus 245.361.3 mV in pilocarpine rats, p = 0.7) and the half

width showed no significant difference, all APs during the train in

pilocarpine rats exhibited larger peak amplitude and integrated

area than those in control rats (Figure 8A–C). The average peak

amplitudes of the first and the 40th AP were 68.662.1 and

60.262.0 mV, respectively, in model animals, significantly higher

than those in control animals (63.761.4 and 52.761.4 mV, t test,

p,0.05 for the first AP, p,0.01 for the 40th AP and other APs).

Further analysis revealed that AP waveform changes correlated

well with the AR strength; PT-AR duration and events increases

with increasing AP amplitude and area (Figure 8D).

To investigate the role of the AP amplitude increase in

mediating the enhanced AR, we reduced the AP amplitude by

an amount similar to that of AP increase in epileptic animals, with

the treatment of a low concentration of TTX (Figure 9, also see

Figure S5). During the period from 120 to 180 s following the

onset of TTX treatment (100 nM), we found a slight change in the

threshold and half width (Figure S5) but a significant reduction in

the average peak amplitude of APs in FS neurons (from 75.461.9

to 67.462.9 mV, p = 0.001, n = 9). Although we observed no

significant TTX effect on the synaptic strength (average amplitude

of the first IPSCs), the success rate, and the total integrated charge

of IPSCs during the train stimulation (40 or 60 APs at 200 Hz) in

FS-PC pairs (Figure 9A,B, and D), the PT-AR duration and total

number of events significantly decreased to 76.966.7% and

71.468.2% of control in FS autaptic connections (p,0.01 for both

parameters, n = 8; Figure 9C) and to 80.765.1% and 85.166.7%

of control in FS-PC synaptic connections (p,0.01 and 0.05, n = 8;

Figure 9D), respectively.

Together, our results demonstrate that AR occurs in all

GABAergic synapses of FS neurons, with autapses having the

strongest AR, and the generation of epileptic seizures correlates

with an increase in AR at both FS autapses and FS-PC synapses,

suggesting that AR is subjected to modification during elevated

network activities and is involved in regulating epileptic activities.

Discussion

In this study, we show that asynchronous GABA release occurs

at the output synapses of FS neurons, including FS autapses and

FS-FS and FS-PC synapses in the human neocortex. Interestingly,

AR at FS autapses is the strongest among all these synaptic

connections. This differential AR may be attributed to the

differences in the synaptic strength. In comparison with the non-

epileptic human tissue, AR strength was significantly stronger in

the epileptic tissue. We further demonstrate the existence of AR

differences at FS autapses and FS-PC synapses in rats, and AR

strength is substantially enhanced in the pilocarpine model of

epilepsy, possibly resulting from an increase in peak amplitude of

FS neuron APs and elevation of residual Ca2+. Consistent with

previous reports [32], AR from FS neurons in human cortical

tissue is dependent of the background or residual Ca2+ in the

presynaptic terminals but independent of postsynaptic spiking.

Together, these results, to our knowledge, provide the first piece of

evidence showing the occurrence of GABAergic AR in human

tissue, and importantly reveal an elevation in AR in the epileptic

neocortex, suggesting a role of AR from FS neurons in regulating

the synchrony of network activities and thus shaping epileptiform

activities.

AR Is a Fundamental Property of Neocortical FS Neuron
Asynchronous GABA release was originally reported at output

synapses of hippocampal cholecystokinin-containing interneurons

onto granule cells in the dentate gyrus [32]. Unlike these

cholecystokinin neurons, parvalbumin-containing FS interneurons

release GABA in a tightly synchronized manner in response to

single or a burst of APs. However, a recent study reported the

occurrence of AR at output synapses of FS neurons onto

themselves (autapses) and PCs in the rat somatosensory cortex

[33]. Using human neocortical tissue, we demonstrate that AR

occurs at all synapses of FS neurons in human neocortex,

including synaptic contacts onto other FS neurons. In addition,

the results show a dependence of AR strength on the type of

connections, and FS autapses exhibit much stronger AR than FS-

FS and FS-PC synapses. These findings were obtained from

human epileptic tissue and thus may reflect synaptic modifications

after epileptic seizures. However, similar results were observed in
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normal adult rats, indicating that AR is a fundamental property of

neocortical FS neurons across different species and that the

differences in AR strength between different types of connections

are not associated with epilepsy.

Why do FS autapses have the strongest AR than other synapses?

One possibility is that the AR strength depends on the size of

synaptic responses. Indeed, our results showed a correlation

between the amplitude of unitary IPSCs and the duration of PT-

AR; no significant difference was observed if the duration was

normalized to the average peak amplitude of unitary IPSCs

(Figure 4G–H). Another potential mechanism may lie on

retrograde signals. At the autaptic connection, firing of the FS

neuron may cause an increase in intracellular Ca2+ and

consequently send retrograde signals to presynaptic terminals,

such as nitric oxide, BDNF, and GABA [40,44]. AP burst-induced

GABA release from the dendrites unlikely contributes to the

elevated spontaneous release because 307/392 FS neurons tested

in this study showed no AR following high-frequency discharges.

Our experiments in FS-PC pairs showed no changes in PT-AR

duration and number of sIPSC events after pairing postsynaptic

and presynaptic firing (Figure S2), indicating that postsynaptic

spiking has no effect on presynaptic asynchronous GABA release.

Role of Background Ca2+ in AR
Previous findings [32] together with our results (Figure 5)

demonstrate that the slow Ca2+ buffer EGTA can efficiently block

Figure 8. Changes in AP waveform of FS neurons in rat epileptic tissues. (A) Example firing pattern of FS neurons with autaptic AR in control
and pilocarpine rats. Insets, expanded traces showing the occurrence of autaptic AR. (B) Overlay of the first 40 APs and their phase plots. Note the
differences in AP peak amplitudes. (C) The average amplitude, half-width, and integrated area of the 1st, 10th, 20th, 30th, and 40th AP (Ctrl: n = 33; Pilo:
n = 21). Note the significant increase in peak amplitude and integrated area (but not the half-width) of APs in model animals. (D) Correlation of PT-AR
duration (left) and events (right) in FS autapses (Ctrl: n = 25; Pilo: n = 13) with the integrated area of APs. Note that PT-AR duration and events
increases with larger AP area. Two outlier data were not binned.
doi:10.1371/journal.pbio.1001324.g008
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the AR, indicating the dependence of the residual Ca2+. One

distinct characteristic of FS interneurons is their expression of

parvalbumin [12]; this Ca2+-binding protein functions as a slow

Ca2+ buffer in presynaptic terminals and participates in short-term

plasticity of synaptic transmission [45–48]. The presence of

parvalbumin may prevent the occurrence of AR in FS neuron

terminals. In hippocampal dentate gyrus, Hefft and Jonas [32]

reported that AR at output synapses of parvalbumin-containing

interneurons is almost absent (also see [49,50]). In the neocortex,

Manseau et al. [33] reported recently that parvalbumin-expressing

interneurons also have strong AR but are weaker than those that

lack of parvalbumin, indicating an important role of parvalbumin

in controlling the strength of AR. Regulation of parvalbumin

expression by neuronal activity may contribute to changes in AR

strength in epileptic brain tissue. Comparison of short-term

depression of synchronous IPSCs (Figure 7E–F) suggests that the

kinetics of presynaptic Ca2+ may be altered in pilocarpine model

animals, and this alteration could lead to the enhancement of AR.

Interestingly, our results demonstrate that the peak amplitude of

APs in FS neurons was substantially increased in the epileptic

tissue, possibly resulting from homeostatic regulation of neuronal

intrinsic properties (e.g., Na+ channel properties) [51,52]. This AP-

waveform change may cause more Ca2+ entry during APs [43]

and consequently increase the total residual Ca2+ after a train of

stimulation. Indeed, when we perfused the slice with TTX at a low

concentration that showed no effect on the synchronous synaptic

transmission but slightly decreased the amplitude of APs, PT-AR

duration and number of events were significantly reduced

(Figure 9). These findings suggest that changes in AP waveforms

may play an important role in regulating AR strengths.

The distance between the Ca2+ source (voltage-gated Ca2+

channels) and the sensor of exocytosis may differ at different types

of synaptic connections and thus determine the occurrence and the

strength of AR. At the hippocampal cholecystokinin interneuron

terminals, this distance is large, leading to long-lasting intracellular

Ca2+ transient and thus asynchronous vesicle release; whereas at

parvalbumin interneuron terminals, the Ca2+ channels locate

closely with sensors, allowing fast and precise synchronous release

of vesicles [32,53]. Our results demonstrate that, in human

neocortical slices, bath application of EGTA-AM not only

Figure 9. AR strength could be reduced by the bath application of a low concentration of TTX. (A) Example recording from epileptic rat
tissue showing the occurrence of FS autaptic and FS-PC synaptic AR before the application of TTX. Parts of the traces were expanded for clarity. (B)
During the period from 120 to 180 s following the onset of 100 nM TTX application, the autaptic and synaptic AR were substantially reduced. Note
that the synchronous release during the train stimulation was largely preserved. Same cell as in (A). (C) Group data from FS neurons with autaptic
connections showing that both the PT-AR duration and total number of events were significantly reduced in the presence of TTX (100 nM). (D) In FS-
PC pairs, TTX had no significant effects on the synaptic strength (the average peak amplitude of the first IPSC), the success rate, and the integrated
charge of IPSCs evoked during the train stimulation, but significantly reduced the PT-AR duration and total number of events. * p,0.05; ** p,0.01.
doi:10.1371/journal.pbio.1001324.g009
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completely blocked the AR but also substantially reduced the

synchronous release during the train stimulation, suggesting a

large diffusional distance between the Ca2+ source and the sensor

of exocytosis in FS neuron terminals [32]. Whether this distance is

subjected to modulation by cortical activities and whether different

Ca2+ sensors [54,55] are involved in regulating AR at FS neuron

terminals remain to be further examined.

Changes in AR could also be explained by the homeostatic

regulation of synaptic strength and intrinsic neuronal property in

response to the epileptic activity. Previous studies have shown that

changes in network activities can lead to alterations of synaptic

strength in both excitatory and inhibitory synapses, leading to

adjustment of the firing rate of individual neurons within a

physiological range [56]. For example, a chronic elevation of

network activity in cultured neurons decreased excitatory but

increased inhibitory synaptic strengths of input synapses in PCs

[57,58], suggesting that the homeostatic synaptic scaling could

help to maintain a balance between cortical excitation and

inhibition. The enhanced asynchronous GABA release in both

human and rat epileptic tissues may thus reflect a homeostatic

change in GABAergic inhibition that can counterbalance the

excessive excitation following prolonged epileptic activities.

Considering the inhibitory nature of GABA and the desynchro-

nizing effect of AR [59], we speculated that the enhanced AR in

epileptic tissue might be anti-epileptic. In addition to homeostatic

changes in synaptic strength, alteration in intrinsic neuronal

properties could also occur when the level of network activity

changes [59]. The density or the composition of ion channels is

finely regulated by neuronal activities. In animals that developed

status epilepsy, previous studies [60,61] revealed a down-

regulation of ion channels that mediate the dendritic A- and h-

currents, resulting in changes in firing patterns and synaptic

integration in hippocampal and cortical PCs. In this study, we

found an increase in the peak amplitude of APs in FS neurons in

pilocarpine-treated rats (Figure 8), suggesting an upregulation of

Na+ channel density in these neurons, consistent with homeostatic

regulation in response to epileptic activities.

Comparison of AR in Non-Epileptic and Epileptic Tissues
Because it is not possible to obtain normal brain tissue from

healthy humans, we used the discarded peri-tumor tissues from

patients with brain tumors who exhibited no clinical symptoms of

epileptic seizures. Recordings from these non-epileptic tissues were

considered as control for the effects of epileptic activities or lengthy

treatment of anti-epileptic drugs. Our observation of AR

occurrence in both control and epileptic human tissues indicated

that AR is a fundamental property of human neocortical FS

neurons and not due to drug treatment. Furthermore, our results

clearly show that AR at FS autaptic connections in the epileptic

tissue was substantially stronger than that in the non-epileptic

tissue (Figure 6). Similar results were obtained from experiments

using the pilocarpine rat model of epilepsy. In addition to FS

autapses, enhanced AR was also observed in FS-PC synaptic

connections in epileptic rats. These findings also indicated that the

pilocarpine model of epilepsy is an appropriate model for temporal

lobe epilepsy. Similar AR enhancement in pilocarpine-treated rats

also supports the notion that the enhanced AR in human epileptic

patients was not due to the treatment of anti-epileptic drugs.

Further analysis on clinical parameters (Figure S1) revealed no

dependency of the differences in AR duration between FS autaptic

and FS-PC synaptic connections on patients’ sex, age, time since

the seizure onset, causes of seizure, occurrence frequency, and

duration of seizure. Only those patients with relatively long-lasting

seizures (i.e., seizure duration longer than 3 min) had significantly

longer AR duration at autaptic connections (Figure S1), indicating

a role of the enhanced autaptic AR in regulating epileptic seizures.

Together, our results revealed an alteration of AR-induced long-

lasting self-inhibition in FS neurons and inhibition in PCs, which

may contribute to the generation and maintenance of the

epileptiform activity.

Physiological Significance
Our results demonstrate that AR in FS neuronal terminals

occurs not only in rat but also in human neocortex, indicating that

AR is a fundamental property of the cerebral cortex and

participates in cortical functions. In a normal brain, asynchronous

GABA release after high-frequency firing provides long-lasting

inhibition and enables gain control of the postsynaptic neurons

[32,62]. Moreover, a recent study [33] revealed that asynchronous

GABA release from FS neurons causes reduction of the discharge

reliability and precision in postsynaptic neurons, particularly in

PCs, a mechanism that may cause desynchronization of cortical

activities. Therefore, on the one hand, FS neurons synchronize

large populations of neurons during various cortical oscillations

through their synchronous release at relatively low firing rates; on

the other hand, they desynchronize neuronal networks through

their AR when excessive excitation arises. The later process may

play an important role in preventing runaway excitation and

diminishing the generation and propagation of epileptiform

activities. Consistently, our experiments in human and rat epileptic

tissue revealed an increase in asynchronous GABA release at both

autaptic and FS-PC synaptic connections, leading to desynchro-

nization of FS/PC activities and the regulation of the generation

and maintenance of epileptiform activities. These results are also

in line with a recent report showing that neuronal firing during

seizure initiation and propagation in epileptic human patients was

highly heterogeneous rather than hypersynchronous [63].

Previous studies mainly focused on the alteration of basic

neurotransmitter release at GABAergic synapses in epileptic brain

tissue. Given that cortical neurons encounter large depolarizations

and high-frequency discharges during epileptiform activities, it is

important to investigate the changes in AR evoked by high-

frequency discharges. Interestingly, we found no significant

difference in the amplitude of unitary IPSCs between control

and epileptic animals. With high-frequency stimulation of FS

neurons, we did observe an increase in asynchronous GABA

release in the rat model as well as in human epileptic tissues.

Therefore, our results suggest that asynchronous GABA release in

FS interneurons could be a target for the development of novel

anti-epilepsy drugs.

Materials and Methods

Ethics Statement
The protocols for handling and using the human brain tissue

had been approved by the Biomedical Research Ethics Committee

of Shanghai Institutes for Biological Sciences (License No. ER-

SIBS-221004). The use and care of animals complied with the

guidelines of the Animal Advisory Committee at the Shanghai

Institutes for Biological Sciences.

Human Patients and Pilocarpine-Treated Epilepsy Model
Human neocortical slices were prepared from brain tissues that

had to be removed surgically to cure intractable epileptic seizure

and brain tumor. Prior to the surgery, all patients and relatives or

their legal representatives had provided written informed consent.

Brain tissues from 52 human patients with frontal or temporal lobe

epilepsy (aged from 5 to 42 y) and two patients with brain tumors
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(57 and 69 y), who showed no clinical symptoms of epileptic

seizures, were used in this study. A small block of the discarded

tissue was immediately immersed into an ice-cold oxygenated

(0uC, 95% O2 and 5% CO2) sucrose solution (modified artificial

cerebrospinal fluid, ACSF) in which the NaCl was substituted with

equiosmolar sucrose and dextrose was reduced to 10 mM. We

then sliced the brain tissue in this sucrose solution. In the case of

brain tumor, we only used the peri-tumor tissue that had clear

cortical layers (from layer 1 to 6) and white matter.

Rat neocortical slices were obtained from adult Sprague-

Dawley (SD) rats and pilocarpine-treated epileptic rats. A classic

protocol was utilized to produce a pilocarpine model of epilepsy

[38,39]. Thirty minutes prior to pilocarpine injection, cholinergic

antagonist methyl scopolamine nitrate (2 mg/kg, Sigma) was

administered to minimize the peripheral effects of pilocarpine.

The animals (220–250 g in weight) were then randomly divided

into two groups: the pilocarpine group, which received a single

injection of pilocarpine hydrochloride (345 mg/kg, Sigma), and

the control group, with an injection of normal saline. All rats in the

pilocarpine groups showed severe epileptic behavior ,15 min

after the injection, and this convulsive behavior was characterized

by tonic-clonic generalized seizures (stage 5). The seizure intensity

was evaluated according to Racine’s criteria [64]. For every

pilocarpine-treated rat, seizures were allowed to continue for 1.5 h

and then terminated by the administration of diazepam (10 mg/

kg, Sigma). Control rats also received the same dose of diazepam.

Rats were then marked and sent back to their home cage. All

drugs were applied through intraperitoneal injection. Seven days

after the drug treatments, the occurrence of spontaneous epileptic

seizures in these rats were monitored with a video-monitoring

system. Rats with severe sustained seizures (showing clonic

convulsions lasting for ,20 s at least twice within 48 h) were

selected for electrophysiological recordings, which were carried

out 13–16 d after the pilocarpine injection. In our experimental

condition, about half of the pilocarpine-treated rats showed

spontaneous epileptic seizures within the monitoring time window.

Animals were sent back to their home cages without video-

monitoring until use. It is possible that spontaneous seizures might

have occurred shortly before the preparation of slices.

Electrophysiological Recording
Neocortical tissues from human patients, control rats, and

pilocarpine-treated rats were utilized for patch clamp recordings.

Slices with a thickness of 350 mm were cut in the ice-cold sucrose

ACSF from a block of brain tissue with a vibratome (VT–1000S,

Leica). After slicing, the slices were immediately transferred to an

incubation beaker and incubated at 35.5uC for about 1 h and then

room temperature until use. Recordings were performed in a

submerged-style chamber at 36uC mounted under an infrared-

differential interference contrast (IR-DIC) microscope (BX–51 WI,

Olympus). The ACSF contained in mM: 126 NaCl, 2.5 KCl, 2

MgSO4, 2 CaCl2, 26 NaHCO3, 1.25 NaH2PO4, and 25 dextrose

(315 mOsm, pH 7.4). Whole-cell recordings were achieved using a

Multiclamp 700B amplifier (Molecular Devices). Signals were

filtered at 10 kHz and then sampled by Micro 1401 mkII

(Cambridge Electronic Design, Cambridge, UK) at 20 kHz using

Spike 2 acquisition software. The impedance of patch pipettes was

5–7 MV with an internal solution containing in mM: 71 KCl, 72

Kgluconate, 2 MgCl2, 10 HEPES, 0.025 BAPTA, and 2 Na2ATP

(288 mOsm, pH 7.2 with KOH). The reversal potential of Cl2

was 215 mV. Alexa Fluor 488 (50 mM) and biocytin (0.2%) were

added to the internal solution for visualizing the morphology of

recorded neurons. AP trains with varying AP number and

frequency were evoked by step current injection (in current-clamp

mode) or trains of voltage commands (voltage-clamp mode).

Liquid junction potential (9 mV) has not been corrected for the

membrane potential shown in the text and figures.

PCs and FS neurons were identified by their morphology and

firing properties. PCs had pyramid-shaped soma and a single thick

apical dendrite, exhibiting a regular firing pattern with adapting

APs in response to a steady depolarization, whereas FS interneurons

had a non-pyramidal soma and multiple primary dendrites and

fired APs at very high frequencies (up to 500 Hz) without

adaptation. After recording, the neurons were further identified

using DAB-staining.

Picrotoxin (PTX, GABAA receptor antagonist, Tocris), DL-2-

Amino-5-phosphonopentanoic acid (APV, NMDA receptor antag-

onist, Tocris) and 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX,

AMPA, and kainate receptor antagonist, Sigma), and EGTA-AM

(membrane permeable calcium chelator, Invitrogen) were applied

through bath perfusion.

Data Analysis
We performed data analysis using Spike 2 and MATLAB

(MathWorks, Bethesda, MD). The current trace of the postsyn-

aptic neuron was transformed to slope for event detection.

Individual AR events were detected by setting a slope threshold.

The frequencies of spontaneous IPSCs during the 4-s period

before the train stimuli were defined as the baseline frequency.

PT-AR frequency was calculated with a bin size of 50 ms. The end

of AR was defined as the time point of the last IPSC before AR

frequencies reached the baseline frequency. The PT-AR duration

was the time between the cessation of the train stimulation and the

end of AR. To investigate the strength of asynchronous GABA

release from FS neurons, we only measured the duration and

number of spontaneous IPSC events after the train stimulation

because it was difficult to detect the asynchronous events that

occurred during the train, due to the mixture of synchronous and

asynchronous release in response to presynaptic high-frequency

discharges. For single AP-evoked unitary IPSCs, we obtained the

peak amplitude by taking the differences between the peak and the

baseline current. The rise time of unitary IPSCs was measured as

the time from 10% to 90% of the peak amplitude; the decay time

constant was obtained by fitting the decay phase with a single

exponential function. The threshold of an action potential (AP)

was defined as the membrane potential when dV/dt reached

20 V/s. The peak amplitude of an AP was measured as the voltage

difference between the peak and the threshold. AP area was the

integrated area above the level of AP threshold (Figure 8).

In order to calculate the quanta number during and after the

train stimulation, we performed deconvolution analysis as

described in previous studies [32,49]. We first chose an isolated

sIPSC from the barrages of sIPSCs that occurred after the train

stimulation as a template. Then we used a template fit algorithm to

detect the putative quantal IPSCs, within which we considered the

peak amplitude of the smallest IPSC as the quantal size (5–10 pA).

We fitted the rising phase of the previous IPSC template with a

linear function and the decay phase with single exponential

function and then scaled the amplitude to the quantal size to

create an artificial quantal IPSC (IPSCquantal), which was used for

deconvolution of the postsynaptic currents. We then performed

the deconvolution with the following equation: Release

rate = F21[F (IPSC)/F(IPSCquantal)], where F is the discrete

Fourier transform [32,49]. The resultant trace was filtered by 5–

10 repetitions of Gaussian-window FIR filter depending on the

signal-to-noise ratio. For FS autapses, only the post-train

spontaneous IPSCs were used for deconvolution, as action

currents occurred during the train stimulation may cause errors
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in the following analysis. The quanta released after the train (PT-

AR) was calculated as the integrated area of the post-train release

rate. For FS-FS and FS-PC synapses, the amount of release during

(Train) and after the train (PT-AR) were measured as the

corresponding area of the release rate. The baseline release was

the average during the 4-s period preceding the onset of the train

stimulation. This baseline release was subtracted from the Train

release and PT-AR. PT-AR ratio was the ratio of PT-AR to the

total release (the sum of Train release and PT-AR; Figure S3).

Values were given as mean 6 s.e.m., and error bars in figures also

indicate the s.e.m. Significance of differences was assessed by two

sample Student’s t test. Two-sample Kolmogorov-Smirnov (K-S) test

was performed if the data were not normally distributed. In order to

study the intensity-dependent properties of synchronous release and

PT-AR, two-way ANOVA analysis was utilized to test whether the

number or frequency of APs in FS neurons had an effect on PT-AR.

Supporting Information

Figure S1 Correlation between PT-AR duration and clinical

parameters. (A) Significant difference in AR duration between

autaptic and FS-PC connections was observed in both male and

female patients (K-S test, p,0.001). No significant differences were

detected between male and female patients (FS autapses: p = 0.71;

FS-PC synapses: p = 0.79). (B,C) No obvious correlation was

observed between PT-AR duration and patients’ age and time

since seizure onset. (D–F) The difference in PT-AR duration

occurred regardless of the causes of seizure, occurrence frequency,

and seizure duration. Only those patients with seizure occurrence

frequency higher than once a week but lower than once a day (1/

w#f,1/d) showed a small AR difference between the two types of

connections. Note that patients with longer seizure duration

($3 min) had larger PT-AR duration than those with shorter

seizures (,3 min). * p,0.05; ** p,0.01; *** p,0.001.

(TIF)

Figure S2 Postsynaptic spiking had no effect on AR strength. (A)

Example recording from an FS-PC pair. Control: only presynaptic

FS neuron was stimulated. Paired firing: Both FS neuron and PC

were stimulated simultaneously. (B) Expanded traces (shadowed

parts shown in A) for clarity. (C) Group data from 6 FS-PC pairs

showing no significant differences in PT-AR duration (left) and

total number of events (right) between control and paired firing. In

this experiment, APV (50 mM) and CNQX (20 mM) were applied

in the bath to block the fast glutamatergic transmission.

(TIF)

Figure S3 Comparing the ratio of PT-AR to total release in FS-

PC synapses of control and pilocarpine-treated rats. (A) Calcula-

tion of the quanta released during (Train) and after (PT-AR) the

train stimulation (40 APs at 200 Hz in FS neurons). The total

release is the sum of Train and PT-AR. (B–C) Bar plots of the

number of FS-PC pairs versus PT-AR ratio. Note the differences

between control and pilocarpine rats. The mean PT-AR ratios for

different groups were indicated.

(TIF)

Figure S4 AR evoked by prolonged high-frequency firing. (A)

Left, example trace showing prolonged stimulation (300 APs at

150 Hz) in a human FS neuron caused AR at both autaptic and

FS-PC synaptic connections. Right, group data indicate that PT-

AR frequency at autapses was significantly higher than FS-PC

synapses. (B,C) Example FS-PC pair recording in control and

pilocarpine-treated rats. (D,E) Group data showing the significant

enhancement of PT-AR frequency in model animals (bin size:

200 ms). * p,0.05; ** p,0.01; *** p,0.001.

(TIF)

Figure S5 Changes in AP waveform after the bath application of

a low concentration of TTX. (A) Phase plot of the first APs evoked

by 500-ms current injections pre and post the application of TTX

(100 nM). (B) Changes in AP parameters pre and post TTX (n = 9

FS neurons). * p,0.05; ** p,0.01.

(TIF)
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