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Abstract
Although allogeneic hematopoietic stem cell transplantation (allo‐HSCT) is a cura-
tive therapy for high‐risk acute leukemia (AL), some patients still relapse. Since pa-
tients simultaneously have many prognostic factors, difficulties are associated with 
the construction of a patient‐based prediction algorithm of relapse. The alternating 
decision tree (ADTree) is a successful classification method that combines decision 
trees with the predictive accuracy of boosting. It is a component of machine learn-
ing (ML) and has the capacity to simultaneously analyze multiple factors. Using 
ADTree, we attempted to construct a prediction model of leukemia relapse within 
1 year of transplantation. With the model of training data (n = 148), prediction ac-
curacy, the AUC of ROC, and the κ‐statistic value were 78.4%, 0.746, and 0.508, 
respectively. The false positive rate (FPR) of the relapse prediction was as low as 
0.134. In an evaluation of the model with validation data (n = 69), prediction ac-
curacy, AUC, and FPR of the relapse prediction were similar at 71.0%, 0.667, and 
0.216, respectively. These results suggest that the model is generalized and highly 
accurate. Furthermore, the output of ADTree may visualize the branch point of treat-
ment. For example, the selection of donor types resulted in different relapse predic-
tions. Therefore, clinicians may change treatment options by referring to the model, 
thereby improving outcomes. The present results indicate that ML, such as ADTree, 
will contribute to the decision‐making process in the diversified allo‐HSCT field and 
be useful for preventing the relapse of leukemia.
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1 |  INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (allo‐
HSCT) is an established therapy that is associated with a high 
rate of curability for acute leukemia (AL).1-3 However, many 
patients still relapse after allo‐HSCT, with common causes 
of death being relapse and leukemia‐associated complica-
tions.3,4 Since salvage therapy is limited for these patients, 
their prognosis is very poor, with a probability of long‐term 
survival of <20%.5 Thus, the establishment of prevention 
strategies against relapse after allo‐HSCT is strongly needed.

Several pretransplant factors that may predict relapse after 
allo‐HSCT were previously identified, such as patient back-
grounds, including age,6 the Refined Disease Risk Index (rDRI),7 
cytogenetic risk,8 and the Hematopoietic Cell Transplantation‐
Comorbidity Index (HCT‐CI).9 Other technical components 
of allo‐HSCT, including conditioning regimens,10,11 the selec-
tion of graft sources,3,12,13 HLA discrepancies,14,15 and other 
components,16,17 are associated with relapse after allo‐HSCT. 
These prognostic factors have been evaluated with conven-
tional statistical techniques, such as univariate and multivariate 
analyses, which are model (hypothesis)‐driven techniques; they 
start with a model and assess whether the data fit the suggested 
model.18 Although these techniques are popular and widely 
used in the analysis of medical records, they cannot simultane-
ously process multiple factors. Therefore, the complex network 
of multiple factors in a patient makes the patient‐based predic-
tion of relapse, which is generally useful in the bedside deci-
sion‐making process regarding an indication for or the protocol 
of allo‐HSCT, difficult.

The application of artificial intelligence (AI) to medi-
cine, particularly machine learning (ML), a type of AI, has 
recently been attracting increasing attention. Multiple factors 
may be simultaneously analyzed, and AI may be applied to 
the examination of complex medical records. Since ML has 
the capacity to analyze multiple factors, we herein attempted 
to generate robust and accurate prediction models of relapse 
after allo‐HSCT, which may be a useful tool in the bedside 
decision‐making process to select a transplant method for re-
ducing the relapse of leukemia.

2 |  METHODS

2.1 | Patients

This analysis was a retrospective, data mining, and supervised 
learning study that included 217 AL patients. They underwent 
first allo‐HSCT for AL at Niigata University Hospital (n = 148) 
and Nagaoka Red Cross Hospital (n = 69) between 1990 and 
2016 and survived for more than 1  month after transplanta-
tion. The median follow‐up of patients was 28.9 months (range 
1.2‐223.2  months). The diagnosis and classification of AL 
were based on criteria according to the WHO classification.19,20 

Among 217 patients, 135 had acute myeloid leukemia (AML) 
and 82 had acute lymphoblastic leukemia (ALL). The median 
age of patients at allo‐HSCT was 38 years (range 16‐67 years 
old). To compare the risk of relapse, patients were stratified 
based on rDRI.7 (The definitions of rDRI and cytogenetic 
risk have been excerpted from reference No. 7 in Table S1.) 
According to rDRI, 14 (6.5%), 121 (55.8%), 51 (23.5%), and 
31 (14.3%) patients were at low (LOW), intermediate (INT), 
high (HI), and very high risk (VH), respectively. Donors were 
related for 97 patients (44.7%) and were unrelated for 120 
(55.3%). Graft sources were peripheral blood stem cells (PBSC) 
for 47 patients (21.7%, including PBSCs from 22 haploidentical 
donors), bone marrow (BM) for 123 (56.7%), and cord blood 
(CB) for 47 (21.7%). Myeloablative conditioning was used for 
169 patients (77.9%) and with reduced intensity for 48 (22.1%). 
Among 22 patients with haploidentical donor graft, thymoglob-
ulin in 14 and post cyclophosphamide in eight patients were 
used as conditioning. None of the patients received T‐cell–de-
pleted grafts in the present study. The HCT‐CI score was low 
(0, 1, 2) for 183 (84.3%) patients and high (≥3) for 34 (15.7%) 
(Detailed information is shown in Table 1).

The present study was performed in accordance with the 
Japanese Ethical Guidelines for Medical and Health Research 
Involving Humans and approved by the Ethical Committee of 
our facilities.

2.2 | ML and ADTree

The alternating decision tree (ADTree), one component of 
the ML approach based on AI, is a successful classification 
method. ADTree combines decision trees with the predic-
tive accuracy of boosting into a set of interpretable classi-
fication rules. Boosting influences the node‐weighted score 
(NW) by repeating the sample classification with each node 
and calculating errors and classification confidence each 
time. Moreover, it repeats re‐weighting the training samples 
to focus on the most problematic factor.21 (A more detailed 
principle is in reference No. 21).

Since ADTree learns previous data and predicts future clas-
sifications or discriminations, we used this algorithm in the 
present study as ML. ADTree was performed using WEKA 
software (Ver.3.9.1, Machine Learning Group at the University 
of Waikato, New Zealand, https ://www.cs.waika to.ac.nz/ml/
weka/index.html). The algorithm model was trained and tested 
using 10‐fold cross‐validation on the training data set (Niigata 
group) and validated again on the validation data set (Nagaoka 
group). The model evaluated the prediction accuracy and area 
under the curve (AUC) of the receiver operating characteristic 
(ROC) analysis, which discriminates the true prediction rate 
from a false prediction rate (FPR, also called the specificity). 
The tree was analyzed with the number of nodes between 6 and 
11 and we adopted the number of nodes showing the highest 
κ‐statistic value (Table S2).

https://www.cs.waikato.ac.nz/ml/weka/index.html
https://www.cs.waikato.ac.nz/ml/weka/index.html
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2.3 | Other statistical analyses

Group comparisons for continuous or categorical vari-
ables were evaluated using the Mann‐Whitney U test or 

Fisher's test. All times to events were computed from the 
date of transplantation. Overall survival (OS) was ana-
lyzed as the time until death or lost to the follow‐up with 
the Kaplan‐Meier estimator. The cumulative incidence of 

T A B L E  1  Patient characteristics

      Hospital  

Factor   All Niigata (training set) Nagaoka (validation set)  

  Number of patients N = 217 N = 148 N = 69 P‐value

Age (range)   38 y (10‐67) 38 y (10‐66) 39 y (14‐67) 0.196

Age (%) <40 y 119 (54.8) 83 (56.1) 36 (52.2)  

≤40 y 98 (45.2) 65 (43.9) 33 (47.8) 0.661

Sex (%) Male 111 (51.2) 74 (50.0) 37 (53.6) 0.663

Female 106 (48.8) 74 (50.0) 32 (46.4)  

Diagnosis (%) AML 135 (62.2) 97 (65.5) 38 (55.1) 0.176

ALL 82 (37.8) 51 (34.5) 31 (44.9)  

with (9;22) 31 (37.8) 18 (35.3) 13 (41.9) 0.64

Hospital (%) Niigata 148 (68.2)      

Nagaoka 69 (31.8)      

rDRI (%) LOW 14 (6.5) 10 (6.8) 4 (5.8) 0.574

INT 121 (55.8) 78 (52.7) 43 (62.3)  

HI 51 (23.5) 36 (24.3) 15 (21.7)  

VH 31 (14.3) 24 (16.2) 7 (10.1)  

Graft source (%) BM 123 (56.7) 85 (57.4) 38 (55.1) 0.115

PBSC 25 (11.5) 19 (12.8) 6 (8.7)  

HAPLO‐PBSC 22 (10.1) 18 (12.2) 4 (5.8)  

CB 47 (21.7) 26 (17.6) 21 (30.4)  

Donor type (%) Unrelated 120 (55.3) 77 (52.0) 43 (62.3) 0.187

Related 97 (44.7) 71 (48.0) 26 (37.7)  

Conditioning (%) including MAC 169 (77.9) 110 (74.3) 59 (85.5) 0.079

RIC 48 (22.1) 38 (25.7) 10 (14.5)  

Thymoglobulin 14 (6.5) 13 (8.8) 1 (1.4)  

Post 
cyclophosphamide

8 (3.7) 5 (3.4) 3 (4.3)  

HCT_CI score (%) ≤2 183 (84.3) 126 (85.1) 57 (82.6) 0.69

≤3 34 (15.7) 22 (14.9) 12 (17.4)  

NRM (%) Yes 42 (19.4) 29 (19.6) 13 (18.8) 1

Using TBI (%) No 19 (8.8) 17 (11.5) 2 (2.9) 0.041

Yes 197 (91.2) 131 (88.5) 66 (97.1)  

Relapse within 1 y (%) Yes 69 (31.8) 51 (34.5) 18 (26.1) 0.273

OS Months (range) 28.9 
(1.2‐223.2)

31.4 (1.2‐223.2) 27.3 (1.2‐127.1) 0.382

RFS Months (range) 20.6 
(1.0‐223.2)

20.4 (1.0‐223.2) 20.7 (1.0‐124.8) 0.816

No significant differences were observed between the training and validation sets.
Abbreviations: ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; BM, bone marrow; CB, cord blood; HAPLO‐PBSC, PBSC from haploidentical 
donors; HCT‐CI, Hematopoietic Cell Transplantation‐Comorbidity Index; HI, high risk; INT, intermediate risk; LOW, low risk; MAC, myeloablative conditioning; 
NRM, nonrelapse mortality; OS, overall survival; PBSC, peripheral blood stem cells; rDRI, the Refined Disease Risk Index; RFS, relapse‐free survival; RIC, reduced 
intensity conditioning; TBI, total body irradiation; VH, very high risk.
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relapse (CIR) was assessed as the time of hematological 
relapse. In the case of no remission after allo‐HSCT, the 
time of relapse was defined when blasts circulating in pe-
ripheral blood or BM were detected. The cut‐off value for 
age used in adjustments in the multivariate analysis was 
set to 40 years.6 Univariate and multivariate analyses for 
CIR were performed using Fine and Gray models. Apart 
from ADTree, statistical analyses were performed using 
R‐statistical software version 3.4.3 (The R Foundation for 
Statistical Computing) and EZR (Saitama Medical Center, 
Jichi Medical University), which is a graphical user inter-
face for R.22 The significance of differences was consid-
ered to be P < 0.05 with a two‐sided test.

3 |  RESULTS
3.1 | Outcomes

One‐ and 3‐year OS rates were 75.1% (95% CI: 68.8%‐80.3%) 
and 59.1% (95% CI: 52.0%‐65.6%), respectively (Figure 1A). 
One‐ and 3‐year CIR rates were 33.8% (95% CI: 26.9%‐40.0%) 
and 42.1% (95% CI: 34.7%‐48.6%), respectively (Figure 1D). 
Most cases of relapse occurred within 1 year of allo‐HSCT 
(Table 2, Figure 1D,1,1). There were six cases of no remis-
sion (2.8%) after allo‐HSCT. Nonrelapse mortality (NRM) 

was 19.4% (n = 42) (Detailed information on NRM is shown 
in Table S3).

3.2 | Univariate and multivariate analyses 
for CIR

rDRI (P < 0.0001), the graft source (P = 0.005), and donor 
type (related or unrelated, P = 0.014) were identified as risk 
factors for relapse, while age (P = 0.532), sex (P = 0.051), 
the conditioning regimen (P = 0.492), TBI (P = 0.051), di-
agnosis (P = 0.410), and HCT‐CI (P = 0.526) did not con-
tribute to CIR in this cohort. rDRI (P < 0.0001) and the graft 
source (P = 0.00687) influenced OS, whereas the donor type 
did not (P = 0.569) (Table 2, Figure 1).

In the multivariate analysis, rDRI was identified as a risk 
factor for CIR (P  <  0.0001), particularly rDRI; VH (HR 
6.236, 95% CI: 1.696‐22.93, P = 0.006) (Table 3).

3.3 | The model constructed with ADTree 
was generalized and highly accurate

Since most cases of relapse occurred within one year in this 
cohort, the presence or absence of relapse within one year of 
allo‐HSCT was set as learning content in ADTree to construct 
a prediction model. We selected seven factors for learning: 

F I G U R E  1  OS and CIR of all patients. (A) and (D); OS and CIR of all patients. One‐ and 3‐year OS rates were 75.1% (95% CI: 
68.8%‐80.3%) and 59.1% (95% CI: 52.0%‐65.6%), respectively. (B) and (E); No significant differences were observed in OS (P = 0.82) or 
CIR (P = 0.097) between Niigata Hospital (training set) and Nagaoka Hospital (validation set). (C) and (F) When stratified based on rDRI, OS 
(P < 0.0001) and CIR (P < 0.0001) showed significant differences among the categories
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age, diagnosis, rDRI, donor type, graft, the use of TBI, and the 
conditioning regimen, which were common prognostic fac-
tors, and all were identified prior to transplantation. GVHD 
and the progression of chimerism, which occur after trans-
plantation, were intentionally excluded as analysis factors.

The graphical output of ADTree from the training set 
(n  =  148) is shown in Figure 2. The prediction accuracy, 
AUC of ROC, and κ‐statistic value of this model were 78.4%, 
0.746, and 0.508, respectively. Thirteen out of 97 patients 
who remained in remission in the first year were predicted to 
relapse (Detailed results are shown in Table 4); therefore, FPR 
of the relapse prediction was as low as 0.134. In an evaluation 
of the model with the validation set (n = 69), the prediction 
accuracy, AUC of ROC, and FPR of the relapse prediction 
were similar at 71.0%, 0.667, and 0.216, respectively. These 
results suggest that the model, constructed with ADTree, was 
generalized and highly accurate (Table 5, Table S2).

3.4 | The branch point of therapeutic 
options by referring to the model

Each score besides that for nodes showed a prediction 
node weight (NW); NW  <  0 means a lower relapse risk 

and NW  >  0 a higher relapse risk. For example, among 
the same node level, donor type (node 4), an unrelated 
donor showed a lower risk (NW, −0.249) than a related 
donor (NW, 0.313), and this result was the same as that 
in the univariate analysis on CIR. The final judgment of 
the AL relapse prediction was performed by summing all 
the nodes through which it passed (NW sum). The NW 
sum > 0 predicted relapse and < 0 predicted no relapse in 
this model. According to the model, if ALL patients with 
rDRI HI receive allo‐HSCT using the RIC regimen and a 
related donor, the NW sum is −0.742 < 0, which predicts 
no relapse. Moreover, if the diagnosis is AML, the NW 
sum is 0.147 > 0, which predicts relapse within 1 year of 
allo‐HSCT. However, in the case of an unrelated donor, the 
relapse prediction changes; the NW sum becomes −1.475 
(age ≤ 40 years) and −0.469 < 0 (>40 years), indicating no 
relapse (Figure 3).

4 |  DISCUSSION

Historically, AI and ML were initially developed for image 
and voice recognition and were subsequently applied to the 
analysis of data sets of large volumes, such as purchase 
records.18 AI and ML are now expected to handle and ana-
lyze complex medical records. When clinical study reports 
were searched using the following keywords on Pubmed: 
“machine learning”, “diagnosis”, and “prognosis”, 18 re-
ports in 2000 and 185 in 2010 were hit. Between 2015 and 
2018, approximately 1000 reports were searched for each 
year.

Some groups in the hematology field also attempted to 
use AI and ML. Shouval et al analyzed the data of approx-
imately 20 000 patients in the European Society for Blood 
and Marrow Transplantation with ADTree and succeeded 
in constructing a prediction model of early NRM after allo‐
HSCT.23 They also evaluated the same data set and compared 
it with six other ML programs. All programs showed high 
predictability and versatility.24 AI and ML have also been ap-
plied in the following fields: the morphological analysis of 
blood cells,25 the identification of prognostic factors of ALL 
in childhood,26 and the differential diagnosis of hematologi-
cal diseases.27

High CIR rates after allo‐HSCT represent a clinical issue 
that needs to be resolved in adverse risk AL.3-5 To improve 
outcomes, attempts are being made to develop strategies that 
reduce the risk of relapse. Many technical options are now 
available for allo‐HSCT.3,10-17 Furthermore, with the estab-
lishment of a safer method for elderly patients,28 the num-
ber of patients indicated for allo‐HSCT has increased. Since 
the technique of allo‐HSCT is very diversified and complex, 
some clinicians may have difficulties selecting treatment op-
tions that improve the outcomes of each patient.

T A B L E  3  Multivariate analysis of CIR

Factor Hazard ratio (95% CI) P‐value

Age < 40 y 0.783 0.453‐1.353 0.380

Conditioning; RIC 0.680 0.336‐1.376 0.280

rDRI     <0.0001

Compared to LOW      

DRI—INT 0.877 0.255‐3.026 0.840

DRI—HI 2.953 0.854‐10.210 0.087

DRI—VH 6.236 1.696‐22.930 0.006

ALL 1.045 0.628‐1.740 0.860

Graft source     0.993

Compared to BMT      

graft—CBT 0.913 0.435‐1.918 0.810

graft—HAPLO‐
PBSC

1.051 0.419‐2.635 0.920

graft—PBSC 0.960 0.413‐2.227 0.920

Donor type: 
Related

1.401 0.781‐2.514 0.260

Female 1.175 0.714‐1.936 0.530

Using TBI 0.555 0.230‐1.339 0.190

In a multivariate analysis, rDRI was identified as a risk factor for CIR alone 
(P < 0.0001), particularly rDRI; VH (HR 6.236, 95% CI: 1.696‐22.93, 
P = 0.006).
Abbreviations: ALL, acute lymphoblastic leukemia; BM, bone marrow; CB, 
cord blood; HAPLO‐PBSC, PBSC from haploidentical donors; HI, high risk; 
INT, intermediate risk; LOW, low risk; PBSC, peripheral blood stem cells; 
rDRI, the Refined Disease Risk Index; RIC, reduced intensity conditioning; TBI, 
total body irradiation; VH, very high risk.
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The concept of this analysis is “Changing therapy op-
tions to avoid leukemia relapse according to model predic-
tions”. We focused on what may be modified factors (such 
as conditioning or the graft source) and what are fixed fac-
tors (including age, disease status, or diagnosis) in the anal-
ysis prior to transplantation. Furthermore, a unique point 
in our analysis was the visualization of the branch point 
of treatment using ADTree (Figure 2). Although previous 
studies using AI or ML mainly aimed at discrimination and 
diagnosis, as described above, we herein attempted to con-
struct patient‐based treatment algorithms by applying AI. 
In high‐risk AML, the branch point of therapeutic options 
from our simulation was the donor type (Figure 3). By re-
ferring to the prediction results of ADTree, clinicians may 
change treatment options, thereby improving outcomes. In 
the present results (Figure 2, at node 1), INT showed NW 
−0.565, whereas LOW together with HI and VH showed 
NW 0.447, indicating that LOW was a higher relapse risk 
than INT, which was unexpected. LOW patients generally 

do not need to receive allo‐HSCT at first remission. LOW 
patients who received allo‐HSCT failed first‐line therapy, 
and may have a worse status than other patients; therefore, 
we speculated that ADTree judged LOW as a higher re-
lapse risk than INT. This result suggests that ADTree pro-
vides us with different information and interactions from 
existing knowledge.

Medical records contain very diverse information. Patients 
have different backgrounds that are generally not ideal for 
statistical analyses. Classical statistical techniques require 
“noise” to be removed from data when medical records are 
analyzed. Model (hypothesis)‐driven statistical techniques 
have identified many prognostic factors, but have been unable 
to adjust for each patient with individual factors, which are 
sometimes considered to be “noise”.18 These disadvantages 
have led to difficulties in the construction of “individualized 
transplantation therapy” for patients in clinical settings. One 
of the differences between the conventional method and ML 
is that the former focuses on proving “whether the hypothesis 

F I G U R E  2  Relapse prediction model; Graphical output. Each score beside nodes showed a prediction node weight (NW); NW < 0 means 
a lower relapse risk and NW > 0 a higher relapse risk. The final judgment of the AL relapse prediction was achieved by summing all the nodes 
through which it passed (NW sum). The NW sum > 0 predicted relapse and <0 predicted no relapse in this model
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        In relapse

  Accuracy AUC κ‐statistic TPR TNR FPR FNR

Niigata group 
(Training set)

78.4% 0.746 0.508 0.627 0.866 0.134 0.373

Nagaoka group 
(Validation set)

71.0% 0.667 0.274 0.500 0.784 0.216 0.500

In this prediction model, true‐positive rate (TPR, also called the sensitivity) and false‐positive rate (FNR, it 
shows miss rate) in relapse were not sufficiently. However, true–negative rate (TNR, also called specificity) 
was high‐ and false‐positive rate (FPR, it means probability of false alarm) in relapse was very low. Therefore, 
clinicians may consider changes in treatment options if relapse is predicted.
AUC; area under the curve, Accuracy = (true positive + true negative)/ all, TPR = true positive/ (true posi-
tive + false negative) = 1‐FNR, FNR = false negative/ (false negative + true positive) = 1‐TPR, TNR = true 
negative/ (true negative + false positive) = 1‐ FPR, FPR = false positive/ (false positive + true negative) = 
1‐TNR.

T A B L E  5  Comparison of 
predictability

F I G U R E  3  Example of a simulation. In high‐risk AML, the branch point of therapeutic options was the donor type from our simulation

T A B L E  4  The actual number of 
patients and the prediction number of 
relapse Training set (n = 148)

Prediction

TotalNo relapse Relapse

Actual number No relapse 84 13 97

Relapse 19 32 51

  Total 103 45 148

Validation set (n = 69)

Prediction

TotalNo relapse Relapse

Actual number No relapse 40 11 51

Relapse 9 9 18

  Total 49 20 69

 

Prediction

No relapse Relapse

Actual number No relapse True negative False positive

Relapse False negative True positive
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is true”, whereas ML, such as ADTree, “attempts to explain 
previous data and predict the future”. This difference is ex-
pected to be an advantage when using ML for the analysis of 
medical records.

The limitation of the present study is that the volume of 
patient data for ADTree to learn was relatively small. The 
higher the amount of learning, the greater the prediction ac-
curacy, and, thus, it is possible to construct a model that is 
more useful for the bedside decision‐making process by cli-
nicians. Furthermore, other factors, such as information on 
chromosome or genetic abnormalities and the chemotherapy 
protocol, HLA discrepancy rate, and the posttransplant main-
tenance therapy (donor lymphocyte infusion, azacytidine, et 
al) are needed to develop ADTree. The planned DLI and tar-
geted posttransplant therapy may be effective at preventing 
relapse, but this study did not include the patients who re-
ceived these therapies, so we could not evaluate their effects. 
The addition of social environments and educational history, 
which are complex factors, may also be beneficial.29 The out-
comes of allo‐HSCT may vary among transplant centers. The 
present results suggest that ADTree is currently applicable to 
bedside decision‐making in single institutions.

In conclusion, we attempted to generate robust and accu-
rate prediction models of relapse after allo‐HSCT that will 
contribute to preventing the relapse of leukemia. AI and ML, 
such as ADTree, may improve the decision‐making process 
for therapy in the diversified allo‐HSCT field. The usefulness 
of AI and ML is now being demonstrated, and further clinical 
applications are expected in the future.
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