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Abstract

As the main agricultural insect pollinator, the honey bee (Apis mellifera) is exposed to a

number of agrochemicals, including glyphosate (GLY), the most widely used herbicide.

Actually, GLY has been detected in honey and bee pollen baskets. However, its impact on

the honey bee brood is poorly explored. Therefore, we assessed the effects of GLY on larval

development under chronic exposure during in vitro rearing. Even though this procedure

does not account for social compensatory mechanisms such as brood care by adult work-

ers, it allows us to control the herbicide dose, homogenize nutrition and minimize environ-

mental stress. Our results show that brood fed with food containing GLY traces (1.25–5.0

mg per litre of food) had a higher proportion of larvae with delayed moulting and reduced

weight. Our assessment also indicates a non-monotonic dose-response and variability in

the effects among colonies. Differences in genetic diversity could explain the variation in

susceptibility to GLY. Accordingly, the transcription of immune/detoxifying genes in the guts

of larvae exposed to GLY was variably regulated among the colonies studied. Conse-

quently, under laboratory conditions, the response of honey bees to GLY indicates that it is

a stressor that affects larval development depending on individual and colony susceptibility.

Introduction

Pollination mediated by bees is an important agricultural service for food production and the

maintenance of plant biodiversity [1]. The honey bee (Apis mellifera L.) is the main insect pol-

linator in agricultural settings [2]. However, the increasing disturbance of the agricultural eco-

system affects negatively honey bee health because of chronic adaptation to environmental

challenges. Optimal homeostasis and immunity depend on a proper nutrition and a low allo-

static load over time [3–5]. The decline of the honey bee population is considered to be a
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consequence of multiple factors, such as exposure to agrochemicals, pathogens, parasites,

extreme climate conditions and bad beekeeping practices [6, 7]. An overload of individual or

social compensatory mechanisms by concomitant stressors can lead to sublethal symptoms or

increased mortality [8].

Since the late 1990s, there has been a rapid and steady expansion of cultivated areas using

transgenic organisms in many countries [9, 10]. Glyphosate [N-(phosphonomethyl)glycine or

GLY] is a low cost and broad-spectrum herbicide that became increasingly used in herbicide

tolerant crops [11, 12]. Nowadays, GLY is the most widely applied agrochemical and has been

detected not only in tissues of genetically modified crops (GMC) but also in traditional crops

and resistant weeds [13–15]. Consequently, honey bee colonies located near crops are increas-

ingly exposed to this herbicide [16–18]. As a result, GLY traces have been detected in as many

as 70% of honey samples from countries where GMCs are permitted [19]. GLY has even been

detected in samples of organic honey [19]. This indicates the accidental exposure to which

bees are subject, presumably due to their wide foraging range [20, 21]. Although other pesti-

cides have been detected in brood food, such as royal jelly, there is no data available that shows

the presence of GLY in this beehive product [22].

Recently, sublethal adverse effects have been reported in adult worker honey bees fed with

food containing GLY concentrations around 2.8 mg of acid equivalent (a.e.) L-1, the highest

herbicide concentration recorded in agricultural surroundings [23–25]. These assays showed

impaired associative learning and reduced sucrose sensitivity in young adult bees when reared

in the laboratory under chronic GLY exposure [26, 27]. Forager honey bees exposed to acute

GLY doses displayed weakened cognitive capacities needed to retrieve and integrate informa-

tion for successful foraging [26, 28].

Previous studies have shown detrimental effects of GLY on the development and growth of

a wide variety of animals, including arthropods [29–31]. Honey bees are holometabolous

insects that have four moults that allow their growth during the larvae feeding period [32].

Each moult normally occurs approximately every 24 hours. During this period, larvae feed

while nurse bees take care of them prior to sealing the cells for pupation (120 hours post-

hatching) [33, 34]. Delayed larval development, i.e. when larvae have an unsuccessful moult on

a given day and display an earlier stadium than that expected, has been shown in brood combs

from beehives located in crop surroundings with high levels of pesticide contamination, e.g.

neonicotinoids, pyrethroids and carbamates [35]. GLY was not monitored. Under semi-field

conditions, colonies located close to resistant vegetation sprayed with 2.88 kg a.e. ha-1 of GLY

presented traces of the herbicide of up to 1.3 mg a.e. kg-1 in honey and up to 629 mg a.e. kg-1

in bee pollen baskets. Furthermore, traces of GLY from 1.23 to 19.5 mg a.e. kg-1 were detected

in brood samples [36]. Even though this study showed that larvae can receive food containing

GLY, it did not find notable effects on their survival and development. However, the indirect

administration of GLY to brood via the nursing of worker bees makes the exposure conditions

among larvae complex and heterogeneous. Moreover, honey bees display variability among

colonies in susceptibility to diseases [37, 38] and to pesticides [39, 40] due to differences in

nutrition [3] and genetic diversity [41–43]. Both individual and social immunity determine

the susceptibility of each bee and its colony.

In order to determine the effects of ingesting food contaminated with GLY on honey bee

brood, we exposed larvae using a controlled direct administration. We carried out an in vitro
rearing [44] with different GLY concentrations contained in the larval food, on the assumption

of a worst case exposure scenario, assessing developmental effects in each larva during the

moulting period when the brood cell was still unsealed (120 hours post-hatching) [32, 45]. We

reared larvae in vitro from 6 different colonies in homogenised conditions and noted the effect

of genetic diversity on the susceptibility to GLY of larvae without social immunity. Finally, we
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evaluated qualitative changes in the expression of genes linked to detoxification and health in

the gut [46–49], that acts as the first barrier to xenobiotics, as parameters of brood health and

responsiveness to GLY.

Results

Changes in larval development of honey bees exposed to GLY

In order to detect changes in honey bee larval development associated with chronic exposure

to GLY (for details of exposure see S1 Table), we quantified survival and successful moulting

during the larval feeding period (i.e. during the first 120 hours post-hatching, S1 Fig). Due to

the possibility of variation among larvae from different source colonies in response to the her-

bicide, we sampled brood from 6 colonies (A-F) to rear them under in vitro conditions.

The mean age of death of all larvae in the control group was 92.9 ± 34 h, around the last

moult before the fifth stadium. For larvae exposed to GLY, the mean age of death was similar,

92.2–106.6 h. Nevertheless, our results show effects on survival proportion with a significant

interaction between the source colony of each larva and the GLY concentration administered

(ATF model: survival prop. ~ [GLY] + colony + [GLY] × colony, χ2 (23) = 344.63, P < 0.001,

N = 3062, post-hoc pairwise comparisons were performed with the log-rank test, S2 Table).

Therefore, GLY affects larval survival with different patterns of dose-response among colonies

(Fig 1). Colonies B, D and E did not show an adverse effect on survival, while the rest of the

colonies showed a significantly lower survival after exposure to GLY (20–66% less of the base-

line, Table 1). However, in colonies C and E, some GLY concentrations increased survival

(22–39% more of the baseline, Table 1). We also found that the baseline of survival proportion

was significantly different among colonies under in vitro rearing, when we compared the sur-

vival control curves (Table 1 and S3 Table).

The developmental process can have sublethal adverse effects such as delayed moulting.

The mean age of delay for larvae of the control group was 65.8 ± 35 h. This is consistent with

the switch of diet within the hive from worker jelly to bee bread. The mean age of delay for lar-

vae treated with GLY was similar, 60.7–68.2 h. Again, our results show a significant interaction

between the source colony of each larva and the GLY concentration administered (ATF

model: prop. of successful moulting ~ [GLY] + colony + [GLY] × colony. χ2 (23) = 409.2,

P< 0.001, N = 3062, post-hoc pairwise comparisons were performed with the log-rank test, S2

Table). Therefore, GLY affects larval development with different patterns of dose-response

among colonies (Fig 2). During in vitro rearing a number of unexposed larvae (22–46%)

showed delay in the moulting process with variability among colonies (Table 1 and S3 Table).

Under GLY exposure all the colonies, except for B and E, showed an increase in the proportion

of larvae with delayed moulting (52–184% more of the baseline, Table 1). Only one concentra-

tion in colony F showed a reduced delay in development (46% less of the baseline, Table 1).

The same proportion of larvae showed a double effect (i.e., delayed moulting followed by

death) regardless of GLY concentration (33% for the control group and 26–38% for GLY

exposed groups).

The effects on survival and development have shown a non-monotonic dose-response rela-

tionship with positive effects in certain cases. The lowest concentration of GLY induced early

sublethal adverse effects in some colonies (C and D) after 72 h while the exposure concentra-

tions of 2.5 and 5.0 mg L-1 induced sublethal and lethal effects in several colonies (A, C, D and

F). This pattern could be a consequence of a response threshold in the detoxifying process.

Accordingly, at the end of the exposure period assessed (120 h), the larvae exposed to 1.25 mg

L-1 of GLY reached doses of around 100 ng of GLY per larva. Meanwhile, larvae exposed to 2.5

and 5 mg L-1 of GLY reached that dose within 72 h of exposure (S1 Table).

Effects of an herbicide on honey bee larval development
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Changes in growth after GLY exposure

As GLY exposure led mainly to developmental adverse effects, we wished to investigate what

effect it might have on the growth of those 5-day old larvae that accepted the total amount of

contaminated food (same nutrition and dose) without notable adverse symptoms. To assess

this, we measured the head diameter and weight in larvae from three colonies (D-F). Given the

differences in the rearing conditions and nutrition, we also compared the growth of larvae

from the same cohort between rearing contexts (in-hive and in vitro, S2 Fig).

Non-significant differences were detected in head diameter of sampled larvae among

GLY concentrations (Kruskal Wallis test: head diameter ~ treatment. Treatment as a combi-

nation of [GLY] and colony, χ2 (11) = 19.74, P = 0.05; Nemenyi test, d.f. = (12, 108), no sig-

nificant multiple post hoc comparisons, Fig 3A, S4 and S5 Tables). Therefore, these larvae

were in the same growth stage associated with the fifth stadium as other studies reported

previously [33,34]. Nevertheless, both source colony and GLY exposure explain significant

differences in weight with a significant interaction (GLM model: weight ~ [GLY] + colony

+ [GLY] × colony. F(1,108) = 20.54, P < 0.001, N = 120, post-hoc pairwise comparisons

were performed with the Tukey test, see Fig 3B, S6 and S7 Tables). Therefore, larvae exposed

to GLY show a varying effect in growth among colonies. Colony E did not show an alter-

ation in growth regardless of GLY concentration. Meanwhile, colony D showed a significant

reduction of weight (around 27%) with a dose-dependent response in exposure to 2.5 and

5.0 mg L-1 of GLY. Furthermore, larvae from colony F showed a significantly lower weight

(15%) for the lowest GLY concentration.

Fig 1. Larval survival under chronic exposure to glyphosate for different honey bee colonies. Proportion of larval survival during exposure (5 days post-hatching)

to contaminated food with GLY (range of concentrations assessed: 1.25–5.0 mg per litre). Survival curves are plotted with their confidence interval (95%) for each

treatment of larvae reared in vitro and for each individual colony (A-F). The number of assessed larvae is shown in the graph. Fitting of data to AFT model (survival

prop. ~ [GLY] + colony + [GLY] × colony) followed by a Log-rank test for post hoc comparisons of simple effects. The curves are plotted with different colours per

treatment: in vitro control in blue and a yellow-red gradient for increasing GLY concentration treatments. The + indicates time points with censoring data. Different

letters indicate significant differences among treatments in each colony (S2 Table).

https://doi.org/10.1371/journal.pone.0205074.g001
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No larva with delayed moult ate all offered food in any of the colonies (A-F). Experimental

food during the feeding period was a mixture of different nutrients, mainly from commercial

royal jelly. The pH was slightly acid (4.94 ± 0.05). The pH did not change (4.9 ± 0.18) in food

incubated during five days under similar conditions to those of larvae reared in vitro, which

indicates the stability of some of its properties. Nevertheless, food became slightly more acid

when GLY is added in concentrations of 2.5 and 5.0 mg L-1 (GLMM model: pH ~ [GLY] +

(time|replicate). [GLY] term: F (3, 87) = 24, P< 0.001. Variance structure: 0.5% through days

and 6% among replicates. S8 Table).

Changes in gut gene expression of larvae exposed to GLY

In vitro rearing homogenizes environmental and nutritional factors among brood from differ-

ent colonies. Therefore, the variability in effects is explained mainly by different genetic and/

or epigenetic factors among brood, associated with the response to a xenobiotic. The first

internal barrier to contaminated food is the gut. Hence, we performed an exploratory analysis

of the expression profile of immune/detoxifying genes (Table 2). We sampled and dissected

5-day old larvae without adverse developmental effects from the colonies studied for morpho-

logical variables (D-F). We also analysed the expression profile of digestive enzymes and stress

biomarkers genes (Table 2) to determine whether gut physiology had been disrupted as a result

of GLY exposure. Finally, we compared gene expression between larvae reared in-hive and in
vitro (S3 Fig).

On the one hand, expression levels of digestive enzymes and stressor biomarker genes were

similar among colonies with low variability (in-hive: CVs 6–22%; in vitro: CVs 2–13%), sug-

gesting that the in vitro rearing conditions do not disrupt gut physiology. Nevertheless, we did

find high variability in the expression levels for some immune/detoxifying genes (in-hive: CVs

2–60%; in vitro: CVs 8–89%) among colonies in both contexts with a considerable trend to an

increase in expression in the in vitro rearing.

Table 1. Variability among honey bee colonies in GLY effects.

Treatment Effect (120 h)� Year 2014 2015

Colony A B C D E F

Control Baseline Survival 0.86ab 0.77bc 0.61c 0.95bc 0.75bc 0.89ab

Successful moulting 0.59a 0.56a 0.74ab 0.78b 0.61ab 0.54a

Sample size 123 109 114 130 135 114

GLY exposure Negative LC (mg L-1) † 5.0 NOEL 2.5 NOEL NOEL 2.5

Survival 0.29 - 0.38 - - 0.71

SLC (mg L-1) † 2.5 NOEL 1.25–5.0 1.25–5.0 NOEL 2.5

Successful moulting 0.35 - 0.00–0.48 0.21–0.52 - 0.30

Positive EC (mg L-1) † NOEL NOEL 1.25, 5.0 NOEL 2.5 5.0

Survival - - 0.85 - 0.92 -

Successful moulting - - - - - 0.75

Range of sample size 119–156 119–123 119–144 126–137 124–139 126–140

� Cumulative proportion of larvae with developmental effects during the exposure period to GLY (1.25, 2.5 and 5.0 mg of GLY per litre of food). The endpoints are

death or delay in the moulting process (120 h post-hatching) measured in each larva. Fitting of data to AFT model (endpoint ~ [GLY] + colony + [GLY] × colony)

followed by Log-rank test for post hoc comparisons of simple effects. The number of larvae assessed for each colony (A-F) is shown in the table. Baseline proportions

with different letters are significantly different among colonies (S3 Table). This table is a resume of Figs 1 and 2.

† LC, lethal concentration; SLC, sublethal concentration; EC, effective concentration; NOEL, no observable effect level in range assessed. For each colony, only GLY

concentrations that have significant statistical differences with its baseline are reported (S2 Table).

https://doi.org/10.1371/journal.pone.0205074.t001
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On the other hand, we analysed the gut responsiveness of larvae exposed to GLY. Due

to the different baselines of gene expression among colonies in control groups, we relativ-

ized each expression profile to the control sample to compare the responsiveness patterns

(Fig 4A). Expression levels for digestive enzymes and stress biomarker genes seem similar

between exposed and unexposed larvae. However, immune/detoxifying genes are regu-

lated by GLY or its subproducts as a consequence of the exposure, with a differential

response among colonies. Colony D showed a general downregulation of immune/detoxi-

fying genes. Colonies E and F showed upregulation regardless of GLY concentration,

especially in genes CYP6AS2 and CYP9Q3, in both colonies. Colony F showed an upregu-

lation of the immune gene Abaecin and a downregulation of CYP6AS4 with a dose-depen-

dent response opposite to that of colony E. The clustering method (Fig 4B) showed a

similarity between expression baselines of colonies E and F when using their complete

gene expression profiles. All samples from exposed larvae were grouped separately from

control larvae (Fig 4B). In addition, the expression profiles of the samples exposed to the

same concentrations of GLY in colonies E and F were grouped, indicating a similar

response for both colonies. Thus, the variability in the regulation of immune/detoxifying

genes could explain the variability in tolerance to GLY exposure.

Fig 2. Larval moulting under chronic exposure to glyphosate for different honey bee colonies. Proportion of larvae without delay in moulting for each day during

exposure (5 days post-hatching) to contaminated food with GLY (range of concentrations assessed: 1.25–5.0 mg per litre). Curves of successful moulting are plotted

with their confidence interval (95%) for each treatment of larvae reared in vitro and for each individual colony (A-F). The number of assessed larvae for each

treatment is shown in the graph. Fitting of data to AFT model (prop. of successful moulting ~ [GLY] + colony + [GLY] × colony) followed by a Log-rank test for post
hoc comparisons of simple effects. The curves are plotted with different colours per treatment: blue for in vitro control and a yellow-red gradient for increasing GLY

concentration. The + indicates time points with censoring data. Different letters indicate significant differences among treatments in each colony (S2 Table).

https://doi.org/10.1371/journal.pone.0205074.g002
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Discussion

The current in vitro assessment shows that GLY promotes changes in the proportion of brood

with developmental alterations (i.e., changes in its prevalence), such as delayed moulting or

even death, in honey bee larvae fed with contaminated food (1.25–5.0 mg of GLY per litre of

food). This effect is observed mainly as a prolonged duration of early larval stadia and reduced

growth. These negative effects for GLY treated larvae were found in the majority of the colo-

nies studied (A, C, D and F) mostly with 2.5 mg a.e. L-1 of the active ingredient. However, the

great variability among them with regards to susceptibility to GLY is remarkable. This varying

response among colonies is explained by differences in the proportion of susceptible larvae in

each colony (intra-colony genetic diversity) and by the different response thresholds. In four

cases, the exposure concentrations induced positive effects in colonies C, E and F. Transcrip-

tion of immune/detoxifying genes in larval gut was variably regulated among colonies after

chronic exposure to GLY. Consequently, in absence of social immunity and other environ-

mental factors, the inter-colony genetic diversity could explain the variability among colonies

in developmental effects and susceptibility to GLY [42, 43, 50]. This could involve one or sev-

eral genes in the mechanisms of compensation of the different genotypes resulted in tolerant

phenotypes (asymptomatic bees). However, the tolerance to GLY does not imply its harmless-

ness, contributing to increase the allostatic load of a colony.

Honey bee larvae response to GLY as a stressor

Studies in both vertebrates and invertebrates have shown cell cycle dysregulation and terato-

genic effects with molecular links between GLY-based herbicides and the cellular

Fig 3. Effect of GLY exposure on growth. Larvae exposed in vitro to GLY (1.25–5.0 mg of GLY per litre of food) without conspicuous adverse symptoms in larval

development were sampled at 5-day of age from three colonies (D, E and F). We measured in each larva their (a) head diameter (mm) and (b) weight (mg). The number

of larvae measured was 10 for each concentration per colony. Kruskal-Wallis test followed by Nemenyi post hoc comparisons was carried out to analyse morphometric

data to compare among groups (n.s., no significant differences). GLM (weight ~ [GLY] + colony + [GLY] × colony) followed by Tukey post hoc comparisons was

carried out to analyse simple effects in weight data. Groups with different letters have significantly different means (S4 and S6 Tables).

https://doi.org/10.1371/journal.pone.0205074.g003
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rearrangement pathways that underlie animal development [51, 52]. Consistent with this, ele-

vated levels of cell apoptosis in the gut epithelium of honey bee larvae were found after in vitro
GLY exposure [53]. The transcription of some immune/detoxifying genes in the larval gut,

such as the antibacterial protein gene Abaecin and some cytochrome P450 monooxygenases, is

regulated by ingestion of GLY in our study. Similar results were found in a previous study

[54]. Even though this effect was reported to be reversible, all these alterations in cellular physi-

ology of gut are consistent with chemically induced stress [55] and a disrupted microbiota

[56].

Adequate nutrition is essential to accomplish optimal development when facing exposure

to stressors [3]. Young worker honey bees showed reduced intake of rearing food when it was

contaminated with GLY [27]. However, larvae with delayed development do not eat all the

Table 2. Specific primer pairs used to amplify each gene by RT-PCR.

Function Target gene Symbol ID BEEBASE Forward primer /

Reverse primer

Detoxification CYP6AS2 CYP6AS2 GB 49886 CTGAAAGATGGCGACCAATG

GATCCCAAAAGCGCAACTAC

CYP6AS3 LOC726690 GB 49887 GGGGTGTGCATGAATTCTCT

GGCATATACAGCCTGGTGAA

CYP6AS4 LOC412209 GB 49885 AGAGGTGGTCCTGTCGATTG

CTTGGTCATGAACACGGTTG

CYP6AS5 CYP6AS5 GB 49890 GGAACCATTATCACCGCATC

CGAACACTTCTCTGCCCATT

CYP6BD1 LOC551560 GB 47279 GTTGAAGCTGCCAATTCGAT

ATGCTGCGAGAAAATGTCGT

CYP9Q3 LOC408453 GB 43728 TTCAAGCTGATGACCGAGTG

ATCTGTTGGTGCCCAACTTC

Esterase FE4-like LOC409171 GB 47299 GGCCCACTTCGATTTAAGGT

GAAACGAGATGGGAACAACA

Carboxylesterase LOC726134 GB 47974 ACATTTCTGGGGCATCTCAC

TGGGATGGAAGAGGCAATAG

GstD1 GstD1 GB 50265 TTTCCGTCTGTGGGAAAGTC

TCCCTGCCACATAGTTTTCC

Immunity Abaecin LOC406144 GB 406144 CACTACTCGCCACGATATGC

CGGATTGAATGGTCCCTGAC

Stress marker Hsp 70 Ab-like LOC410620 GB 50609 GATTCGCAAAGGCAAGCTAC

CCGCTGTTGACTTCACTTCA

Hsp 70 cognate 3 Hsc70-3 GB 49117 CGATCAAAACCGCCTTACAC

GGAATCGCTGACTTTTGAGC

Digestion Cysteine proteinase LOC408851 GB 44533 ACATTTGAGCAAGGGACAGC

CGCGTATTGGCCTTCTACAT

Cathepsin L1 LOC552756 GB 54331 AAAGATCAAGGCCATTGTGG

ATCAATCCTCCATTGCATCC

Alpha-glucosidase 2 AGLU2 GB 43248 AGAATGGCGAGATTTTGTGG

AAATTGTTCTGGCGTGGAAG

Alpha-amylase LOC406114 GB 49854 ACGTCAGGTCGAAGCTTGTT

TTCCGTTGTACTCCCGTTTC

Housekeeping Actin Arp1 GB 44311 TGCCAACACTGTCCTTTCTG

GGAAGGTGGACAAAGAAGCA

https://doi.org/10.1371/journal.pone.0205074.t002
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food offered, regardless of whether they have been exposed to GLY or not. Specifically, the

moulting process depends on growth rate, which is linked to feeding, that is homogenized in

the in vitro assessment. As food is a constraint for the immunity of brood, its properties are

Fig 4. Variability among colonies in gene response to chronic GLY exposure. Measurement of gene expression levels in

guts of 5-day-old dissected larvae (reared in vitro) from three colonies (D, E and F) exposed to different concentrations of

GLY (1.25–5.0 mg of GLY per litre of food). A pool of 10 guts for each colony and treatment was assessed (12 samples).

(a) The expression level of each gene in exposure to GLY was relativized to the baseline expression level of itself (in

absence of the xenobiotic). A heatplot was plotted for each colony with its relative expression profile in each GLY

concentration (logarithmic scale for relative gene expression). Colour scale: red for overexpression and blue for

subexpression with respect to their baseline. (b) Dendrogram from hierarchical cluster analysis performed among samples

with normalized gene expression (multiscale bootstrap resampling p-values for clustering in each edge).

https://doi.org/10.1371/journal.pone.0205074.g004
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important under these conditions. In this sense, the acidification of rearing food by GLY has

unknown consequences. The triggering of stress compensatory mechanisms induces energy

consumption which could disrupt the moulting process and could lead to death if larvae have

low individual tolerance. Colonies D and F showed a reduction in larval growth even if larvae

did not show delayed moulting. We do not know the causes of the reduction in feeding behav-

iour. However, malnutrition could lead to inefficient compensation to stress because of a

trade-off between growth and detoxification [31].

We mainly detected adverse developmental effects in vitro for honey bee larvae with a

non-monotonic dose-response, i.e. high responses at intermediate doses. Different

hypotheses can explain this kind of pattern; metabolic effects, plurality of molecular tar-

gets, negative feedback regulation and multiple antagonistic mechanisms with different

thresholds [57]. The dose-response depends on the duration of exposure and on the

assimilation time of the substance. The relationship between the exposure concentration

and the effective dose is not necessarily linear. Hence, positive effects can be explained by

short term low dose exposure events that could enhance the health of individuals due to

the regulation of immunity genes. Consequently, further studies are necessary to under-

stand the mechanism of action of GLY ingested during larval development. Our assess-

ment was focused on the larval stage, so subtle effects during pupation of tolerant larvae

with or without reduced growth remain unknown.

Implications of in vitro exposure conditions

The presence of GLY does not seem to modify the acceptance of the rearing food by neither

tolerant larvae nor by forager honey bees [26]. This response was observed even though GLY

slightly acidified the diet. This allows us to calculate the total dose of herbicide acquired

throughout the feeding period before defecation (around 144 h of age) [32, 33]. Each larva

received a total dose of GLY of 137.5, 275 and 550 ng a.e. per treatment. It is worth pointing

out that the EFSA proposes that pesticide effects on beehives should be tested by using expo-

sures with an average dose of 9500 ng a.e. per larva over the 5-day developmental period before

sealing [58]. This is almost 20 times greater than the highest doses we used. Detrimental effects

on development were detected with GLY levels below 20.49 mg a.e. kg-1 in our study (esti-

mated for ten 5-day-old larvae exposed to 1.25 mg a.e. L-1). In semi-field conditions, a previous

study reported concentrations from 1.23 to 19.5 mg a.e. kg-1 in brood samples [35], without

conspicuous developmental or survival effects. Nevertheless, we found a 21% reduction in

weight of in vitro reared larvae with respect to larvae reared in-hive, which is evidence of mal-

nutrition (S2 Fig). Larvae reared in vitro also showed less variability in weight at similar head

diameter than larvae reared in-hive, due to both homogenised nutrition and constant food vol-

ume. Furthermore, honey bee larvae exposed to GLY in vitro showed symptoms of stress

which would be compensated in hive by the care of nurse bees which promotes an allostatic

load in the colony [5]. Hence, the malnutrition state and the absence of social immunity of lar-

vae reared in vitro cannot be ignored.

In previous studies, larvae displayed different tolerance to stressors among colonies both in

in-hive [59] and in vitro [38] contexts. In our study, results indicate variation in the susceptibil-

ity to GLY among colonies. In vitro rearing minimizes environmental stressors and homoge-

nizes rearing conditions thus excluding other in-hive stressors which concurrently

decompensate homeostasis. Variability of gene expression depending on the rearing context is

also shown in our study, which could be a consequence of differences in the composition of

the diet between in-hive and in vitro rearing. Furthermore, the absence of social immunity in

in vitro rearing enhanced individual defences (S3 Fig).
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The in vitro procedure does not mimic the pathway of exposure to agrochemicals under in-

hive conditions in which the frequency and amount of food offered vary according to larval

demand and supply provided by nurse bees [60, 61]. Therefore, in vitro exposure acts as a

worst-case scenario with a predominant individual immunity. However, this procedure

enables us to assess the specific responsiveness to GLY. Hence, inter-individual and inter-col-

ony variance in susceptibility to stressors for the in vitro procedure becomes important. Fur-

thermore, we can only assess the toxicity of the herbicide at the individual level.

Outlook for toxicity assessment of GLY in honey bees

Nowadays agroecosystems are exposed to increasing amounts of GLY as a consequence of

non-rational applications and resistant weeds that diminish the effectiveness of the herbicide

[62]. Field monitoring and laboratory controlled assessments of GLY toxicity are still essential.

The integration of information obtained from both procedures would be desirable to provide a

better understanding of agrochemical impact on beehives exposed under realistic field condi-

tions [63, 64]. Even if the in vitro procedure cannot be considered to completely reflect toxicity

to larvae inside a hive, it can be considered as a reliable tool in a first step to determine subtle

adverse effects. The impact of GLY-based herbicide formulations on the honey bee and the

interaction with multiple factors such as pathogens, other pesticides or adverse environmental

conditions, are unknown. However, our results suggest that the exposure to the active ingredi-

ent of these herbicides could affect brood development with unpredictable long-term conse-

quences at the colony level. Assessments that do not take into account the variation of

susceptibility among beehives may well incorrectly quantify adverse effects.

Materials and methods

Study site and animals

Experiments were performed from January to March during the summer season of the south-

ern hemisphere. Larvae were sampled from six disease-free colonies (A-C in 2014 and D-F in

2015) of western honey bees (Apis mellifera ligustica Spinola) and reared in vitro (see below).

Colonies were purchased from a commercial queen producer in November of each year and

housed in new Langstroth hives at the experimental apiary of the University of Buenos Aires,

Buenos Aires, Argentina (34˚ 32’ S, 58˚ 26’ W). The new six queens were not genetically related

(different parents; i.e., inter-colony genetic diversity) and they were naturally inseminated by

multiple mates during free flights in the field (i.e., intra-colony genetic diversity).

In vitro rearing

We introduced an empty frame into the source colony (A-F) and monitored it for 8 hours

until the queen had laid enough eggs. Three days later we withdrew the brood frame and car-

ried it to a room suitable for grafting. We grafted around 120 first stadium larvae (0–8 hour

old post-hatching) from the brood frame to plastic cups and placed them in Petri dishes. This

amount of larvae represented around 10% of the cohort (eggs laid in one day by the queen)

and up to 1% of the colony. To avoid variability in grafting effect the same researcher carried

out this procedure. Larvae were reared inside an incubator with constant temperature and rel-

ative humidity (34.5˚C and 95%, respectively) for five days [44]. In order to prevent bacterial

or fungal contamination and subsequent infection, we maintained sterile conditions and

removed dead ones daily [44]. To standardize larval food administration, we provided 160 μl

of food spread in six aliquots of increasing volume to each larva during the six days of feeding

period: 10 μl during grafting, 10 μl at 24 h, 20 μl at 48 h, 30 μl at 72 h, 40 μl at 96 h and 50 μl at
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120 h [65]. We used a previously established diet: 6% D-glucose, 6% D-fructose and 50% com-

mercial royal jelly [66, 67]. We performed one grafting session for each source colony per

treatment every 2–3 days in order to exclude seasonal differences.

Exposure to GLY

To evaluate the effect of exposure to GLY (analytical standard, purity of 99.2%) in larva reared

in vitro, we assume the worst-case exposure scenario. We do not know the concentration of

GLY in brood food during field exposure but GLY is actually ingested by larvae [36]. There is

no biochemical procedure yet to measure accurately traces of GLY in royal jelly but other pes-

ticides have been detected [22]. Consequently, we have chosen a chronic exposure to GLY con-

sidering environmental concentrations measured in natural and agricultural landscapes when

recommended or excessive applications of the herbicide were used [23–25]. We defined four

treatments: control group (food without herbicide), 1.25, 2.5 and 5 mg a.e. of GLY per litre of

food. To prepare the food mixture for each concentration, we diluted a stock solution of 100

mg a.e. L-1 which we renewed once a week due to slight photodegradation of GLY [11]. Finally,

we also measured the pH of the food mixture of each treatment during the experiment.

Larval development

Throughout the growth/feeding period, four moults allow a honey bee larva to increase in size,

which determines five stadia [32]. A moult normally occurs around every 24 hours up to the

4-day post-hatching (96 h). Each stadium can be identified daily by the head diameter of the

larva and its morphology [32–34] (S1 Fig). When a larva has a smaller size or different charac-

teristics from the stadium it is expected to be in, it was classified as delayed.

Survival

Larvae can be classified as dead when their colour changes to brownish and they develop

oedema, remain immobile and/or do not react to the contact of a paintbrush [44, 65]. We took

note of their status daily.

Food ingestion and growth

At the end of the feeding period (fifth stadium), larvae eat all offered food in both rearing con-

texts. Furthermore, inside the hive and prior to pupation, cells are sealed by nursing bees at

around 120 hours after hatching. Hence, we sampled and weighed 5-day old larvae with com-

plete food intake (110 μl of food ingested) from three colonies (D-F) to compare growth

among the different GLY concentrations (10 larvae per concentration and colony). We used

an electronic balance (Mettler Toledo AG285, ±0.1 mg) and measured the diameter of the

head with a stereomicroscope (Leica MZ8) for a morphometric identification of the instar. As

there are environmental, nutritional and social differences with in-hive rearing, we sampled

larvae from the same cohort to compare nutritional baseline between contexts (S2 Fig). For in-

hive rearing, we sampled in the three colonies ten 5-day old larvae from sealed cells prior to

spinning (i.e. larvae remained at the bottom of the cell before changes its position).

Dissection of the gut

We analysed the expression profile of some genes in the gut as a parameter to assess brood

defences and health (Table 2). For this, we sampled 5-day old larvae in the fifth stadium from

three colonies (D-F, in both rearing contexts as above section) with complete food intake

(same dosage of GLY and nutritional status, S1 Table). We dissected them under a
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stereomicroscope and pooled 10 guts for each rearing context and each GLY treatment per col-

ony. Pooled guts were immediately frozen in liquid nitrogen and stored at -80˚C until RNA

extraction.

RNA extraction

We homogenized larval gut samples using a pestle and mortar in the presence of liquid nitro-

gen. Following the manufacturer’s instructions, polyadenylated RNA was extracted using the

mRNA Isolation Kit (Roche Molecular Biochemicals). We quantified the concentration of

mRNA using the Qubit fluorometer (Invitrogen).

RT-PCR procedure

We estimated transcript accumulation of all genes through a semi-quantitative procedure with

RT-PCR. cDNA was synthesized with 50 ng of mRNA per sample by means of the Revert

AidTM M-Mul V Reverse transcriptase system (Fermentas International Inc.). PCRs were per-

formed using GoTaq DNA polymerase (Promega). PCR specific primers for all analysed genes

were designed for conserved nucleotide sequences (Table 2). Annealing conditions for each

primer pair were optimized empirically to determine the linear range of amplification (S9

Table). Actin was used as an endogenous control to normalize the amount of starting template.

Gene expression analysis

We separated RT-PCR products of the target genes and the endogenous control in 1.5% aga-

rose gels (S4 Fig), stained with GelRed Nucleic Acid Stain (Biotium) and visualized by the

UVP Doc-It LS Image Acquisition Software. We measured the intensity of the bands and com-

pared them against a standard molecular marker loaded on the same gel (100-bp DNA ladder,

Invitrogen). To analyse the response of each gene in exposure to glyphosate, we relativized

their expression levels to their control baseline level.

Statistics

We performed data analysis and graphics in R (for details see S1 Appendix). Survival and

developmental data were analyzed with Accelerated failure-time models (ATF). Weighing data

were analyzed with generalized linear models (GLM). Because of head diameter reached non-

normality errors with different distributions, we performed a Kruskal-Wallis test. Hierarchical

cluster analysis was performed with multiscale bootstrap resampling p-values to classify the

genetic responsiveness for clustering in each edge. The alpha level was set at 0.05 and p-value

corrected for multiple post hoc comparisons with Bonferroni procedure.

Supporting information

S1 Appendix. Statistical procedure and R programming.

(PDF)

S1 Table. Exposure conditions to glyphosate for the in vitro assessment.

(PDF)

S2 Table. Simple effects reported in ATF models with significant interaction. Multiple post
hoc comparison of survival curves ([GLY] × colony term, χ2 (15) = 211.29, P < 0.001) and suc-

cessful moulting curves ([GLY] × colony term, χ2 (15) = 207.24, P< 0.001) among treatments

in each colony. Statistics of Log-rank tests (d.f. = 1) to compare a pair of GLY concentrations
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and p-value corrected with Bonferroni procedure (significant differences in bold).

(PDF)

S3 Table. Simple effects for larvae reared in vitro without GLY reported in ATF models

with significant interaction. Multiple post hoc comparison of control survival curves ([GLY]

× colony term, χ2 (15) = 211.29, P < 0.001) and control successful moulting curves ([GLY] ×
colony term, χ2 (15) = 207.24, P< 0.001) among colonies. Statistics of Log-rank tests (d.f. = 1)

to compare a pair of colonies below grey diagonal and p-value corrected with Bonferroni pro-

cedure above grey diagonal (significant differences in bold).

(PDF)

S4 Table. Multiple post hoc comparison of head diameter among treatments. Statistics of

Nemenyi test (d.f. = (15, 135)) to compare a pair of GLY concentrations or rearing contexts in

each colony. P-value was corrected with Bonferroni procedure.

(PDF)

S5 Table. Multiple post hoc comparison of head diameter among colonies. Statistics of

Nemenyi test (d.f. = (15, 135)) to compare a pair of colonies in each rearing context. P-value

was corrected with Bonferroni procedure.

(PDF)

S6 Table. Simple effects reported in GLM model with significant interaction. Multiple post
hoc comparison of weight among groups ([GLY] × colony term, F(6,108) = 16.33, P< 0.001,

N = 120). Statistics of Tukey test to compare a pair of GLY concentrations in each colony. P-

value was corrected with Bonferroni procedure (significant differences in bold).

(PDF)

S7 Table. Simple effects reported in GLM model with significant interaction. Multiple post
hoc comparison of weight among groups ([GLY] × colony term, F(6,108) = 16.33, P< 0.001,

N = 120). Statistics of Tukey test to compare a pair of colonies in each GLY concentration. P-

value was corrected with Bonferroni procedure (significant differences in bold).

(PDF)

S8 Table. Changes in mean pH of food offered during the in vitro assessment. Five repli-

cates per treatment have been measured daily throughout 5 days at incubator (34.5˚C and 95%

RH). GLMM followed by Tukey test to compare a pair of GLY concentrations. Treatments

with different letters have significantly different means.

(PDF)

S9 Table. Procedure conditions for each primer pair in the RT-PCR were optimized empir-

ically to determine the linear range of amplification.

(PDF)

S10 Table. Comparison of gene expression levels assessed between rearing contexts. Statis-

tics of Mann-Whitney U test to compare a pair of genes in each rearing context (in-hive or in
vitro).

(PDF)

S1 Fig. Larval development during the growth period. Day by day photographic sequence of

the expected development. Growth and feeding period corresponds to the first 144 hours after

hatching. A) 0–17 h: First stadium (I) larva (circled in red). The instar (1.5 mm) has a translu-

cent cuticle and a head that is hard to observe with the naked eye. B) 17–36 h: Second stadium

(II) larva. The instar (2 mm) has a visible head but with very small jaws and an opaque whitish
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cuticle. C) 36–57 h: Third stadium (III) larva. The instar (3 mm) has a robust appearance and

a shiny whitish cuticle. D) 57–85 h: Fourth stadium (IV) larva. The instar (4 mm) has a head of

large diameter. E) 85–115 h: Fifth stadium (V) larva. The early fifth instar (6 mm) has conspic-

uous jaws and shows a large increase in body mass in relation to the head. F) 115–160 h: The

late fifth instar (8 mm) continues gorging in both contexts but inside the sealed cell in in-hive

rearing.

(PDF)

S2 Fig. Effect of rearing context on growth. Larvae without adverse symptoms in larval devel-

opment were sampled at 5-day of age from three colonies (D, E and F) in both rearing contexts

(in-hive and in vitro). We measured in each larva their (a) head diameter (mm) and (b) weight

(mg). The number of larvae measured was 10 for each rearing context per colony. Kruskal-

Wallis test (head diameter ~ treatment. Treatment as a combination of rearing context and

colony) was carried out to analyse morphometric data to compare among groups (χ2 (5) =

16.48, P = 0.005). GLS was carried out to analyse weight data to compare among groups. (GLS

model: weight ~ rearing context + colony + rearing context × colony. Fixed factors: LR (2) =

57.4, P< 0.001, N = 60. Rearing context × colony term, LR (1) = 0.45, P = 0.502. Rearing con-

text term for variance structure: LR (2) = 54.82, P < 0.001). Groups with asterisks have signifi-

cantly different means.

(PDF)

S3 Fig. Effects of rearing context on gene expression within the epithelium gut. Measure-

ment of the mean expression level of 16 genes has been performed in guts of 5-day-old dis-

sected larvae sampled from three colonies (D, E and F) in both rearing contexts (in-hive or in
vitro). A pool of 10 guts for each colony and context has been assessed (6 samples). Actin
expression level has been used to normalize the expression level of every gene. Bars indicate

means ± s.e.m. Mann-Whitney U test to compare between contexts for each gene (no signifi-

cant differences, S10 Table).

(PDF)

S4 Fig. Gel electrophoresis of RT-PCR products of the target genes in each larval gut sam-

ple. Pool samples of 10 guts of 5-day-old larvae (reared in-hive or in vitro) sampled from three

colonies (D, E and F) exposed to different concentrations of glyphosate (1.25–5.0 mg. of GLY

per litre of food). One agarose gel was performed for each gene on all samples.

(PDF)

S1 Dataset. Row data of all measurements in the GLY assessment.

(XLSX)
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