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Abstract
Premise: Digitized biodiversity data offer extensive information; however, obtaining
and processing biodiversity data can be daunting. Complexities arise during data
cleaning, such as identifying and removing problematic records. To address these
issues, we created the R package Geographic And Taxonomic Occurrence R‐based
Scrubbing (gatoRs).
Methods and Results: The gatoRs workflow includes functions that streamline
downloading records from the Global Biodiversity Information Facility (GBIF) and
Integrated Digitized Biocollections (iDigBio). We also created functions to clean
downloaded specimen records. Unlike previous R packages, gatoRs accounts for
differences in download structure between GBIF and iDigBio and allows for user
control via interactive cleaning steps.
Conclusions: Our pipeline enables the scientific community to process biodiversity
data efficiently and is accessible to the R coding novice. We anticipate that gatoRs will
be useful for both established and beginning users. Furthermore, we expect our
package will facilitate the introduction of biodiversity‐related concepts into the
classroom via the use of herbarium specimens.
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The digitization of biodiversity data has greatly improved
the accessibility of specimens stored in natural history
collections, leading to novel research in many areas (e.g.,
Page et al., 2015; Soltis and Soltis, 2016; Soltis, 2017; Bakker
et al., 2020). Data in aggregated biodiversity databases such
as the Global Biodiversity Information Facility (GBIF:
https://www.gbif.org/) and Integrated Digitized Biocollec-
tions (iDigBio: https://www.idigbio.org/) are standardized
using a framework known as Darwin Core (DwC)
(Wieczorek et al., 2012), which includes a glossary of terms
to facilitate the sharing of information about biological
diversity (Darwin Core Maintenance Group, 2021). Both of
these aggregators streamline data access through application

program interfaces (APIs)—specifically, through the GBIF
Occurrence API and the iDigBio Search API, which can be
accessed in R through their respective R packages, rgbif
(Chamberlain et al., 2023) and ridigbio (Michonneau and
Collins, 2022). iDigBio contains digitized specimen records
primarily from U.S. collections, while GBIF contains both
specimen and observation records found internationally. As
of 23 February 2024, the iDigBio portal (https://www.idigbio.
org/portal/search) contained more than 139 million specimen
records, and the GBIF portal (https://www.gbif.org/occurrence/
search) contained more than two billion occurrence records.
Herbarium data downloaded from these and other aggregators
have been used to investigate a diverse array of biological

Appl. Plant Sci. 2024;12:e11575. wileyonlinelibrary.com/journal/AppsPlantSci | 1 of 13

https://doi.org/10.1002/aps3.11575

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited and is not used for commercial purposes.
© 2024 The Authors. Applications in Plant Sciences published by Wiley Periodicals LLC on behalf of Botanical Society of America.

http://orcid.org/0000-0001-8090-1324
http://orcid.org/0000-0002-3912-6079
http://orcid.org/0000-0001-8638-4137
http://orcid.org/0000-0001-9310-8659
mailto:natalienpatten@gmail.com
https://www.gbif.org/
https://www.idigbio.org/
https://www.idigbio.org/portal/search
https://www.idigbio.org/portal/search
https://www.gbif.org/occurrence/search
https://www.gbif.org/occurrence/search
https://wileyonlinelibrary.com/journal/AppsPlantSci
http://creativecommons.org/licenses/by-nc/4.0/


questions (e.g., Wollan et al., 2008; Willis et al., 2017; Allen
et al., 2019; reviewed in Heberling et al., 2019). Applications in
research are broad and include species delimitation (e.g., Zapata
and Jiménez, 2012; Su et al., 2020; de Mestier et al., 2023; Wu
et al., 2023), understanding organismal response to seasonal
events (e.g., Pearson et al., 2020; Guralnick et al., 2022; Belitz
et al., 2023; Park et al., 2023), exploring global patterns of
biodiversity (e.g., Gaynor et al., 2020; Melton et al., 2022; Folk
et al., 2023), and investigating the potential impact of climate
change on species distributions (e.g., Rawal et al., 2015; Gaynor
et al., 2018; Hodel et al., 2022; Naranjo et al., 2022; Wang
et al., 2022).

There are many R packages available for accessing
biodiversity data from various online repositories, including
galah (Westgate et al., 2023), bRacatus (Arlé et al., 2021),
and plantR (de Lima et al., 2021). Although many of these R
packages utilize rgbif or a custom wrapper to access the
GBIF Occurrence API, none of these packages use ridigbio
or the iDigBio Search API. There is currently only a single R
package available to streamline data download from GBIF
and iDigBio, spocc (Owens et al., 2023). However, spocc
does not maximize the number of records returned from
GBIF and iDigBio due to the search defaults (e.g., a low
default download limit, exact matching, search methods)
(see Methods and Results). Furthermore, complexities often
arise when (1) trying to obtain all records corresponding to
a single species due to the wide array of taxonomic
identifiers (i.e., synonyms) that may exist, (2) identifying
and removing problematic or arbitrary records, or (3)
organizing the data in a readable fashion for down-
stream use.

To address these numerous challenges, we created
gatoRs (Geographic And Taxonomic Occurrence R‐based

Scrubbing), an R package to help users navigate these
critical data download and processing steps. We provide
functions to streamline the processing of the data down-
loaded with our package; we also use interactive cleaning
methods to provide users with greater control of the
scrubbing process. These interactive methods have the
added benefit of providing opportunities for educational
demonstration in classroom settings.

Additionally, we provide a step‐by‐step workflow to
help users employ this new package (Figure 1; Appendi-
ces S1, S2; see Supporting Information with this article). The
gatoRs package is freely available at https://github.com/
nataliepatten/gatoRs, as well as via The Comprehensive R
Archive Network (CRAN), and can be installed, accessed,
and used on any computer. gatoRs was created during the
COVID‐19 pandemic to facilitate research in botany and
enable researchers and students to leverage readily available
digitized biodiversity records by reducing the necessary
programming requirements; while the functionality of this
package facilitates research during times of limited mobility
and/or resources, it is also of broad utility at any time.

Our aim was to create new tools for data acquisition in
the form of software developments that were affordable
and innovative. gatoRs includes functions that streamline
downloading records from GBIF and iDigBio and takes
into consideration traditional download differences
between these aggregators, in contrast to spocc (Owens
et al., 2023), the only other R package currently available
to streamline downloads from both aggregators. We also
developed a function that graphically displays flagged (i.e.,
potentially problematic) data points and allows these
points to be manually reviewed and removed from the
data set. Unlike other existing R packages, gatoRs provides
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F IGURE 1 Schematic diagram of the gatoRs workflow. First, data are downloaded from GBIF and iDigBio for all applicable synonyms, and then the
returned records are merged and returned. Second, scrubbing of data is completed through taxonomic harmonization, locality cleaning, duplicate removal,
basis cleaning, and spatial correction.
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an option for interactive cleaning, giving more control to
the user over which points are deemed unfit. Additionally,
we developed functions to identify records that need to be
georeferenced and records with redacted information, as
well as additional functions related to cleaning specimen
records. The latter include functions to remove duplicate
data points, resolve taxon names, and perform spatial
correction. All of the functions (Table 1, Appendix S3) can
be sorted into two categories: biodiversity data acquisition
and occurrence record scrubbing.

METHODS AND RESULTS

Biodiversity data acquisition

In contrast to spocc, gatoRs has custom functions to
accommodate the differences in download features and
search logic between the GBIF Occurrence API and the
iDigBio Search API (Appendix S3). spocc (Owens et al., 2023)
uses nearly congruent record queries for both GBIF and
iDigBio, despite these aggregators differing in the search logic
associated with the DwC term scientificName. Specifically,
iDigBio queries scientificName as an exact match, unlike
GBIF, which allows a fuzzy match. Furthermore, Darwin
Core indicates that the scientificName column should include
authorities (https://dwc.tdwg.org/list/#dwc_scientificName);
however, based on our observations, authorities are often
omitted in the records published by data providers. This
inconsistency is accounted for with GBIF's fuzzy match,
which allows matches to records with and without authori-
ties. Because the iDigBio API only returns exact matches
when querying the scientificName field, a search of the
scientific name with and without the authority is necessary to
obtain all records associated with a specific species; otherwise
only a subset of records for a given species is returned. Due to
extensive spacing and spelling variability associated with
scientific names, we found that two exact match queries are
often not enough to identify all records associated with a
species of interest. The solution we used to obtain all records
for a species from iDigBio was to search all fields, and hence
the entirety of each record, for a partial match of the search
term(s). This approach returns a much greater number of
records. However, these must be examined to avoid
taxonomically inapplicable records (i.e., records that do not
belong to a taxon of interest and therefore are erroneous
records), which we filter within our function. To avoid
taxonomically inapplicable records, we filter the records
returned by our search of all fields to retain only those for
which the scientificName column is found to be a fuzzy
match (as defined by generalized Levenshtein edit distance
for all gatoRs functions) to a value in the user‐provided list
containing the scientific name and all applicable synonyms.
By using a fuzzy match, we avoid losing data that may or may
not contain authorities, but remove inapplicable records, for
example, where a species is mentioned only in the locality
description.

Before records are available via the GBIF and iDigBio
APIs, they are modified by both aggregators to improve data
quality and remove data errors. However, automatic
processing in any biodiversity data repository can lead to
errors. For example, both GBIF and iDigBio allow records
to be queried based on the date of collection; therefore,
indexing of records in a database requires that associated
collection year, month, and day information be present.
When date information regarding month or day is missing,
both GBIF and iDigBio will fill in these values with specified
defaults; this leads to an overrepresentation of records for
the first month of the year and for the first day of every
month (Belitz et al., 2023). Given current ingestion and
processing decisions and corresponding API search capa-
bilities, we decided to utilize data providers' fields (i.e., the
raw data) for iDigBio rather than the aggregator's fields.
Furthermore, due to the computationally expensive meth-
ods required for downloading data provider fields for GBIF
records, we provide an option to return these values but do
not return them by default. Simple downloads for iDigBio
and GBIF do not provide options to obtain the data
supplied by the providers but instead return modified fields;
hence, our workflow is distinct from the standard data
download.

To resolve the problems described above, we created the
function gators_download(), which streamlines the down-
loading process by downloading and returning records from
iDigBio and GBIF independently based on a user‐provided
synonym list. A list of synonyms supplied to gators_down-
load() should contain a species’ accepted scientific name, as
well as any scientific names considered a synonym for the
species of interest. There are many tools available to
construct synonym lists (reviewed in Grenié et al., 2023),
for example, taxonstand (Cayuela et al., 2012), taxize
(Chamberlain et al., 2020), WorldFlora (Kindt, 2020), and
TNRS (Boyle et al., 2013; Maitner et al., 2023). However,
taxonomic recommendations are extraneous to this package
and are instead the user's purview, as gatoRs does not rely
on any specific taxonomic backbone (see Appendix S2 for
additional resources). Similar to spocc, records from GBIF
and iDigBio are downloaded using functions from the rgbif
(Chamberlain et al., 2023) and ridigbio (Michonneau and
Collins, 2022) packages, respectively. However, unlike
spocc, for iDigBio, data are downloaded by searching all
fields for the provided species and selecting the provider
columns, rather than the aggregator columns. In summary,
gatoRs is unique in both how it searches iDigBio and which
fields are obtained from iDigBio. Then, by default, to avoid
taxonomically inapplicable records, we filter returned
records to retain those with a fuzzy match to the scientific
name based on a user‐provided list as described above. For
GBIF, data may be downloaded by searching either (1) the
scientific name field with a fuzzy match or (2) the associated
species key identified via the GBIF backbone taxonomy
system. For records obtained from iDigBio and GBIF, we parse
taxonomic information to ensure scientific name, genus,
species, and infraspecific epithet are returned and replace
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empty observations when information is known. Our function
also queries the species names in the data set and fixes
incorrect capitalization, following standard capitalization of
scientific names. Common capitalization errors include lack of
any capitalization, incorrect capitalization of subspecies and
variety, and lack of capitalization of the authority name(s).

After merging records from both data aggregators, we retain
columns related to taxonomy (scientificName, genus, specific-
Epithet, intraspecificEpithet), collection event (basisOfRecord,
eventDate, year, month, day), occurrence (occurrenceID,
recordedBy), storage (institutionCode, ID, informationWith-
held, aggregator), and location (country, county, stateProvince,

TABLE 1 An overview of the main functions provided in gatoRs, the required arguments for each function, and the general purposes of each function.

Category Functiona Description

Data acquisition gators_download(synonyms.list) Downloads data from iDigBio and GBIF for a list of scientific names. Returns a data
frame with 23 columns related to taxonomy, collection event, occurrence, storage,
and collection location.

Identify missing data need_to_georeference(df) Identifies and returns records that are missing coordinate information but contain
locality descriptions.

needed_records(df) Identifies and returns records that are redacted or withheld.

remove_missing(df) Removes records that are missing coordinate values and/or records that have been
redacted or withheld.

gators_merge(df1, df2) Combines two data sets that have identical column names. Here, df1 and df2 should
have the columns indicated for df.

Taxonomic harmonization taxa_clean(df, synonyms.list) Removes records based on the scientificName column. The type of filter used to remove
records defaults to “fuzzy”, but may be set to “exact” or “interactive”. If an
accepted.name argument is provided, the returned data frame will have an additional
column titled accepted_name.

Locality cleaning basic_locality_clean(df) Removes records with missing coordinates, impossible coordinates, coordinates at (0,0),
and where coordinates have been skewed. Precision of coordinates will be rounded to
two decimal places by default.

process_flagged(df) Visualize and inspect occurrence records that may contain spatial errors with an
interactive map. Based on console responses, records flagged as potential errors can
be removed.

Remove duplicate records remove_duplicates(df) Remove specimen duplicates, aggregator duplicates, and within‐aggregator duplicates
based on each specimen's coordinates, occurrenceID, eventDate, ID, and aggregator.

Basis cleaning basis_clean(df, basis.list) Removes records based on the basisOfRecord column. If a basis.list is provided, records
are filtered based on an exact match. If a basis.list is not provided, filtering is
interactive.

Spatial correction thin_points(df) Removes records based on coordinate thinning with a minimum nearest neighbor
distance approach. Minimum distance in kilometers can be specified with the
argument distance.

one_point_per_pixel(df) Randomly samples and returns a data frame with a single occurrence record per raster
pixel.

Cleaning wrapper full_clean(df, synonyms.list) Performs above cleaning steps with their default arguments. All cleaning steps, except
taxonomic harmonization, can be bypassed by setting their associated arguments to
FALSE.

Downstream data
processing

data_chomp(df, accepted.name) Returns data frame prepared for Maxent. This data frame has three columns: species,
longitude, and latitude. Here, species is equal to the value indicated by
accepted.name.

citation_bellow(df) Retrieves the citation information for records where aggregator = “GBIF”. Returns a list
with citation information for the GBIF data downloaded.

remove_redacted(df) Returns only records that were obtained from the aggregators GBIF and iDigBio, and
thus only publicly available records. Removes any records that were obtained from
other aggregators, which are presumably private or protected.

aSynonyms.list refers to a list object containing the accepted scientific name and all synonyms. df refers to a data frame created by the gators_download() function that contains
23 columns (scientificName, genus, specificEpithet, intraspecificEpithet, basisOfRecord, eventDate, year, month, day, occurrenceID, recordedBy, institutionCode,
ID, informationWithheld, aggregator, country, county, stateProvince, locality, latitude, longitude, coordinateUncertaintyInMeters, and habitat). Unless otherwise indicated,
the data frame supplied to a function will be returned with a modified number of rows, but the number and identity of the columns will remain the same.

4 of 13 | gatoRs R PACKAGE FOR BIODIVERSITY DATA



locality, latitude, longitude, coordinateUncertaintyInMeters,
habitat). When a filename is provided, this function will
automatically create a .csv file for the downloaded data. We
highly recommend that users save a copy of their downloaded
data prior to any modification, as all subsequent processing
steps within our package will produce data sets with records
removed rather than flagged.

Occurrence record scrubbing

Before using digitized biodiversity records to explore
biological questions, the records must be further vetted
and filtered to remove records that are not appropriate for
use in downstream research aims because of errors,
incompleteness, or both. We designed additional functions
to streamline the identification of missing data, taxonomic
harmonization, locality filtering, and duplicate correction,
decrease spatial bias, and filter records according to the
basisOfRecord (e.g., PreservedSpecimen, HumanObserva-
tion) (Table 1, Appendix S3). Finally, we streamlined the
cleaning and scrubbing processes into a single function.
Unless otherwise stated, all scrubbing functions remove
records, or rows, but retain all columns created by the
gator_download() function (scientificName, genus, specific-
Epithet, intraspecificEpithet, basisOfRecord, eventDate,
year, month, day, occurrenceID, recordedBy, institution-
Code, ID, informationWithheld, aggregator, country,
county, stateProvince, locality, latitude, longitude, coordi-
nateUncertaintyInMeters, habitat). Additionally, certain
scrubbing functions allow users to respond in the console
while processing a data set; we refer to this feature as
interactive. Although interactive approaches to data scrub-
bing may be time consuming, filtering a data set based on an
exact match may remove applicable data, while a fuzzy
match may retain erroneous records. Notably, additional
R packages focused on scrubbing biodiversity data for
research purposes are available, for example, bdc (Ribeiro
et al., 2023) and CoordinateCleaner (Zizka et al., 2019).
Many graphical user interface (GUI)–based R packages for
cleaning biodiversity data exist, including, but not limited
to, bdchecks (Gibas et al., 2019), bdclean (Nagarajah
et al., 2019), and wallace (Kass et al., 2023).

Identifying missing locality data

Before processing and filtering records, users may collect
additional data by obtaining or requesting coordinate values
for geographically sparse taxa. Occasionally, records will
have locality information represented only as qualitative
descriptions, rather than quantitative latitude/longitude
GPS coordinates. These records will need to be manually
georeferenced if coordinates are required for downstream
processing. Georeferencing is the process of taking a locality
description and converting it to numerical coordinates
(Wieczorek et al., 2004; Hackeloeer et al., 2014; Yao, 2020).

To subset records needing georeferencing, we created a
function called need_to_georeference(), which identifies
records that lack coordinates and contain locality strings.
Additionally, when the species of interest is listed as
endangered or threatened, locality information may be
redacted by the data provider. To obtain redacted locality
information, users will need to contact the herbarium or
collection directly and request the missing information for
use in research. To identify records for which locality
information has been redacted, we designed the function
needed_records(), which subsets the records containing
flags indicating the locality information has been redacted.
Based on the subsetted data frame of redacted records, the
herbarium to contact can be identified based on the
associated collection code. To identify contact information
based on a collection code, users should refer to Index
Herbariorum (http://sweetgum.nybg.org/science/ih/).

After obtaining additional locality information for
specimen records, a user should merge the missing data
with the main data frame prior to any additional processing
steps. To merge the two data frames, the user must format
the acquired records in the same format as the data frame
obtained with gators_download() and should indicate the
source of the records in the aggregator column. We provide
the function gators_merge() to aid in merging two data sets
with identical column names. However, often column
names and values may not match; therefore, we suggest
merging of the initial data sets and any obtained records
using the bdc package's function, bdc_standardize_datasets()
(Ribeiro et al., 2023). Prior to merging any obtained data
with the original data frame, users should remove records
identified with the need_to_georeference() and needed_
records() functions using the remove_missing() function
to avoid duplicating records. For any redacted records
obtained, as mentioned above, users should indicate
the source of the record in the aggregator column. By
indicating an aggregator not equal to iDigBio or GBIF,
these records can easily be removed with the remove_
redacted() function to prevent any accidental publication
of these records.

Taxonomic harmonization

After all data are obtained, the first step in data cleaning is
taxonomic harmonization. Taxonomic errors can negatively
impact research and its applications (e.g., Daugherty
et al., 1990; Jin and Yang, 2020). Specimen records often
lack proper and accepted scientific name designations due
to the time‐consuming nature of updating scientific names
for specimen records. Users must address the lack of taxon
harmonization in downloaded records for downstream
applications; therefore, it is crucial that users are knowl-
edgeable about each species of interest, its synonyms, and
the currently accepted scientific name. To harmonize
taxonomic identifiers for downloaded specimen records,
we designed a function titled taxa_clean(), which filters
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records based on either an exact or fuzzy match to a
supplied synonym list, as well as allows users to employ an
interactive approach. Due to variation in spelling and
potential inclusion of author strings, an exact match may
remove applicable records, and a fuzzy match may not
remove all erroneous records. Therefore, to obtain the most
taxonomically applicable records and remove taxonomically
erroneous records, we suggest an interactive approach. If
users select the interactive approach, the function will first
print all unique scientific names in the current data set and
then ask the user to respond in the console to prompts
regarding which records, if any, should be removed based
on their scientific name. After filtering, based on a user‐
provided taxonomy, an accepted name column can be
defined using an optional argument.

Locality cleaning

Locality information is often vital for downstream uses in
biodiversity research (e.g., Ritter et al., 2019; Kass et al., 2022).
Here, we provide the basic_locality_clean() function to
remove records with missing coordinates (i.e., lacking latitude
and/or longitude) and remove impossible coordinates (greater
than 180 or less than −180 for longitude; greater than 90 or
less than −90 for latitude). The basic_locality_clean() function
can be used to remove records found at the intersection of the
equator and prime meridian (latitude and longitude of 0) and
to remove coordinates skewed due to a species’ protected
status. Lastly, this function can be used to round values to a
desired precision.

In addition to a basic locality filter, records should be
filtered to remove spatial outliers. Spatial outliers may exist
due to human errors in data recording or in species
identification. Additionally, records may be from locations
outside of a species’ range because they represent cultivated
individuals, often grown in botanical gardens. We use the
CoordinateCleaner package (Zizka et al., 2019) to identify
occurrence records that may contain spatial errors or
flagged records. Specifically, CoordinateCleaner's clean_
coordinates() function identifies and flags records that are
located in state capitals, country centroids, the GBIF
headquarters, biodiversity institutions (including botanical
gardens, museums, herbaria, etc.), and the ocean (Zizka
et al., 2019). It also flags records with equal latitude and
longitude, records with precisely zero coordinates, and
records with locality outliers (Zizka et al., 2019). Because
cultivated or erroneous records may still be missed by this
approach, visual inspection of occurrence records is
recommended. We streamline identification of outliers with
an interactive function, process_flagged(), where users can
visualize both flagged and non‐flagged records, labeled in
red and blue, respectively, to determine which points, if any,
should be removed. The map visualization also provides
details regarding the reason each point was flagged, such as
geographic outlier, sea coordinates, or equal coordinates.
This function gives control to the user in determining the

validity of the data; the user can choose to remove all the
problematic points, or none, depending on the research
purposes and downstream applications.

Removing duplicate records

When using herbarium specimens to document occur-
rences, two types of duplicate records may be present: (1)
specimen duplicates and (2) aggregator duplicates. A
specimen duplicate is when two or more specimens
represent a single gathering of a single species (or
infraspecific taxon), often from the same individual plant,
made by a collector at one time. Depositing specimen
duplicates to multiple herbaria is extremely common; for
example, a recent study identified that when downloading
records from GBIF, on average over 30% of the records for a
taxon were duplicates (Zizka et al., 2020). These specimen
duplicates share a specimen‐level identifier (dwc:occurren-
ceID; http://rs.tdwg.org/dwc/terms/occurrenceID) that is
persistent, globally unique, and identifies an occurrence of
an organism (dwc:Organism; http://rs.tdwg.org/dwc/terms/
Organism) at a specific location and time (Nelson et al., 2018;
Mabry et al., 2022). The occurrenceID can therefore be used
to identify and remove specimen duplicates from a data set
to prevent inflation in the number of occurrences. However,
occurrenceID is not always provided to data aggregators,
making recognition of specimen duplicates difficult. Ag-
gregator duplicates exist when a single record is indexed by
multiple aggregators and are artifacts that must be removed.
Both specimen and aggregator duplicates should be
identifiable by the occurrenceID (if available), and both
can also be recognized based on coordinate values and date
of collection. For example, if two or more records share the
same collection date and the same location, these records
may be considered duplicates for the purpose of assembling
a list of occurrences, and duplicates can be removed. We
note that records for the same taxon with identical
coordinates and date of collection may actually represent
distinct individual plants (with distinct occurrenceIDs that
were not reported to the aggregators) and may be an
important source of data for some applications; in this case,
a user may choose not to consider these records as
duplicates but to retain them for further consideration.

Our remove_duplicates() function removes both specimen
and aggregator duplicates, as well as within‐aggregator
duplicates that may accumulate due to processing errors.
Aggregators assign unique identifiers—GBIF assigns keys, and
iDigBio assigns universally unique identifiers (UUID)—and
we leverage these identifiers to remove any duplicates that may
exist within each aggregator. We then use coordinates,
occurrenceID, and eventDate to identify and remove specimen
and aggregator duplicates. To leverage all date information
available, we populate the year, month, and day columns
(if not already provided) using the eventDate column.
To parse eventDate, we attempt the ISO 8601 parsing
methods from the parsedate package with their functions
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parse_iso_8601() and format_iso_8601() (Csárdi and
Torvalds, 2022). Notably, ISO 8601 only includes time since
the Unix epoch, or 1 January 1970; therefore, dates that occur
before 1970 may not be automatically parsed. If we are unable
to parse the included date for particular records, two options
are provided: (1) automatically remove the few unparsable
dates or (2) manually enter the year, month, and day for these
records when prompted. If the user chooses to manually enter
the event date, the record's eventDate will be printed, and the
user will be asked to manually enter the year, month, and day
of this eventDate into the console. Users are only prompted to
manually parse event dates for records where year, month, and
day are absent, but eventDate is present and cannot be parsed.
Based on the prompt printed with this function, a user may
not be able to identify the record for which the event is
being parsed. Finally, we filter rows to only return records
with distinct latitude, longitude, occurrenceID, year, month,
and day.

Basis cleaning

In some instances, users may want to retain only records
associated with physical specimens due to common mis-
identification (McDonough MacKenzie et al., 2017). Alterna-
tively, a user may be interested in exploring trends regarding
community observations (Grade et al., 2022; White
et al., 2023). The basis_clean() function offers both an
interactive and automated method, using a fuzzy match, to
filter for basisOfRecord, as the user may wish to remove
certain types of records. Examples of basisOfRecord include
PreservedSpecimen, FossilSpecimen, and HumanObservation
(Darwin Core Maintenance Group, 2021). As mentioned
above, fuzzy matches may retain erroneous records; there-
fore, an interactive approach may be preferred. With the
interactive method, the function will print all unique
basisOfRecord values in the current data set and then ask
the user to respond in the console to prompts regarding
which records, if any, should be removed based on their
basisOfRecord. Alternatively, the user can input a list of types
of records to retain from the data set, and records with a
different basisOfRecord will be removed automatically.

Spatial correction

Collection efforts often lead to geographic clustering of
specimens due to accessibility and infrastructure, as observed
for both herbarium (Daru et al., 2018) and community science
(Steen et al., 2021; Grade et al., 2022) efforts. The majority of
specimen collections occur in high‐traffic, urban areas due to
the physical barriers associated with reaching more remote
areas, resulting in geographic bias (Meineke and Daru, 2021).
In particular, recent large‐scale production of unvouchered
specimens has not increased geographic data coverage; rather,
there is a bias toward regions with easily accessible sampling
sites (Daru and Rodriguez, 2023). In addition, geographic bias

can occur due to low sampling intensity in some areas with
high biodiversity (Meineke and Daru, 2021). Spatial clustering
can lead to incorrect interpretations of a species’ current
range, inflate confidence in ecological niche estimates
(Veloz, 2009), and influence the quality of species distribution
models (Kramer‐Schadt et al., 2013; Aiello‐Lammens
et al., 2015; Kiedrzyński et al., 2017; Steen et al., 2021). To
reduce geographic bias prior to downstream applications,
users often employ spatial thinning.

Hence, we provide the thin_points() function to perform
spatial thinning using the spThin package (Aiello‐Lammens
et al., 2015) by reducing records based on a minimum nearest
neighbor distance (NND) approach. The thinning algorithm
provided by spThin calculates the pairwise distances between
data points, identifies the number of neighboring points
within the minimum NND, and then samples and removes a
single record randomly (Aiello‐Lammens et al., 2015). Points
within the NND distances are repeatedly identified and
removed until all records have met the minimum NND
requirement (Aiello‐Lammens et al., 2015).

When modeling the fundamental niche of a species,
presence‐absence models only consider one point per geo-
graphic pixel (Phillips, 2017); therefore, users often reduce their
data set to one point per pixel prior to using the records to
explore climatic niche. For this purpose, we created a simple
function, one_point_per_pixel(), to reduce the number of
records to only one point per raster pixel based on the
maximum resolution of an inputted geographic raster object.

Occurrence data cleaning overview

Herbaria serve as large data sources for plant functional
traits in exploration of important biological questions in
research areas such as water‐use efficiency, plant–pollinator
interactions, plant hyperaccumulation, and functional
group adaptations (Heberling, 2022). Large‐scale explora-
tion of biodiversity data enables new hypotheses and
discoveries in evolutionary biology, such as the potential
relationship between phylogenetic diversity and phenotypic
evolution in an area (Soltis and Soltis, 2016). Biodiversity
“big data” also are used to classify habitats, such as forests
(Agrillo et al., 2021). “Big data” management strategies can
be used to improve the quality of biological data provided
by community science platforms such as eBird for research
applications (Kelling et al., 2015).

To streamline data processing, our full_clean() function
automates vetting and filtering by wrapping all cleaning
functions into a single step. This function was designed to
optimize data processing so beginning programmers can
process their occurrence record data and experienced
programmers can expedite the time‐consuming cleaning
process required before proceeding to downstream research
applications. This function is entirely automated and thus
does not take advantage of the interactive options provided
in the individual cleaning functions. Using this wrapper is
recommended for data processing that does not require
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interactive/manual cleaning and inspection, or on large data
sets where this would be time consuming. All cleaning steps,
except taxonomic harmonization, can be bypassed by
setting their associated argument to FALSE.

Downstream data processing

We created three functions to aid users in data export and
preparation of publications. Regarding data export, many
users may want to employ Maxent (Phillips et al., 2006) for
species distribution modeling; therefore, our function data_
chomp() subsets the data set to include only the columns
needed for this downstream application, i.e., the user‐
provided accepted name and coordinate value columns. To
aid in data preparation for publication and to comply with
GBIF's data use agreement, our citation_bellow() function
will return the citation information for these records as a list
(this function name is based on alligators bellowing). Finally,
remove_redacted() will remove records where the aggregator
value is not equal to iDigBio or GBIF (see “Identifying
missing locality data”).

Comparison of data downloads using gatoRs
and spocc

We compared the number of records obtained from our
gators_download() function to the occ() function from spocc
(Owens et al., 2023) for 25 plant species downloaded on 4
August 2023. We defined the synonym list for each species
based on a careful literature review. Due to the download
limits set by both gatoRs and spocc, the default gators_down-
load() function would seem to require more computational
time than the occ() function; however, when download limits
are equal, the two functions have similar computation times.
The default download function from spocc only allows 500
records from each source, while gatoRs allows 100,000
records from each source. Even if spocc's limit is modified to
equal 100,000, we found that the gators_download() function
obtained more records for all species except Polygonum
basiramia (Small) T. M. Schust. & Reveal (Figure 2,
Appendix S4). For all 25 species, gatoRs obtained more
records from iDigBio than spocc for both download limits
(Figure 2, Appendix S4). For some species, gatoRs retrieved
fewer records from GBIF than retrieved with spocc. However,

F IGURE 2 Number of records downloaded from spocc (blue; limit = 100,000) and gatoRs (orange) from GBIF (light shade) and iDigBio (dark shade).
Note, Eriogonum longifolium var. gnaphalifolium is shortened to Eriogonum longifolium in the figure.
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in all cases, the higher number of GBIF records retained by
spocc was simply due to inclusion of duplicate records, i.e.,
records with the same key or UUID (Appendix S5). Once we
removed only within‐aggregator duplicates with the distinct
function from dplyr (Wickham et al., 2023), we found that
the number of records retained from GBIF by gatoRs and
spocc (limit = 100,000) was equal for all 25 species
(Appendix S5). Additionally, gatoRs retrieved more records
for Polygonum basiramia than spocc after within‐aggregator
duplicates were removed (Appendix S5).

To assess the quality of the data retrieved by gatoRs
compared to spocc, we applied the taxa_clean(), basic_loca-
lity_clean(), and remove_duplicates() functions to both
downloads (Figure 3, Appendix S6) and found that the
gatoRs data set included more records for all species. After
data scrubbing, only 12% of the total records remained for the
spocc data (limit = 100,000) for all 25 species, while about
78% of the records remained for the data set downloaded with
gatoRs (Figure 3). The largest percentage of records removed
during the data scrubbing processes was removed with
basic_locality_clean() for gatoRs, as well as for spocc when the
download limit is set to 500. When the download limit is set

to 100,000 for spocc, the largest percentage of removed
records occurred with the remove_duplicates() step, which is
likely due to the lack of occurrenceID for these records and
the retention of within‐aggregator duplicates during the
download step (Appendices S4, S5). Overall, after each
scrubbing step, the gatoRs data set had more records than the
spocc data set for both spocc download limits. The difference
between the number of records retained after data scrubbing
from the gatoRs and spocc data sets was modest for some taxa
and extreme for others; large differences were noted for
Eriogonum longifolium Nutt. var. gnaphalifolium Gand. (182
additional records), Pinguicula lutea Walter (57 additional
records), Platanthera ciliaris (L.) Lindl. (125 additional records),
Tillandsia balbisiana Schult. f. (81,772 additional records), and
Tillandsia fasciculata Sw. (1882 additional records) (Appen-
dix S5). Hence, the gatoRs package provides many more
occurrence records for use in various applications, an important
advantage when the number of records increases the accuracy
of the results, such as in species distribution modeling (van
Proosdij et al., 2016).

Additionally, for some species, GBIF provided the
majority of records (this is especially clear for Tillandsia

A

B

F IGURE 3 Sankey diagrams showing the sum of records returned for all 25 species after each cleaning step when using (A) gators_download() from
gatoRs and (B) occ() from spocc with the limit set to 100,000. This Sankey diagram was generated using the networkD3 R package (Allaire et al., 2017) and
was inspired by Panter et al. (2020) (see their Figure 3). The number of records after each processing step can be found in Appendix S6. The spocc logo was
sourced from https://github.com/ropensci/spocc/blob/master/man/figures/logo.png.
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balbisiana), whereas for others, more records were available
from iDigBio (in particular, for Eriogonum longifolium var.
gnaphalifolium) (Figure 2). Thus, retrieving fields from both
aggregators allows for a greater number of records to be
obtained—even after removing the duplicate records
recorded by both GBIF and iDigBio.

Based on these cleaned records, we defined minimum
convex hulls, trimmed to only include land mass, for each
species. We found the additional records obtained by gatoRs
led to increased range estimations for Calamintha ashei
(Weath.) Shinners, Eriogonum longifolium var. gnaphalifo-
lium, Paronychia chartacea Fernald, Tillandsia balbisiana,
and Tillandsia utriculata L. (Appendix S7).

CONCLUSIONS

We have shown that gatoRs streamlines the downloading and
scrubbing of biodiversity data from GBIF and iDigBio. As a
result, it is especially useful for users who have limited
familiarity with R or programming in general. Furthermore,
our package addresses differences in search logic between GBIF
and iDigBio, a feature that is unavailable with spocc or any
other packages for downloading occurrences from both
aggregators, and uses methods to download the maximum
number of records for a taxon of interest. We anticipate that
these features of gatoRs will be useful for research applications
that require a minimum number of records to provide useful
and accurate predictions. This utility is especially true for
endangered, threatened, or otherwise rare species where data
are limited. In these cases, it is crucial to download all
records associated with these species to enable accurate
research applications (e.g., Panter et al., 2020). As noted, by
obtaining additional records with gatoRs, range size estimates
increased for some of our species of interest (Appendix S7).
Our package also incorporates unique interactive capability for
cleaning data, unlike other available R packages. Because of this
software functionality, gatoRs enables data cleaning with user
control, which differs from other currently available methods.
In addition, we provide a simple cleaning wrapper function
that performs essential cleaning processes all in one step, with
no user input required. This feature streamlines the cleaning
process and is a valuable asset for iteratively cleaning multiple
data sets, allowing users to focus on the plethora of
downstream applications related to specimen data. Additional
sources of error and bias are not addressed in gatoRs (e.g.,
collector bias; Baldwin et al., 2017), and such issues could be
implemented in the future. Overall, gatoRs provides greater
access to occurrence records and thus facilitates discussion of
herbarium specimens and their potential for biodiversity‐
related research. In this way, our package has the potential to
provide important educational benefits in the form of hands‐on
teaching with demonstrations of downloading and cleaning
data through the various gatoRs functions, especially when
taking advantage of the interactive options.

We believe that our free and widely available R package
will greatly increase access and usage of herbarium data for

both advanced researchers and beginning students. Finally,
although we illustrate the use of gatoRs with herbarium
specimen data, it is not restricted to herbarium data but can
be used for any basis of record available via GBIF and
iDigBio; it will promote further research using biodiversity
data and stimulate increased student interest in the study of
biodiversity.
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SUPPORTING INFORMATION
Additional supporting information can be found online in
the Supporting Information section at the end of this article.

Appendix S1. Complete gatoRs workflow demonstrated in
an R script.

Appendix S2. Complete gatoRs workflow demonstrated in
an R markdown.

Appendix S3. Overview of functions with information on
purpose, input/output, and dependencies.

Appendix S4. Number of records downloaded in total and
from each aggregator (GBIF and iDigBio) for 25 plant
species when using gatoRs, spocc with a download limit of
500, and spocc with a download limit of 100,000.
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Appendix S5. Number of records in total and from each
aggregator (GBIF and iDigBio) after within‐aggregator
duplicates were removed for 25 plant species when using
gatoRs, spocc with a download limit of 500, and spocc with
a download limit of 100,000.

Appendix S6. Number of records retained for 25 plant species
through taxonomic filter, locality filter, and duplicate removal
for records downloaded using gatoRs, spocc with a download
limit of 500, and spocc with a download limit of 100,000.

Appendix S7. After records downloaded using gatoRs and
spocc with a download limit of 100,000 were processed
(taxonomic filter, locality filter, duplicate removal, removal
of missing locality, and removal of occurrence records

attributed to spatial error), we defined a convex hull that
intersected with global land mass for each data set. Convex
hulls representing gatoRs records are shaded orange, while
convex hulls representing spocc are shaded blue.
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