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ABSTRACT
Pain is thought to be influenced by the threat value of the particular context in which
it occurs. However, the mechanisms by which a threat achieves this influence on pain
are unclear. Here, we explore how threat influences experimentally-induced
secondary hyperalgesia, which is thought to be a manifestation of central
sensitization. We developed an experimental study to investigate the effect of a
manipulation of threat on experimentally-induced secondary hyperalgesia in 26
healthy human adults (16 identifying as female; 10 as male). We induced secondary
hyperalgesia at both forearms using high-frequency electrical stimulation. Prior to
the induction, we used a previously successful method to manipulate threat of tissue
damage at one forearm (threat site). The effect of the threat manipulation was
determined by comparing participant-rated anxiety, perceived threat, and pain
during the experimental induction of secondary hyperalgesia, between the threat and
control sites. We hypothesized that the threat site would show greater secondary
hyperalgesia (primary outcome) and greater surface area (secondary outcome) of
induced secondary hyperalgesia than the control site. Despite a thorough piloting
procedure to test the threat manipulation, our data showed no main effect of site on
pain, anxiety, or threat ratings during high-frequency electrical stimulation. In the
light of no difference in threat between sites, the primary and secondary hypotheses
cannot be tested. We discuss reasons why we were unable to replicate the efficacy of
this established threat manipulation in our sample, including: (1) competition
between threats, (2) generalization of learned threat value, (3) safety cues, (4) trust,
and requirements for participant safety, (5) sampling bias, (6) sample-specific
habituation to threat, and (7) implausibility of (sham) skin examination and report.
Better strategies to manipulate threat are required for further research on the
mechanisms by which threat influences pain.
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INTRODUCTION
Threat is thought to be important for pain. A growing body of research suggests that threat
influences pain (Arntz & Claassens, 2004; Crombez et al., 1998; Karos et al., 2018; Reicherts
et al., 2016; Wiech et al., 2010). There are many clinical examples of patients experiencing
pain that is disproportionate to tissue damage and even pain in the absence of tissue
damage (Caneiro et al., 2021; Fisher, Hassan & O’Connor, 1995; Flor, 2002; Melzack &
Wall, 1965). This dissonance between pain and tissue damage is often attributed to threat
(Caneiro et al., 2017; Moseley, 2007; Tabor et al., 2015).

The influence of threat on pain has been demonstrated in experimental studies that are
assumed to have manipulated the perceived threat value of stimuli. The manipulations
used include instructions about tissue vulnerability (Wiech et al., 2010), verbal instruction
about stimulus intensity (Arntz & Claassens, 2004), visual cues that imply different threat
values (Moseley & Arntz, 2007), and classical conditioning (Ploghaus et al., 2001).
Interpretation of two of these studies (Arntz & Claassens, 2004; Moseley & Arntz, 2007) is
hindered by lack of evidence that threat value was actually manipulated. Selecting an
appropriate test for a change in threat is difficult. Wiech et al. (2010) interpreted a
difference in pain ratings as an indication of differential threat, revealing the assumption
that pain and threat are linked. Ploghaus et al. (2001) assessed whether their threat
manipulation changed self-reported anxiety ratings and heart rate, perhaps more
arguably capturing change in affect and physiology that would be expected to change with
threat. Despite the difficulties confirming manipulation efficacy, the idea that threat
influences pain is broadly accepted.

The exact mechanisms by which threat influences pain are unclear. It is possible that
the mechanism is located largely within the brain. Several imaging studies suggest that
anxiety about a threatening stimulus is linked to greater pre-stimulus activity in key brain
regions such as the anterior insula, midcingulate cortex, and hippocampus—and that
this activity is associated with pain to that stimulus (Ploghaus et al., 2001; Ploner et al.,
2010; Wiech et al., 2010). Computational modelling of cognitive decisions about pain
have demonstrated that prior information about an event (e.g. state of the body vs. danger
posed by a stimulus) can influence the painfulness of that event (Wiech et al., 2014;
Zaman et al., 2017)—indeed, the anterior insula is thought to be closely involved in
interoception and therefore informing priors about body-related events (Craig & Craig,
2009; Ploner et al., 2010).

Further, it is similarly possible that threat could influence pain not only via
brain-dominant processes, but also by altering spinal processing of nociception.
Descending modulation can influence synaptic transmission of nociception at the dorsal
horn of the spinal cord (Gebhart, 2004; Porreca, Ossipov & Gebhart, 2002; Ren & Dubner,
2002; Suzuki, Rygh & Dickenson, 2004; Urban & Gebhart, 1999). Descending inhibition
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is enacted via descending monoaminergic pathways that use serotonin, noradrenaline,
and dopamine (Gebhart, 2004; Millan, 2002; Pertovaara, 2006; Zhao et al., 2007).
Contextual threat influences descending inhibition (Moseley & Arntz, 2007) and may
account for the Beecher’s (1946) soldiers reporting diminished pain severity despite
presenting with extensive tissue damage. Another example is the 37% of patients
presenting to the emergency unit who report a pain-free period of 1 to 9 h after injury
(Melzack, Wall & Ty, 1982). These examples are of pain diminution presumed to arise by
descending inhibition—and, here, lack of pain is thought to support survival. In contrast,
threat of tissue damage may promote descending facilitation to increase pain and
motivate protection of the (potentially) damaged tissue. In this study, we aimed to
establish whether threat of tissue damage increases spinal facilitation of nociception.

Experimentally induced secondary hyperalgesia provides a useful model of spinal
facilitation of nociception. Secondary hyperalgesia is defined as “increased pain from a
stimulus that normally provokes pain” outside the area of tissue damage (Merskey &
Bogduk, 2017). Secondary hyperalgesia is thought to be mediated by an altered response
profile of dorsal horn neurons. Experimental induction of secondary hyperalgesia uses safe
stimulation to induce a short-lived expression of secondary hyperalgesia under controlled
conditions, in a laboratory. The induction can use stimuli such as high-frequency electrical
stimulation (HFS) (Klein et al., 2004), low-frequency electrical stimulation (Torta et al.,
2019), intradermal capsaicin injection (Baron et al., 1999), topical capsaicin application
(You, Creech & Meagher, 2016) and burn injury (Wahl et al., 2019). In this study, we used
high-frequency electrical stimulation to induce experimental secondary hyperalgesia.

In the current study, we aimed to manipulate threat of tissue damage using a (sham)
skin examination and report, and to test the influence of that manipulation of threat on the
magnitude (primary outcome) and surface area (secondary outcome) of experimentally
induced secondary hyperalgesia. We hypothesized that the magnitude (primary outcome)
and surface area (secondary outcome) of induced secondary hyperalgesia would be greater
at the threat site than at the control site.

METHODS
Study design
The protocol and the pilot analysis were preregistered with Open Science Framework at
https://osf.io/nk2hj/ to ensure detailed documentation of the research process, thus
supporting accountability and study replication (Lee et al., 2018; Lindsay, Simons &
Lilienfeld, 2016). The study was designed as a within-subject, double-blinded experiment.
It was conducted at the University of Cape Town, South Africa. The protocol was approved
by the Faculty of Health Sciences Human Research Ethics Committee (REF 498/2018),
University of Cape Town. An extensive piloting procedure was conducted to ensure
the effectiveness of the threat manipulation procedure (File S1). Data were collected
between October and November 2019.
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Participants
Volunteers were recruited from the general public using advertisements, social media
channels such as Facebook, and word of mouth. Volunteers were sent the study
information sheet describing the details of the procedure via email, and were screened for
exclusion criteria by completing an online eligibility quiz using the Responster platform
(https://responster.com). After completing the screening quiz, eligible volunteers were
contacted via email to organize a booking. Participants were able to withdraw from the
study at any stage during the procedure or up to 48 h after the procedure. They were
compensated ZAR1001, in cash, for their time and inconvenience, even if they withdrew
from the study.

Inclusion and exclusion criteria
Volunteers needed to be healthy, pain-free adults between the ages of 18–65, able to
provide written consent autonomously, and fluent in speaking, understanding, and
reading English (all as per volunteers’ self-reports). Volunteers were excluded from the
study if they reported one or more of the following: chronic pain—pain for most days of
the week for the past 3 months (Blyth et al., 2001), pain on the day of testing, self-reported
pregnancy, electronic implant (e.g. pacemaker), any kind of heart/cardiovascular problem,
diabetes mellitus, neurological problems (e.g. epilepsy), peripheral vascular disease,
problems with skin healing, use of analgesics within 24 h before testing, use of medication
that could alter skin sensitivity or healing (e.g. analgesic medication, topical medical
creams or immune modulators), history of psychiatric problems (e.g. fear or anxiety
disorder, or clinical depression), and previous participation in this study or a closely
related study. Additionally, volunteers with upper limb tattoos distal to the anode were
ineligible to participate as some tattoo inks contain metals and therefore pose a small risk
of electrical conductance (Ross & Matava, 2011) and skin burn.

Randomization and blinding
This study was designed for blinding of assessor, participants, and data analyst.

Blinding of assessor
VJM conducted concealed allocation of arm to condition, i.e. which arm (left or right)
would receive the HFS under a condition of threat. The allocation of arm to condition was
counterbalanced, as follows. First, 13 rows of each of Group 1 (threat site: right arm) and
Group 2 (threat site: left arm) were entered into Excel to account for the total planned
sample size of 26 (see Sample size calculations below). A random number was generated
for each row. The list was then re-ordered using the random numbers and this new list
order was locked. Second, papers stating either ‘Group 1’ or ‘Group 2’ (13 for each group)
were placed into 26 sequentially numbered, opaque envelopes, in accordance with the
locked list order. Third, the envelopes were used in the order specified by the numbers
written on them.

CL (the assessor) conducted the experimental procedure and sensory testing for all
participants. She gave the sealed envelope to the research assistant, who opened the

1 Equivalent to USD6.18 at the time of the
study.
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envelope and allocated the condition in the software program while the assessor was
outside the room. The assessor was thus unaware of participants’ condition (i.e. which arm
right/left would receive the HFS under a condition of threat). This mitigated verification
bias. Given that the assessor was aware of the aims of the study, they completed a blinding
assessment after participants received the HFS and before the sensory testing battery.
The blinding assessment required the assessor to state (or guess) which arm had received
the HFS under a condition of threat, and to rate her confidence about this on a Likert scale
(“not at all confident”, “not confident”, “neutral”, “confident”, “extremely confident”).

Blinding of participants
Participants were informed that the study investigated how people experience painful and
non-painful stimulations. No details of the aims or hypotheses were provided, to maintain
participant blinding.

Blinding of data analyst

GJB performed the statistical analyses and was blinded to condition while conducting the
analyses. VJM re-coded participants’ condition allocation prior to statistical analysis to
ensure blinding of GJB to condition. The allocation of arm to condition was re-coded to
“Condition A” or “Condition B”, such that condition A denoted the condition of threat
and condition B denoted the safe condition. Conditions A and B were interpreted by GJB
after all analyses were completed.

Equipment
HFS was provided using a constant current stimulator (DS7A; Digitimer Limited,
Hertfordshire, UK) controlled by Affect5 software (Spruyt et al., 2010). Current was
directed from the DS7A, via a D188 (Digitimer Limited, Hertfordshire, UK), to two pairs
of electrodes. The electrodes consisted of two cathodes and two anodes. The cathodes had
10 blunt steel pins arranged in a circle and were secured to both anterior forearms.
The anodes were large, flexible surface electrodes and were secured to both upper arms
(File S2). The cathodes were secured on the anterior aspects of both the participant’s
forearms, with a double-sided sticker, approximately eight centimeters distal to the cubital
fossa, and avoiding any visibly prominent vasculature. Large surface electrodes were placed
around both upper arms and served as the anodes.

Manipulated variables
High-frequency electrical stimulation
Participants received HFS on both forearms, asynchronously. HFS was delivered to one
arm under a condition of threat (threat site) and to the other arm under a neutral
condition (control site), thus providing a within-subject comparison.

The appropriate intensity of the HFS depends on the electrode used and individuals’
electrical detection threshold. The electrodes in this current study most closely resembled
those used by Klein et al. (2004), Klein et al. (2008) and Henrich et al. (2015). Their work
and our pilot have shown induction of robust secondary hyperalgesia with HFS delivered
at 100 Hz, at a current of 10 times the individual detection threshold.
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Participants were orientated to the electrical stimulus (refer to the Procedure section)
and the stimulus was calibrated to the participant’s individual electrical detection threshold.
This calibration consisted of single electrical stimuli, with a pulse width of 2 ms. An adaptive
staircase approach (see Procedure below) was used to determine the individual electrical
detection threshold. The electrical detection threshold was used to determine the current of
the HFS at 10 times the electrical detection threshold. Klein et al. (2004) reported
participants’ electrical detection threshold to be 0.11 ± 0.06 mA (mean ± SD). Therefore, it
was anticipated that the range of currents would be similar in this current study.

The HFS consisted of five 1-s trains, using 2 ms pulse width, of 100 Hz frequency, with a
9-s break between trains (Klein et al., 2004; Pfau et al., 2011; van den Broeke & Mouraux,
2014). The current of the stimulation was 10 times the participant’s individual electrical
detection threshold.

Threat manipulation
The threat manipulation procedure was modelled on that used by Wiech et al. (2010) and
consisted of a sham skin examination and report. Our sham skin examination and report
were conducted after the baseline sensory assessment and before participants received
the HFS. The assessor informed participants that she was examining the robustness of the
skin around the electrodes, to determine the risk of skin damage associated with HFS.
She used an otoscope to magnify and illuminate the skin. She then left the room to
ostensibly enter the (sham) examination results into the computer for it to apply an
“algorithm” to determine the skin’s safety. Finally, the sham results were shown to the
participant on a screen not visible to the assessor. For each participant, the threat site was
deemed “approved with reservations” on the screen, with participants instructed to
monitor their “fragile” skin closely during the HFS as there was “moderate risk of injury”.
For the control site, “fully approved” was reported on the screen, with participants
informed that the skin is “robust” and there was “low risk of injury” during the HFS.

Threat manipulation check
Three manipulation checks were performed to determine the effectiveness of the sham
skin examination and report: (1) five Sensation and Pain Rating Scale (SPARS) ratings
during the HFS induction (one for each train) were compared between the threat and
control sites, and a customized questionnaire was used to assess (2) self-reported anxiety
and (3) self-reported threat of tissue damage during the HFS induction. We opted to
include these three manipulation checks to provide insight into both an expected effect of
implicit threat (pain ratings during HFS) and explicit threat (self-reported anxiety and
threat of tissue damage). After locking the protocol online, we realized we had not
designated any of the three participant-reported manipulation check outcomes as primary.
Given that our manipulation was based on that of Wiech et al. (2010), who used reported
experimental pain as the manipulation check, we designated SPARS ratings during the
induction as the primary outcome for the manipulation check in the current study.

Self-reported anxiety and self-reported threat of tissue damage were assessed at the end
of the experiment. Participants were asked to indicate on a five-point Likert scale the extent
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to which they agreed or disagreed with the following statements: “At the time of receiving the
intense electrical stimulation on my right/left arm, I felt anxious” (i.e. self-reported anxiety)
and “At the time of receiving the intense electrical stimulation, I was concerned that it
would cause damage to my skin on my right/left arm” (i.e. self-reported threat of tissue
damage). Participants completed these questions with reference to each arm separately.

Measured variables
Participants verbally reported sensation or pain ratings using the SPARS (File S3) (Madden
et al., 2019). This scale provides for a range of non-painful and painful sensory experiences.
The non-painful range, on the left-hand side of the scale, ranges from −50—“no
sensation”— to 0—“the exact point at which what you feel transitions to pain”. The painful
range, on the right-hand side of the scale, ranges from 0 to +50—“most intense pain you
can imagine”. The SPARS is sensitive to change in both painful and non-painful
sensory experiences (Madden et al., 2019).

OUTCOMES
Primary outcome
Mechanical punctate stimulation
Mechanical punctate stimulation was provided with two pinprick stimulators (MRS
Systems, Heidelberg, Germany), exerting forces of 128 and 256 mN, respectively.
Participants were asked to close their eyes while the assessor provided three stimulations at
1 s intervals within a one-centimeter radius around the electrode with each pinprick
stimulator. Participants were asked to provide an average SPARS rating for the three
stimulations for each pinprick stimulator separately (i.e. an average rating for the three
stimulations from the 128 mN and an average ratings for the three stimulations from the
256 mN pinprick stimulator). Increased SPARS ratings to these modalities in the region
surrounding the distal electrode, after the HFS, indicated the presence of secondary
hyperalgesia. We were not interested in the effect of force as a predictor in this current
study. Therefore, we used the mean SPARS ratings of the two different pinprick weights to
determine the overall mechanical punctate stimulation rating, instead of including force as
a predictor variable. This kept the model simple to maximize power.

Secondary outcome
Mapping surface area of secondary hyperalgesia

The area of secondary hyperalgesia was mapped using the eight-radial-lines approach,
where eight lines are mapped at 45� angles (File S4) using a pinprick stimulator exerting a
force of 128 mN (You et al., 2014). First, the assessor screened for the presence of
secondary hyperalgesia. This was performed by asking participants if they felt “a very
obvious difference in sensation” when applying the pinprick stimulator at the most distal
dot compared to the most proximal dot on the proximal-distal radial line (E in File S4).
This process was repeated by stimulating the most proximal dot first and most distal dot
on the same line. If participants still reported no difference in sensation, we concluded that
the surface area for secondary hyperalgesia was zero at that time point; if participants
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reported a difference, then the assessor mapped the surface area. Briefly, the assessor
provided a single stimulation at each point on a radial line, moving from the most distal
point from the electrode towards the electrode. The participant was asked to report the
point at which they felt a distinct change in sensation from the current stimulation,
compared to the previous stimulation. This is interpreted as indicating the boundary of
secondary hyperalgesia. This procedure was repeated along each of the eight radial lines, to
obtain eight points of transition. The surface area thus identified comprises eight 45�

triangles. We calculated and summed the surface area of the eight triangles using the
equation surface area ½ab (sin 45�) (where a and b are the lengths of the sides of a triangle
adjacent to the 45� angle), to calculate the overall surface area of secondary hyperalgesia.

Exploratory outcomes
Data obtained from assessing static light touch, dynamic light touch and single electrical
stimulation were used for exploratory purposes only. Static light touch sensation was
assessed with application of a von Frey filament (MARSTOCK, Schriesheim, Germany)
that exerted a force of 32 mN upon bending (Rolke et al., 2006). Dynamic light touch
was measured using a cotton wisp and soft brush stroke (Henrich et al., 2015).
The electrical stimulus was 2 ms long with an intensity of 10 times the individual’s
electrical detection threshold (Henrich et al., 2015). The results of these exploratory
outcomes are provided in File S5.

Questionnaires
A history of previous trauma has been associated with increased area of secondary
hyperalgesia (You, Creech & Meagher, 2016): women reporting childhood trauma and/or
recent trauma displayed a larger surface area of secondary hyperalgesia after application of
topical capsaicin than women reporting no history of trauma (You, Creech & Meagher,
2016). Therefore, we assessed childhood trauma and adult trauma using the Childhood
Trauma Questionnaire (CTQ) (Bernstein et al., 2003) and a modified version of the World
Mental Health Survey Initiative version of the World Health Organization’s Composite
International Diagnostic Interview for post-traumatic stress disorder (WMH-CIDI)
(Kessler & Üstün, 2004). The CTQ focuses on five criteria: emotional abuse, physical abuse,
sexual abuse, emotional neglect, and physical neglect. The modified version of the
WMH-CIDI screens for specific traumatic events. The WMH-CIDI was used as an
inventory, therefore we did not investigate the details of the traumatic event(s). These data
were used in a secondary analysis, to investigate the relationship between a history of
trauma and experimentally induced secondary hyperalgesia, in an attempt to replicate the
work by You, Creech & Meagher (2016).

Participants also completed several other questionnaires: 10-item Connor–Davidson
Resilience Scale (Connor & Davidson, 2003), Cohen’s Perceived Stress Scale, Pain
Catastrophizing Scale (Sullivan, Bishop & Pivik, 1995), Multidimensional Scale of
Perceived Social Support (López-Martínez, Esteve-Zarazaga & Ramírez-Maestre, 2008),
and 16-item Pain Vigilance and Awareness Questionnaire (McCracken, 1997), which were
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used for exploratory analyses to inform the development of future research questions only.
The results for these questionnaires will not be reported here.

PROCEDURE
Overview of procedure
The procedure was conducted in a quiet room in the Department of Anaesthesia and
Perioperative Medicine, Groote Schuur Hospital, Cape Town. The procedure lasted
approximately 2 h. An overview of the procedure is described in Fig. 1. First, participants
underwent three rounds of baseline sensory testing. Second, the assessor performed
that (sham) skin examination and report (i.e. threat manipulation). Third, participants
received the HFS for ~1 min on each arm separately. Fourth, participants completed
questionnaires during a 20-min break. Finally, 20 min after the HFS induction, the assessor
performed repeated sensory follow up testing in 6-min intervals and surface area mapping
in 20-min intervals. Last, participants were debriefed on the threat manipulation and
reassured about the safety of the procedure.

Preparation
The assessor used a formal script (File S6) during the procedure to standardize all the
information presented to participants. When each participant arrived for testing, they
were asked to re-read the study information sheet, confirm that none of the exclusion
criteria applied, and sign the document of informed consent. Thereafter, participants were
asked to remove any jewelry from their arms and to turn off mobile devices. The assessor
used a stencil to mark locations for the electrodes, and to mark the eight radial lines
on the participant’s skin. The assessor secured the electrodes in place using a double-sided
electrode sticker.

Figure 1 Study procedure. Full-size DOI: 10.7717/peerj.13512/fig-1
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Participants were orientated to the SPARS and the sensory testing battery. This
orientation consisted of an explanation of how to use the SPARS and a brief demonstration
of each of the sensory tests on the assessor’s arm. Participants had an opportunity to
practice using the SPARS while the assessor ran through a practice round of the sensory
testing battery.

Individual electrical detection threshold
Participants were orientated to the electrical stimulus and the stimulus was calibrated
to their individual electrical detection threshold on both arms. The intensity started at
zero and slowly increased in 0.1 mA increments until the participants reported that
they could feel the electrical stimulus. They were informed that the electrical stimulus
would “feel like a very tiny pinprick”. Participants were asked to say “yes” if they felt it,
even slightly. This adaptive staircase approach was used to determine the individual
electrical detection threshold on both arms. We used the average of the individual electrical
detection thresholds from both arms for the HFS procedure.

Baseline testing
Once the participants were comfortable with using the SPARS, the sensory testing battery
was conducted three times on each arm to obtain a stable estimate of baseline sensory
ratings. Initially, the protocol outlined that primary hyperalgesia would not be assessed at
this time point, as the electrical stimulation would not yet be calibrated to the participant.
This was an error in the protocol and baseline primary hyperalgesia was assessed (protocol
deviation one of three). The area of secondary hyperalgesia was not mapped at this point as
secondary hyperalgesia had not yet been induced by HFS.

Sham skin examination
Next, the sham skin examination was performed, and the report provided.

High-frequency electrical stimulation
Before the HFS was delivered, participants were thoroughly briefed on what to expect from
the HFS. Participants were informed that most people find the HFS “moderately painful”
and they may withdraw with immediate effect at any point during the procedure. They
were instructed to say “STOP” if they wished to withdraw, in which case the assessor would
use the safety switch on the stimulator to deactivate the stimulator immediately.
Participants were asked to provide ratings using the SPARS after each HFS train.
As mentioned, the HFS SPARS ratings served as one of three threat manipulation checks.

Waiting period
There was a waiting period of 20 min after the HFS to allow time for the secondary
hyperalgesia to develop. To optimize time, this period was used to administer the seven
questionnaires (not reported on here).
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Follow-up testing
The battery of sensory testing was conducted every 6 min from 20 to 56 min after the HFS,
to capture the development of secondary hyperalgesia, the timing of which can vary
between individuals (Pfau et al., 2011). The order of the sensory testing modalities was
randomized within each time point, for each participant, to decrease predictability and
ensure accurate ratings (with the same order used for both arms, within each time point).
The surface area of secondary hyperalgesia was mapped at 20, 40, and 60 min after the
HFS.

Post-experiment questionnaire and debriefing
After the follow-up testing, the electrodes were removed, and participants completed
the post-experiment questionnaire assessing self-reported anxiety and self-reported threat
of tissue damage. These two questionnaires served as a second and third threat
manipulation check. After the threat manipulation check, the assessor also conducted a
semi-structured interview where participants were asked to elaborate on their answers
for their self-reported anxiety and threat of tissue damage during HFS induction.
The assessor wrote down direct quotes of participants’ responses. This semi-structured
interview was planned after the protocol had been locked online and therefore was
not included in the protocol (protocol deviation two of three). These responses were
used to gain further insight into the effectiveness of the threat manipulation. Finally,
participants were debriefed on the threat manipulation and reassured about the safety
of the procedure.

Participants completed all the questionnaires in privacy, and on a computer. Details of
any traumatic events was not requested. For these reasons, together with the strict
eligibility criteria, it was unlikely the questionnaires would have evoked strong emotional
responses at the time of testing. Nevertheless, after the procedure, participants were
provided with an information pamphlet listing the local non-profit organizations where
they could access psychological assistance, if they wished to do so. Additionally, all
participants received a list of the community health care centers in Cape Town that
provide psychological counselling as well as a list of two private practice psychologists
within the University of Cape Town’s neighboring communities.

Statistical analysis
Sample size calculation
Pilot data and the GLIMMPSE online calculator (Kreidler et al., 2013) were used to
estimate the sample size required to achieve 80% power to detect a minimum 5-unit
difference (on a 100-unit scale) in secondary hyperalgesia, with alpha set at 0.05. A mixed
linear regression was planned, in which the dependent variable was the mean rating to
both pinprick stimulators (128 and 256 mN) at each time point after HFS, minus the
equivalent mean rating at the baseline time point (before HFS). The model structure
allowed each participant to have their own intercept (i.e. individual participant (ID) was a
random factor). The independent variable, ‘condition’ (i.e. threat or control site), was a
fixed factor, and the repeated measures variable ‘time’ was nested within and fully crossed
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with participant ID, because each participant was assessed at each time point. In the lme4
package (Bates et al., 2015; Loy & Hofmann, 2014) of R (version 3.5.3 (2019-03-11)), the
model structure was: lmer(rating ~ condition + (1|ID/time)). The scale factor in
GLIMMPSE influenced the estimated sample size required; therefore, we used the pilot
data (n = 6, from the third phase of piloting) to guide our choice of scale factor. In fact,
our pilot data were best described by a beta:sigma relationship of 1:2; however, given
the small sample size for our pilot data and to minimize the risk of missing an
effect that might exist, we opted to use the sample size recommended for a beta:sigma
relationship of 0.5:1.5. GLIMMPSE estimated that a total sample size of 25 participants
was required to detect a main effect of condition. Therefore, a sample size of 26 was used to
allow for counterbalancing for the manipulation site.

Preliminary assessment of the data
It was plausible that the individual calibration approach could have confounded the results
because the current for the HFS was linked to the individual detection threshold, and HFS
delivered at a higher current could result in greater secondary hyperalgesia. Although
previous published datasets (Torta et al., 2017; van den Broeke et al., 2017; van den Broeke
et al., 2019; van den Broeke et al., 2019; Van den Broeke et al., 2016; van den Broeke, Lenoir
& Mouraux, 2016) (n = 170, unpublished) investigation found no association between
the individual electrical detection threshold and the magnitude of secondary hyperalgesia.
We checked this by testing for a correlation between the individually determined electrical
detection threshold and magnitude of secondary hyperalgesia in our data.

Analysis of blinding assessment for the assessor
An analysis strategy for assessing assessor blinding was not specified in the protocol. Post
hoc, we opted to calculate the percentage of correct guesses of site allocation by the
assessor. If the percentage correct was greater than 50%, we planned to use the data from
the confidence scale to explore a percentage greater than 50% (the defined limit) in
terms of confidence, to work out the likelihood that the percentage was due to genuine
guessing.

Analysis of the manipulation checks
The effect of the manipulation was assessed by comparing (1) pain ratings during the
HFS induction (primary indicator), (2) self-reported anxiety, and (3) self-reported fear of
tissue damage for each arm owing to the HFS induction. A mixed model analysis was used
to compare ratings of the HFS trains (rating ~ condition + (1|id)), anxiety (anxiety ~
condition + (1|id)) and threat of tissue damage (threat ~ condition + (1|id)) between
conditions. A main effect of condition on ratings, anxiety and threat of tissue damage
would confirm the efficacy of the manipulation. The models allowed for each participant to
have a different intercept.

Primary analysis
Response data were analyzed using linear mixed modelling, to account for individual
variability in responses whilst still testing for a between-site effect at the group level.
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The study was designed to have within-subject controls of both pre- and post-induction
measurements and control site measurements. Therefore, the change in sensitivity
(pre-induction measurements subtracted from post-induction measurements) was
compared between arms (within subjects). The exact parameters for the analysis were
chosen based on visual inspection of the data (including an assessment of distribution),
and the appropriate tests to confirm or refute any assumptions of the analytical strategy.
As specified above, the primary outcome was the magnitude of secondary hyperalgesia.

The planned data analysis was finalized using the full pilot study data. The sensory
ratings and questionnaire data had been imported into R data frames prior to the protocol
being locked online, but no exploratory plotting or analyses had been done at this stage.
Data analysis commenced only after the protocol had been locked online. The pilot
analysis was not substantively changed after initial processing of the formal data
commenced, except that the assessment of model fit was added, having been omitted from
the pilot data analysis (protocol deviation of three of three).

A robust mixed linear modelling approach, using the ‘lmer’ option Satterthwaite
approximation within the lmer package (Kuznetsova, Brockhoff & Christensen, 2017),
was used for the formal data analysis. This allowed for both random effects (participant)
and fixed effects (site), as used in our sample size calculation. Two models were tested
for this analysis: the first was a fully crossed model with ID (rating_controlled ~condition
+ (1|id/time)); the second was one in which that assumption was not made
(rating_controlled ~ condition + (1|id)). ‘Fully crossed with’ means that every time point
was assessed for every ID. This was indeed the case in this present study’s design.
Therefore, the fully crossed model most closely represents the design of this experiment.
The fully crossed model was compared to the null version of the model (rating_controlled
~ (1|id)) (which does not include condition as a predictor variable). If the ANOVA
that compared two models (e.g. fully crossed and null version) yielded a significant p-value,
the interpretation was that the non-null (e.g. fully crossed) model fits the data better than
the null.

Secondary analysis
A secondary analysis investigated the relationship between a history of trauma and the
surface area showing experimentally induced secondary hyperalgesia, replicating the work
by You, Creech & Meagher (2016). In their study, they summed the results of participants’
individual scores from the CTQ and the Recent Traumatic Events Scale to obtain an
individual stressful life events score. Similarly, in this current study the results of the CTQ
and WMH-CIDI were summed. You, Creech & Meagher (2016) reported a larger surface
area and magnitude of capsaicin-induced secondary hyperalgesia in participants with a
history of trauma than participants without a history of trauma. In this current study, a
univariate regression was conducted to examine whether stressful life events correlate with
the area of secondary hyperalgesia in this sample.
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Assessment of model fit
An assessment of model fit was conducted for both the primary and secondary analyses.
Two assumptions were assessed. If either of the assumptions was violated, the model was
deemed unfit. The two assumptions were: (1) homoscedasticity and (2) normally
distributed residuals (Winter, 2013).

RESULTS
Data were analyzed using R (version 4.1.1, packages: tidyverse (Wickham et al., 2019),
magrittr (Milton Bache & Wickham, 2014), ggplot2 (Wickham, 2016), readxl (Wickham &
Bryan, 2019), lme4 (Bates et al., 2015), gridExtra (Auguie, 2017), grid (R Core Team, 2020),
lmerTest (Kuznetsova, Brockhoff & Christensen, 2017), and here (Müller, 2017)) in RStudio
(RStudio Team, 2019). Results are presented using box-and-scatter plots created with
ggplot2. Boxplot whiskers represent the maximum and minimum values, the ends of the
box represent the upper and lower quartiles, and the horizontal line within the box
represents the median.

Participants
Forty people volunteered to participate in this study and completed the eligibility quiz.
Fourteen volunteers were excluded for: tattoos distal to the anode (n = 5), chronic pain
(n = 5), history of mental illness (n = 3), and being unavailable for testing (n = 1). A sample
of 26 (16 females) was used for this study. The median age was 21 (range 18–55) years old.
No participants withdrew from the study. None of the participants reported taking
analgesic medication prior to the procedure. We did not assess for adverse events;
however, no adverse events were reported by the assessor and participants.

Assessing for confounding of the magnitude of secondary
hyperalgesia by current
The mean (±SD) individual electrical detection threshold for the HFS procedure was
1.60 mA (±0.64 mA). The Shapiro–Wilk test showed that the data on peak secondary
hyperalgesia magnitude were not normally distributed (p = 0.011). Therefore, a Spearman
rank-order correlation test was used to check for a relationship between the calibration
current and the peak magnitude of secondary hyperalgesia. There was no significant
correlation between the calibration current and the peak magnitude of secondary
hyperalgesia (rho = 0.040; p = 0.78).

Blinding assessment of the researchers conducting the experiment
The assessor correctly guessed site allocation 42.31% of the time. A plot showing the relationship
between confidence level and accuracy of guessing condition allocation can be seen in File S5.

Manipulation checks
HFS intensity ratings

All HFS trains were rated in the painful range of the SPARS: mean ± SD 38.77 (±11.34) at
the threat site and 39.07 (±11.31) at the control site (Fig. 2). There was no main effect of
condition on SPARS ratings of the HFS trains (p = 0.646).
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Self-reported anxiety during HFS

The mean (±SD) anxiety ratings were 3.31 (±1.12) for the threat site and 3.42 (±1.13) for
the control site, out of a maximum of five. There was no main effect of condition on
anxiety ratings (p = 0.31) (Fig. 3).

Self-reported threat of tissue damage during HFS

The mean (±SD) threat of tissue damage ratings was 2.81 (±1.30) for the threat site and
2.50 (±1.14) for the control site. There was no main effect of condition on threat ratings
(p = 0.11) (Fig. 4).

Figure 2 Individual SPARS ratings of each HFS train (5 trains × 26 participants) delivered to the
control site (green) and the threat site (red). Each dot represents a rating from one participant for
one train. The SPARS has a non-painful range between −50 and 0, however, only the painful range (+5 to
+50) is shown here because all train ratings were in the ‘painful’ range. Boxplot whiskers represent the
maximum and minimum values, the ends of the box represent the upper and lower quartiles, and the
horizontal line within the box represents the median. Full-size DOI: 10.7717/peerj.13512/fig-2
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Primary analysis
Primary outcome: mechanical punctate stimulation
The primary aim of this study was to test the influence of a manipulation of threat on
magnitude of secondary hyperalgesia. Figure 5 displays the magnitude of secondary
hyperalgesia over time, grouped by condition. There was no main effect of condition on
the magnitude of secondary hyperalgesia (p = 0.73) (Fig. 6).

Assessment of model fit
The best model had the structure: difference_in_ratings ~ condition + (1|id/time). First,
the assumption of homoscedasticity was assessed, i.e. assessment for equal variance across
the range of predicted values. There was slightly increased density on the left, but the
range of the maximum and minimum values seemed consistent across the x-axis.
Therefore, the assumption of homoscedasticity was deemed to have been upheld. Second,
the assumption that residuals were normally distributed was assessed. The Q-Q plot
showed minor deviations from the diagonal reference line and the histogram showed
acceptable distribution. Therefore, the assumption that residuals were normally distributed
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Figure 3 The relationship between condition and anxiety rating (n = 26). Anxiety rating reflects
response to the statement, “At the time of receiving the intense electrical stimulation on my right/left
arm, I felt anxious”, where 1 = strongly disagree and 5 = strongly agree. Each dot represents each par-
ticipant’s response with reference to the control site (green) and the threat site (red), with horizontal jitter
added to aid visibility. Boxplot whiskers represent the maximum and minimum values, the ends of the
box represent the upper and lower quartiles, and the horizontal line within the box represents the
median. Full-size DOI: 10.7717/peerj.13512/fig-3
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was deemed to have been upheld. In conclusion, both assumptions were upheld by the
data, suggesting that the model could be used.

Secondary outcome
Surface area of secondary hyperalgesia

The secondary aim was to test the influence of a manipulation of threat on surface area of
secondary hyperalgesia. Figure 7 displays the mean area of secondary hyperalgesia for each
time point. Secondary hyperalgesia surface area was not predicted by condition (p = 0.16).

Assessment of model fit
The best model had the structure: surface_area ~ condition + (1|id/time). First, assumption
of homoscedasticity was assessed, i.e. assessment for equal variance across the range of
predicted values. Slightly increased density in in the middle and slightly smaller ranges of
the maximum and minimum values on the left than on the right were considered
inconsequential given the robust nature of the lmer method (Loy & Hofmann, 2014).
Therefore, the assumption of homoscedasticity was deemed to have been upheld. Second,
the assumption that residuals were normally distributed was assessed. The Q-Q plot and
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Figure 4 The relationship between condition and threat rating n = 26. Threat rating reflects responses
to the statement “At the time of receiving the intense electrical stimulation, I was concerned that it would
cause damage to my skin on my right/left arm”, where 1 = strongly disagree and 5 = strongly agree. Each
dot represents each participant’s response with reference to the control site (green) and the threat site
(red). Boxplot whiskers represent the maximum and minimum values, the ends of the box represent the
upper and lower quartiles, and the horizontal line within the box represents the median.

Full-size DOI: 10.7717/peerj.13512/fig-4
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Figure 5 Magnitude of secondary hyperalgesia at each time point, by condition. Each dot represents
the SPARS rating to pinprick at the control site (green) and threat site (red) at each time point for each
participant, with the exception that each dot at time −4 represents a mean of three baseline trials. A
negative SPARS rating indicates that the pinprick stimulus was non-painful; a positive SPARS rating
indicates that the pinprick stimulus was painful. The vertical orange line shows the time of induction,
which was 20 min before the first follow-up time point. The horizontal blue line represents ratings of 0—
the exact point of transition from non-painful to painful. Boxplot whiskers represent the maximum and
minimum values, the ends of the box represent the upper and lower quartiles, and the horizontal line
within the box represents the median. Full-size DOI: 10.7717/peerj.13512/fig-5
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Figure 6 Between-condition difference in magnitude of secondary hyperalgesia at each time point,
within each participant (n = 26). Each dot represents the difference for one participant at each time
point. The vertical orange line represents the time of HFS induction, which was 20 min before the first
follow-up time point. The horizontal blue line represents ratings of 0—the exact point at which ratings
transition from non-painful to painful. Boxplot whiskers represent the maximum and minimum values,
the ends of the box represent the upper and lower quartiles, and the horizontal line within the box
represents the median. Full-size DOI: 10.7717/peerj.13512/fig-6
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the histogram shows normal distribution. Therefore, the assumption that residuals were
normally distributed was deemed to have been upheld. In conclusion, both assumptions
were upheld by the data, suggesting that the model could be used.

Semi-structured interview
In general, participants reported being more anxious about the pain associated with the
HFS induction than about the results of the (sham) skin examination. Seven (of 26)
participants also reported trusting that enough precautions had been taken to ensure the
safety of the procedure (File S6).

Planned exploratory analysis: the relationship between trauma scores
and surface area of secondary hyperalgesia
A Shapiro–Wilk test showed that the data were normally distributed (p = 0.48); therefore, a
Pearson’s correlation test was used. There was no statistically significant correlation
between summed trauma score and surface area of secondary hyperalgesia (p = 0.16)
(File S5).
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Figure 7 Surface area of secondary hyperalgesia for each time point, by condition, and within
participant (n = 26). Each dot represents the surface area at the control site (green) or threat site
(red) at each time point for each participant. Boxplot whiskers represent the maximum and minimum
values, the ends of the box represent the upper and lower quartiles, and the horizontal line within the box
represents the median. Full-size DOI: 10.7717/peerj.13512/fig-7
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DISCUSSION
This study aimed to investigate the influence of a manipulation of threat on magnitude
(primary outcome) and surface area (secondary outcome) of experimentally-induced
secondary hyperalgesia in healthy human volunteers. We hypothesized that the threat site
would show greater secondary hyperalgesia (primary outcome) and greater surface area
(secondary outcome) of induced secondary hyperalgesia than the control site. Despite
careful development and pilot-testing of the threat manipulation, it showed no differential
effect in this study. Given no difference in threat between sites, it is unsurprising that the
primary analysis did not show a main effect of condition on magnitude and surface area of
secondary hyperalgesia.

Threat manipulation
It is surprising that the current threat manipulation was ineffective, given that it was based
on a manipulation previously thought to be effective as a threat manipulation (Wiech et al.,
2010). We identified two possible explanations. On the one hand, the threat may have
been manipulated, but to the same extent in both conditions—which would have been
missed by our between-condition manipulation check. On the other hand, the threat may
truly have been unmanipulated. We discuss both possibilities here. First, we consider
two processes by which threat could have been altered to the same extent in both conditions:
(1) competition between threats and (2) generalization of learned threat value.

Competition between threats

Anticipated painfulness of the HFS (which was applied to both arms) may have
competed with and exceeded the threat of tissue damage (which was applied to only
one arm—threat site). Eleven (of 26) participants reported feeling more anxious about
anticipating the pain associated with the HFS than about possible tissue damage—and,
indeed, the painfulness of the HFS may have been a more immediate threat than tissue
damage. Our analyses were designed to detect a difference between arms, so neither our
manipulation checks nor our primary analysis would have detected possible bilateral
modulation of secondary hyperalgesia by threat. However, an unplanned exploratory
analysis indicated a positive correlation between threat ratings at the two sites, which
provides preliminary support for this possibility (File S5).

Generalization of learned threat value
It is also possible that participants generalized the learned threat value of the first induction
to the second induction, regardless of condition. However, exploratory analysis of the
manipulation check data (File S5) revealed no evidence of an order effect on ratings of HFS
intensity, anxiety, or threat of tissue damage.

Next, we consider five influences that could have prevented any manipulation of threat:
(1) safety cues, (2) trust, and requirements for participant safety, (3) sampling bias,
(4) sample-specific habituation to threat and (5) implausible (sham) skin examination and
report.
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Safety cues
The assessor may have served as an implicit safety cue. Certain social interactions are
thought to provide safety cues, thus decreasing the threat value of the situation (Lohr,
Olatunji & Sawchuk, 2007; Tang et al., 2007). A study investigating the influence of the
presence of an observer and threatening information on pain reported during a cold
pressor task found that, under the neutral information condition (i.e. when no threatening
information was given to participants about the cold pressor task), there was no influence
of the presence of an observer on reported pain. However, under a condition of threat (i.e.
when participants were given threatening information about the cold pressor task),
participants reported greater pain severity while facial expressions of pain were inhibited
when no neutral observer was present than when a neutral observer was present during the
procedure (Vlaeyen et al., 2009). This suggests that the observer may have acted as a safety
cue in the presence of a threat manipulation. However, an alternative explanation for an
inhibited facial expression is that the observer act as a threat cue, restricting
communication of pain severity (Karos, 2018; Peeters & Vlaeyen, 2011). In the current
study, participants reported pain severity verbally, but reported anxiety and threat of tissue
damage on a computer, where the screen was not visible to the assessor. If the assessor
acted as a threat cue in this current study, there would likely have been a dissociation
between the verbal and computer-based manipulation checks i.e. there would have been
decreased verbal pain ratings but increased computer-based ratings of anxiety and threat
of tissue damage. Since this was not the case, and the assessor present when the participant
received the threatening information, it seems more likely that the assessor acted as an
implicit safety cue. The current study provided no data to which this possibility can be held
up. Given that few participants reported not being anxious at all, it is more likely that safety
cues than competing threat underlie the failure of the threat manipulation. However, this
implicit safety cueing may have decreased the threat value of the sham skin examination
and report, thus reducing the influence of threat on magnitude and surface area of
secondary hyperalgesia at the threat site.

Trust, and requirements for participant safety
Our manipulation check results may reflect participants’ trust in the researchers, and the
safety requirements for the procedure. Explicitly stating, in the study information, that the
procedure is well-established and safe may have opposed the threat manipulation. This
statement was a requirement of the Human Research Ethics Committee: “This procedure
involves some pain; however, it is a well-established procedure and is known not to cause
any skin damage”. Seven (of 26) participants cited trust in the researchers during the
semi-structured interview. Specifically, one participant reported that they trusted that
enough precautions had been taken to ensure the safety of the procedure. Another
participant reported that they trusted the Human Research Ethics Committee would not
approve an experiment that could cause damage to participants’ skin. Explicitly reassuring
participants of the safely of the HFS procedure could have reduced the plausibility of the
sham skin examination and report, thus reducing any influence of the manipulation on
magnitude and surface area of secondary hyperalgesia.
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Sampling bias
Our manipulation check results may reflect sampling bias. Our sample is unlikely to be
representative of the general population. Low fear of pain and older age are associated with
greater willingness to volunteer for a pain-related study (Karos, Alleva & Peters, 2018).
If this finding extends to our context, low fear of pain in our sample may have opposed our
manipulation. On the other hand, our manipulation was intended to be about tissue
damage, not pain. The relevance of the findings of Karos et al. (2018) to our context is
unclear: both studies included undergraduate students but from different countries, and
under different compensation conditions. Karos et al. (2018) recruited students in Belgium,
who must participate in research for course credit. We recruited any healthy control in
South Africa, where research participation is not mandatory. To our knowledge, there are
no published data on the characteristics of individuals who opt into or out of experimental
pain research in South Africa. Such data would be useful to shed light on potential
sampling bias in experimental pain studies and inform strategies to limit that bias.

Sample-specific habituation to threat
Our manipulation check results may reflect habitual exposure to threat in our sample.
Many South Africans are regularly exposed to contextual threats (Hinsberger et al., 2016):
one in three South Africans feels unsafe walking alone at night (Statistics South Africa,
2019), and continuous traumatic stress is common, given the frequency of domestic
violence, family murders, gangsterism, and physical and sexual assault (Frenkel, Swartz &
Bantjes, 2018; van der Merwe & Kassan-Newton, 2007). In the absence of informative data,
we speculate that repetitive exposure to such contextual threats may contribute to
pain-related neural processes, such as more efficient descending inhibition when exposed
to threat. Further, repetitive exposure to threat has been positively associated with
resilience (Scali et al., 2012). Therefore, high individual resilience may have opposed our
threat manipulation strategy, particularly given the relatively safe laboratory environment.
In fact, an exploratory comparison showed our participants’ CD-RISC scores (mean
(range) 40.81 (32–48)) to be higher than normative data from an international sample of
students and young adults (20.8–33.5) (Campbell-Sills & Stein, 2007; Hartley, 2012; Jones
et al., 2017; Rahimi et al., 2014; Reyes et al., 2018; Shlomi, 2010). Further investigation of
the relationship between trait resilience and resistance to experimental manipulations of
threat would be useful.

Implausibility of (sham) skin examination and report
Finally, our manipulation check results may reflect the (im)plausibility of the (sham) skin
examination and report. Participants may have considered it implausible that the skin on
their one forearm was robust while the skin on their other forearm was fragile. However,
this was not formally assessed. One participant reported that they found the use of the
otoscope to examine the skin “rather odd” (although the assessor explained that the
otoscope was used because of its light and magnification properties, allowing proper
visualization of the skin). If the sham skin examination and report were not believable, it
would have reduced the threat value associated with the HFS at the threat site and thus
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reduced the influence of the manipulation on magnitude and area of secondary
hyperalgesia.

The need for effective threat manipulations for experimental pain
research
There is a large gap in the literature relating to threat; although many researchers and
clinicians invoke threat as an important concept in pain (Crombez et al., 1998; Karos et al.,
2018; Reicherts et al., 2016; Tabor et al., 2015), threat has not been clearly defined and
operationalized in the context of pain. Improved strategies are needed to define and
measure threat associated with pain. Moreover, it is unclear whether different types of
threat influence different physiological processes associated with pain. Implicit and explicit
cues about a stimulus have been shown to change pain, and expected stimulus intensity
affects pain (Arntz & Claassens, 2004; Moseley & Arntz, 2007). There are many candidate
mechanisms by which threat may influence pain (e.g. decreased descending inhibitory
control and increased ascending facilitation), but there are limited data testing these
candidates. Therefore, to inform careful and effective targeting of therapeutic pain
treatments, there is a need to clarify types of threat and the physiological and psychological
mechanisms associated with different types of threat.

Optimizing the threat manipulation
Inducing a threat manipulation in a laboratory setting is known to be difficult; yet there are
strategies to improve the effectiveness of threat manipulations. Threat manipulations are
known to induce “weak…concerns about the pain stimulus” in experimental pain studies
(Vlaeyen et al., 2009)—perhaps because participants know the pain will be short-lived and
because ethical review provides implicit reassurance. Threat manipulations that give
participants threatening information about the experimental procedures have been
successful in previous studies (Jackson et al., 2005; Torta et al., 2019; Van Damme et al.,
2008; Wiech et al., 2010). However, our early piloting of a strategy in which we provided
participants with threatening information about the HFS procedure (rather than the
integrity of the skin at the induction site) was ineffective in eliciting threat of tissue damage
(see File S1: Piloting procedure).

To improve the effectiveness of the sham skin examination and report, we propose three
modifications. First, studies could be structured for a between-group, rather than within-
subject, comparison so that the threat value of anticipation of the HFS at the second site
does not compete with the threat value of the sham skin examination. A comparison
between sensory testing results before and after HFS would provide the outcome.
Additionally, if participants thought it implausible to have “fragile” skin on the one
forearm and “robust” skin on the other forearm, it may be more compelling if the (sham)
skin examination and report were conducted on one arm only, with the other arm not
being examined at all. Alternatively, a (sham) cream (e.g. Vaseline) could be applied to the
skin on one forearm with information that this (sham) cream will make the skin more
fragile/robust. Second, the social context could be adjusted in that the assessor is not in the
room when the participant receives the threat manipulation (i.e. the results of the sham
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skin examination) so that the researcher does not act as a safety cue. Third, the statement
that HFS is known not to cause any skin damage could be removed from the study
information sheet, subject to agreement from the ethics committee.

Summed trauma scores and area of secondary hyperalgesia
Summed trauma scores were not correlated with surface area of secondary hyperalgesia in
the current study. This conflicts with published pilot data in which summed trauma scores
were positively associated with increased surface area but not increased magnitude of
secondary hyperalgesia (You, Creech &Meagher, 2016). Importantly, the current study was
not fully powered to detect this relationship. A possible reason for the conflicting results
may be that our participants had lower summed trauma scores than those in the work by
You, Creech & Meagher (2016).

We propose further experimental studies in the South African context (and other
contexts with high rates of trauma) formally comparing (1) the magnitude of
experimentally induced secondary hyperalgesia in participants with and without a history
of trauma, (2) the effectiveness of different threat manipulations in participants with and
without a history of trauma, and (3) the influence of a threat manipulation on the
magnitude of experimentally induced secondary hyperalgesia in participants with and
without a history of trauma.

Strengths
In the current study, we included manipulation checks assessing both implicit and explicit
threat of tissue damage induced by our sham skin examination and report. The protocol
was locked online and any deviations to the protocol have been declared here, thus
supporting accountability and study replication (Lee et al., 2018). We conducted
semi-structured interviews with participants and gained insight into the possibilities as to
why our sham skin examination and report was unsuccessful. Additionally, this discussion
provides a comprehensive overview of the challenges associated with conducting a threat
manipulation for experimental pain research, which will be of benefit to researchers when
designing a threat manipulation. This study also highlights the need and provides
recommendations for future research investigating the association between threat and
chronic pain among South Africans.

Limitations
An obvious limitation of this study is that the threat manipulation was ineffective.
Therefore, whether threat of tissue damage is associated with greater magnitude and area
of secondary hyperalgesia remains unanswered. Additionally, this study was not fully
powered to detect the relationship between summed trauma scores and area of secondary
hyperalgesia. Finally, inclusion of a psychophysiological outcome that could indicate
implicit threat, such as heart rate, skin conductance response, or acoustic startle response,
could have clarified the influence of the manipulation on implicit threat, and is suggested
for future work.
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CONCLUSION
The current study found that an adapted version of a previously successful threat
manipulation (sham skin examination and report) was ineffective in eliciting a differential
threat of tissue damage. Unsurprisingly, the primary analysis confirmed that neither
magnitude nor area of secondary hyperalgesia was predicted by condition (i.e. which arm
received the HFS under the supposedly threatening condition). We have extensively
discussed opportunities to develop effective threat manipulations for experimental pain
research, which we hope will be of benefit to the research community in taking this line of
inquiry forward.

The current study also did not find a relationship between summed trauma scores and
surface area of secondary hyperalgesia. This conflicts with published pilot data in which
summed trauma scores were correlated with increased surface area but not increased
magnitude of secondary hyperalgesia (You, Creech & Meagher, 2016). However, the
current study was not fully powered to detect this relationship. Further research is required
to clarify the potential relationship between trauma history and the magnitude and area of
secondary hyperalgesia.
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