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Abstract

Background: To connect gene expression with cellular physiology, we need to follow levels of proteins over time.
Experiments typically use variants of Green Fluorescent Protein (GFP), and time-series measurements require specialist
expertise if single cells are to be followed. Fluorescence plate readers, however, a standard in many laboratories, can in
principle provide similar data, albeit at a mean, population level. Nevertheless, extracting the average fluorescence per
cell is challenging because autofluorescence can be substantial.

Results: Here we propose a general method for correcting plate reader measurements of fluorescent proteins that
uses spectral unmixing and determines both the fluorescence per cell and the errors on that fluorescence. Combined
with strain collections, such as the GFP fusion collection for budding yeast, our methodology allows quantitative
measurements of protein levels of up to hundreds of genes and therefore provides complementary data to high
throughput studies of transcription. We illustrate the method by following the induction of the GAL genes in
Saccharomyces cerevisiae for over 20 hours in different sugars and argue that the order of appearance of the Leloir
enzymes may be to reduce build-up of the toxic intermediate galactose-1-phosphate. Further, we quantify protein
levels of over 40 genes, again over 20 hours, after cells experience a change in carbon source (from glycerol to glucose).

Conclusions: Our methodology is sensitive, scalable, and should be applicable to other organisms. By allowing
quantitative measurements on a per cell basis over tens of hours and over hundreds of genes, it should increase our
understanding of the dynamic changes that drive cellular behaviour.

Keywords: Gene expression, Fluorescence, Plate readers, Spectral unmixing, Budding yeast, High throughput
measurements, Systems biology

Background
Most organisms live in changing environments, and gene
and protein networks respond dynamically to extracel-
lular change. Understanding these dynamic responses is
one of the challenges of biology [1], but it is difficult to
monitor changes within cells as they happen. Microscopy
[2], particularly when combined with microfluidics [3],
offers a way forward, but requires specialized expertise
and equipment.

Most laboratories do, however, have access to a flu-
orescence plate reader. Fluorescence plate readers allow
multiple experiments to be run in parallel on populations
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of cells in a temperature-controlled environment with
optional agitation. Such experiments produce quantita-
tive time-course data measuring absorbance and fluores-
cence. These data provide information about cell growth
and, by using genetically encoded fluorescent reporters,
gene expression. Plate readers report only on the mean
response of the population of cells and information on
the variation around that mean is lost. Nevertheless, such
mean data is often suitable for many applications either in
itself [4,5] or as additional data to support experiments at
the single-cell level.

There are two factors that complicate the analy-
sis of data from plate readers. First, when measuring
absorbance, optical density (OD) does not always increase
linearly with the density of cells, although this effect can

© 2014 Lichten et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto: peter.swain@ed.ac.uk
http://creativecommons.org/licenses/by/2.0


Lichten et al. BMC Biotechnology 2014, 14:11 Page 2 of 11
http://www.biomedcentral.com/1472-6750/14/11

be corrected with a calibration procedure [6,7]. Second,
the measured fluorescence, in addition to containing
emissions from the fluorescent proteins under observa-
tion, also includes contamination from other sources:
autofluorescence of the plate and media and autofluo-
rescence from the cells. For weakly expressed proteins,
this autofluorescence can dominate the signal from the
fluorescent reporter.

Developing an effective technique for separating out
the signal of interest from the background autofluo-
rescence would make it possible to collect quantita-
tive data on the mean level of gene expression per cell
over time. While various methods have been developed
for Escherichia coli and applied to fusions of promot-
ers and Green Fluorescent Protein (GFP) [4,8,9], the
few published examples of measuring protein expression
using a fluorescence reader in other organisms such as
yeast have been limited to highly expressed proteins (for
instance [10]).

In the following, we describe a technique for quanti-
fying plate reader experiments using spectral unmixing
and show that we can capture and quantify a wide range
of levels of protein expression in the budding yeast Sac-
charomyces cerevisiae. Budding yeast, one of the world’s
most well-studied organisms, has long been a focus for
high throughput experiments. We demonstrate that our
method is robust enough to allow medium through-
put measurements of protein levels in yeast using, for
example, the GFP fusion collection [11]. It therefore pro-
vides an additional type of data to complement other
high throughput characterizations of gene expression,
which typically consider only transcription. We illustrate
the methodology with two examples: the expression of
genes for galactose import and metabolism (Figure 1),
a classic example of a eukaryotic response to an envi-
ronmental change [12], and the response to a shift
from a poor to a rich carbon source, where we study
expression of 44 genes from the GFP fusion collection
(Figure 2).

Results and discussion
Correcting autofluorescence following a procedure for
bacteria is not appropriate for budding yeast
For experiments with Escherchia coli, the fluorescence
of interest is often corrected using the autofluorescence
of wild-type cells as an estimate for the autofluores-
cence of cells expressing fluorescently tagged proteins
[4,8,9]. For example, to correct for autofluorescence at
a particular time point, either the fluorescence per cell
for the wild-type cells (the fluorescence at that time
point divided by the OD at the same time point) was
subtracted from the fluorescence per cell for tagged
strains [8] or the fluorescence levels from the wild-
type strain interpolated to the OD of the tagged strain

was subtracted from the fluorescence of the tagged
strains [9].

Such correction procedures, however, require that both
the tagged and wild-type strains have identical levels of
autofluorescence. Typically, though, there are differences
in growth curves between strains because of biological
reproducibility, perturbations generated by the fluores-
cent reporter, or both. Such differences are important
because autofluorescence need not only depend on the
size and stage of growth of the population, but also on
the contents of the growth media, which changes over
time as nutrients are depleted by the cells and products
excreted. Indeed, examining the autofluorescence of wild-
type cells revealed that the autofluorescence does vary
with the type and amount of sugar available, at least for
budding yeast. Further, for low levels of gene expres-
sion, strains with fluorescently tagged proteins could have
lower fluorescence values than wild-type cells, leading to
predictions, with the correction procedure of [8], of neg-
ative levels of fluorescence per cell (Methods: Figure 3a).
Ideally then, we would like to correct each cell by its
own autofluorescence rather than by an average value
calculated from other cells in a different well in the
plate reader.

Spectral unmixing corrects autofluorescence
By measuring emissions at two wavelengths, rather than
the usual one, we can infer the mean autofluorescence
of a particular population of cells in a given well at
a given time and so partly meet this goal. We use
a single excitation wavelength, but measure emissions
both at the wavelength appropriate to the fluorescent
reporter and at a higher wavelength where most emis-
sions come from autofluorescence. For example, the
emission spectrum of autofluorescence is broader than
that of enhanced GFP (Methods: Figure 3b), and we
can infer the extent of autofluorescence emissions in
the wavelength used for the fluorescent reporter from
the autofluorescence emissions measured at the high
wavelength.

We use spectral or linear unmixing to remove autoflu-
orescence [13,14]. In linear unmixing, signals measured
at each wavelength are assumed to be a linear combi-
nation of the different components in the sample. For
the plate reader data, we assume that each measured flu-
orescence is a linear sum of autofluorescence and the
fluorescence from any fluorescent reporter present in the
cells. At each time point, we make two fluorescence mea-
surements: excitation at 485 nm (near the excitation peak
of GFP) and emission at both 525 nm (near the emis-
sions peak of GFP) and at 585 nm (where GFP emissions
are much reduced but autofluorescence is still substan-
tial: Figure 3b). For all fluorescence measurements, we
first remove the autofluorescence of the media and plas-
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Figure 1 Spectral unmixing reveals the timing of expression of the GAL genes. Cells were grown in 2% raffinose, transferred into galactose
and followed in the plate reader. a) Left-hand axis: Time-series data for mean fluorescence per cell for the Leloir enzymes Gal1, Gal7, and Gal10 and
for the galactose permease, Gal2, and the regulators Gal3 (an intracellular sensor of galactose) and Gal80 (a repressor of GAL expression) in 1%
galactose. Right-hand axis: Relative cell density (orange). b) The same data in a, but with the time-series of expression for each gene normalized by
its maximum value. The normalized level of expression is indicated by the colour bar. c) A similar plot to b but for GAL expression in 0.1% galactose.
Derivation of the error bars shown is given in Methods.

ticware by subtracting the fluorescence of wells containing
only media.

For our analysis, we assume that: (i) the ratio of emis-
sions of autofluorescence at 585 nm to 525 nm after
excitation at 485 nm is the same for the wild-type and
tagged strains at a given OD, and (ii) that the autofluores-
cence and the fluorescence of the tagged strain combine
linearly. Our assumption (i) is weaker than assumptions
of equal growth curves and equal levels of autofluores-
cence per cell required by the bacterial correction method.
Assumption (ii), as mentioned, is standard (see, for
example, [15]).

For each time point, we have four measurements of flu-
orescence: two for fluorescently tagged strains and two for
wild-type strains. The two measurements for the tagged
cells are:

f525 = g + a

f585 = rgg + raa (1)

where f525 is the fluorescence measured at 525 nm and
f585 is the fluorescence measured at 585 nm. The sym-
bol g denotes fluorescence from the protein tags with
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Figure 2 Spectral unmixing allows dynamic, medium throughput quantification of levels of proteins. Cells were grown in 3% glycerol,
transferred into media with 3% glycerol and 2% glucose, and followed in the plate reader with data taken every 12 minutes. Genes are ordered by
maximum level of expression with this maximum decreasing across the rows and down each column (Hxk1p has the highest maximum expression;
Pol32p has the lowest maximum expression). Fluorescence values are in arbitrary units, with long tick marks showing a change in fluorescence of a
factor of 10. The y-axes in the first two rows ranges from 103 to 104 units. The blue curves are protein levels per cell for genes with increased mRNA
expression from 0-1 hours, using the data from Wang et al. [19]; the green curves are protein levels per cell for genes with decreased mRNA expression
from 0-1 hours. Cell density initially increases and then plateaus at approximately 12 hours. Error bars are shown with a dashed line (Methods).

excitation at 485 nm and measurement at 525 nm,
and a denotes autofluorescence also from excitation at
485 nm and measurement at 525 nm. We wish to
determine g. For emissions at 585 nm, we write the flu-
orescence from the tagged proteins as a product of a
constant rg and g and the autofluorescence as the prod-
uct of ra and a. The constant rg is the ratio of enhanced
GFP emissions at 585 nm to that at 525 nm. Normal-
ized emission of enhanced GFP at 525 nm is 0.570 and
normalized emission at 585 nm is 0.065 implying that
rg � 0.114 (data from R. Tsien laboratory at U.C. San
Diego). This number is consistent with the same fluo-
rescence ratio measured from cells strongly expressing
an EGFP-tagged protein (Methods: Figure 3b). The two

wild-type measurements only have contributions from
autofluorescence:

f WT
525 = aWT

f WT
585 = raaWT (2)

where ra, the ratio of the autofluorescence at 585 nm
to that at 525 nm, is assumed to be the same for both
wild-type and tagged cells (assumption (i) above), but
the autofluorescence of the wild-type cells, aWT, can
be different from the autofluorescence of the tagged
cells, a.
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Figure 3 Estimating the mean fluorescence per cell requires several preliminary steps. a) Correcting autofluorescence using the wild-type
fluorescence per cell, following the method of de Jong et al. [8] developed for bacteria, can lead to negative estimates in yeast. Correction using the
bacterial method is shown in red; correction using spectral unmixing is shown in blue. Data are for cells grown in 2% raffinose and then grown
further in 2% raffinose in the plate reader. Raffinose does not induce GAL expression. b) Emissions spectra for autofluorescence and enhanced GFP
(EGFP) following excitation at 485 nm. Cells were grown in 2% raffinose and then in 2% galactose for the time indicated. Data for purified EGFP were
obtained from the website of the R. Tsien laboratory at U.C. San Diego. c) The OD correction curve: relative cell density obtained from diluting a
culture by known factors plotted against the measured OD of the diluted cultures. The blue line shows a regression and the shading gives 95%
confidence limits (plus and minus twice the standard deviation of the posterior distribution found using a Gaussian process). d) Estimating ra : the
ratio of fluorescence emitted at 585 nm to 525 nm plotted versus OD. The blue line shows a regression and the shading gives 95% confidence limits
(found using a Gaussian process). Cells were grown in 2% raffinose and transferred to 1% galactose in the plate reader.

In essence, our method is then to estimate ra from the
wild-type data, Eqs. 2, as

ra = f WT
585

f WT
525

, (3)

and then solve Eqs.1 for g, the signal of interest:

g = raf525 − f585
ra − rg

(4)

where the ra is calculated for wild-type data at the
same OD as the OD of the tagged strain. Dividing g

by OD then gives an estimate of the fluorescence per
cell.

In practice, the data are often noisy (Figure 3d) and
we allow ra to change smoothly with OD. Further,
we often wish to calculate error bars on our esti-
mates of fluorescence, g, and so need to determine how
errors in estimating ra propagate through to the esti-
mation of g (Methods). Finally, we present the fluores-
cence per cell by dividing g by the appropriate relative
cell density, which we find by correcting OD levels
for any non-linear dependence on absolute cell density
(Methods).



Lichten et al. BMC Biotechnology 2014, 14:11 Page 6 of 11
http://www.biomedcentral.com/1472-6750/14/11

Time-series measurements for expression of GAL genes
Applying spectral unmixing to measurements of six pro-
teins in the GAL pathway tagged with enhanced GFP
reveals the timing of GAL gene expression (Figure 1).
Cells were grown in 2% raffinose and then transferred
to galactose and followed in the plate reader. The three
Leloir enzymes, Gal1p, Gal7p, and Gal10p, are strongly
expressed in response to galactose and convert galactose
into a form of glucose [12]. Other GAL proteins regulate
the response: Gal2p is a galactose permease; Gal3p is a
sensor of intracellular galactose and its activation promotes
induction of the GAL genes; and Gal80p is a transcrip-
tional repressor and (indirectly) reduces GAL expression.
Both GAL3 and GAL80 are only weakly induced, but their
expression can still be detected (Figure 1a Inset).

We see (Figure 1b and c) that levels of Gal7p reach
their maximum before levels of Gal1p and Gal10p, the
other Leloir enzymes, and the ability of Gal7p to remove
a toxic intermediate may explain this early expression.
Galactose is converted to galactose-1-phosphate, glucose-
1-phosphate, and then glucose-6-phosphate before being
able to enter glycolysis [12]. This process must be effi-
cient because galactose-1-phosphate is toxic to cells [16].
Gal7p is a uridyl transferase that converts UDP(uridine
diphosphate)-glucose and galactose-1-phosphate to UDP-
galactose and glucose-1-phosphate. It thus removes toxic
galactose-1-phosphate, which is created by the combined
action of Gal1p and Gal10p. Having sufficient quantities
of Gal7p ready early may therefore prevent a deleterious
build up of toxicity.

Excluding the regulatory proteins, Gal3p and Gal80p,
the permease Gal2p is expressed first, which may ensure
that cells take advantage of the new carbon source
as quickly as possible. Both negative feedback through
expression of the repressor Gal80p and positive feed-
back through expression of the sensor Gal3p initiate at
similar times and levels of both proteins peak approxi-
mately simultaneously. Naively, Gal3p expression might
have been expected to precede expression of Gal80p to
ensure that the system is initially dominated by positive
feedback generating a fast response. The strength of feed-
back, however, is determined not just by levels of proteins
but also by binding affinities, and therefore positive feed-
back through Gal3p could still dominate expression at the
promoters of the Leloir enzymes. Interestingly, both reg-
ulatory proteins peak earlier for lower concentrations of
galactose (although levels of measurement noise are high).

Probing gene expression using the collection of GFP fusion
proteins
Our method is sufficiently robust that we can simulta-
neously assay at least tens of genes. A collection of over
4,000 strains of budding yeast has been created [11], each
of which expresses a different GFP fusion protein and

that potentially allows for high throughput studies of gene
expression. Surprisingly the collection has been rarely
used in this way, and then only for tens of genes (for
instance [17]) or with custom-built microfluidics [18] and
never apparently with plate readers. We now show that
our methodology combined with robotics could straight-
forwardly allow expression of hundreds of genes to be
followed over time.

After growing 45 strains from the GFP collection in
3% glycerol, we transferred each strain into 2% glucose
and followed expression in the plate reader (Figure 2). An
increased availability of glucose to starved cells of bud-
ding yeast is known to cause substantial transcriptional
reprogramming [19]. We had two replicates of each strain,
which with two further wells containing wild-type strains
and four containing media, filled a 96-well plate. One
strain (SHE1-GFP) did not grow, but all other genes were
amenable to our analysis.

A similar experiment has been performed by Wang et al.
[19], but with gene expression followed by microarrays
up to one hour after the cells were placed in glucose. We
used this data to select our strains: those with the largest
positive or negative changes in mRNA levels relative to
their median level and that were in the GFP collection. To
quantify the change in mRNA levels, we used the differ-
ence between levels at 0 and 60 minutes after exposure
to glucose normalized by the median level of mRNA for
that gene (measurements were taken at 0, 20, 40, and 60
minutes).

In general, this measure of change in mRNA based on
the microarray data was a poor predictor of the dynamics
of the corresponding protein (Figure 2), in agreement
with conclusions drawn from proteomics [20]. Although
all 17 genes that had decreasing levels of mRNA also had
decreasing levels of protein (except perhaps Pgm2p –
row 2 & column 1), only one out of the 27 genes with
increasing levels of mRNA had increasing levels of protein
(Lys1p – row 1 & column 2): the vast majority of genes
had falling levels of protein. We emphasize though
that our experiment followed cells for almost 24 hours
whereas the microarray experiment ran for 1 hour and
that the cells stopped growing after about 12 hours when
the cell density, as measured by OD, flattened. Reflecting
this loss of growth, expression from many genes levels off
around 12 hours (Figure 2).

Genes with decreasing levels of mRNA do typically
have high levels of proteins, at least initially (they mostly
appear in the top half of Figure 2), indicating that these
proteins are potentially required for growth on glycerol
but not for growth on glucose. Indeed, the hexokinases,
Hxk1p (row 1 & column 1) and Glk1p (row 3 & column
4) are induced by non-fermentable carbon sources and
repressed in glucose [21]. Further, Acs1p (row 1 & column
3), an acetyl-coenzyme A synthetase, Ach1p (row 1 &
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column 4), an acetyl coenzyme A hydrolase, Ald3p (row
5 & column 4), an aldehyde dehydrogenase, and Pdc6p
(row 7 & column 1), a pyruvate decarboxylase, have been
reported to have their expression repressed in glucose
[22-25], as has Cat8p (row 8 & column 2), an activator of
a variety of genes under non-fermentative growth [26].

Where expression has been investigated, our data
largely support previous studies. They are consistent with
the expectations for levels of Pgm2p (row 2 & column 1),
phosphoglucomutase, which should rise as glucose falls
[27], for Hsp30p (row 3 & column 2), a heat shock protein
present in stationary phase [28], and for Glc3p (row 3 &
column 3), glycogen branching enzyme, whose transcrip-
tion peaks when glucose is exhausted (at around 12 hours)
[29]. Nevertheless, we do not see evidence of the expected
induction during late exponential phase of GPH1 (row 2
& column 4) [30], a glycogen phosphorylase.

Conclusions
We have introduced a new method to quantify protein
expression that uses plate reader measurements of emis-
sions at two wavelengths and spectral unmixing to correct
for autofluorescence. Our approach uses linear unmixing
and is similar in spirit to others that have been pro-
posed to solve the problem of autofluorescence during
flow cytometry [31,32]. While we have considered just one
fluorophore, the methodology could readily be applied to
samples with two or more [13].

Our method allows medium throughput measurements
of gene expression through resources, such as the collec-
tion of GFP-protein fusions in budding yeast [11]. Protein
levels from the expression of hundreds of genes can be fol-
lowed over tens of hours. Although other approaches have
been applied to bacteria [4,8,9], these methods require
that the growth curves of a wild-type and all tagged
strains are identical and consequently do not scale to
hundreds of strains with different tagged genes, which
will not all have the same growth curves. The work in
bacteria, though, used GFP-promoter fusions rather than
GFP-protein fusions, and promoter fusions may perturb
growth rates less (although biological reproducibility will
still be an issue).

Time-series data describing the mean behaviour of a
typical cell in population of cells is ideal for testing math-
ematical models of cellular behaviour based on ordinary
differential equations [5], and our analysis allows such
data to be generated from plate readers. Further, and
unlike other methods, we provide error bars on the flu-
orescence per cell that combine both measurement error
and the errors generated by correcting for autofluores-
cence. Such error bars are invaluable when fitting models
to data [33,34].

High throughput studies of gene expression typically
focus on levels of mRNA, but levels of mRNA need not

correlate with levels of protein [20]. Our methodology
combined with strain collections such as the GFP fusion
collection will allow complementary data at the level of
proteins to be gathered using standard laboratory equip-
ment. This data will increase our understanding of physi-
ological change and cellular decision-making because it is
largely proteins, not mRNA, that enact such responses.

Methods
Reagents
Low fluorescence synthetic complete media (SC) was
made following Sheff et al. [35]. We determined that the
primary source of media fluorescence was the ammonium
salts solution and that the media’s fluorescence increased
significantly after both autoclaving and a few days of stor-
age at room temperature. To reduce media fluorescence
we therefore used filter sterilisation instead of autoclav-
ing, stored the ammonium salts solution at -20°C, made
smaller batches of media to minimise the storage time,
and stored the media at 4°C. Sugar solutions were made up
from D_(+)_Raffinose pentahydrate, D_(+)_Glucose, and
D_(+)_Galactose (Sigma-Aldrich, Steinheim, Germany).

We used black optical bottom 96-well plates (cat. no.
265301, ThermoScientific/Nunc, Rochester, New York,
USA), in which we found reduced autofluorescence com-
pared with clear plates. For sterilisation, they were placed
in a UV cross linker on high for 2 min (1 min face
up, 1 min face down). Film covers were Polyolefin Seal-
ing Tape (cat. no. 235307 Nunc), which contributed less
autofluorescence than clear polystyrene lids and reduced
evaporation.

Yeast strains
The strain used was haploid a BY4741 S. cerevisiae
(obtained from EUROSCARF, Frankfurt). To construct
strains expressing GAL protein-EGFP fusions, we fol-
lowed the procedure described by Janke et al. [36]. The
pYM28 plasmid with an EGFP tag and marker HIS3MX6
(accession number P30240, EUROSCARF toolbox) [37]
was amplified with primers containing 40-50 bp of the
region just upstream of the target gene’s stop codon,
followed by CGTACGCTGCAGGTCGAC (forward
primer), and 40-50bp of the reverse strand for the region
just beyond the target gene’s coding sequence, followed
by ATCGATGAATTCGAGCTCG (reverse primer). PCR
products were verified with gel electrophoresis. Then,
following PCR product purification with a Qiaquick PCR
purification kit (Qiagen), yeast transformation was car-
ried out following a modified LiOAc protocol [37]. For
growth and selection, yeast were spread on SC plates con-
taining 2% glucose lacking histidine and incubated for 2-3
days at 30°C. Positive colonies were purified by streaking
onto fresh plates. Cultures were stored at -80°C in media
containing 10% glycerol.



Lichten et al. BMC Biotechnology 2014, 14:11 Page 8 of 11
http://www.biomedcentral.com/1472-6750/14/11

Preparing galactose induction experiments
Cells were grown overnight (17-19 hours) in 5 mL SC
with 2% raffinose in glass test tubes at 30°C with shaking
at 200-230 rpm. In the morning, cells were diluted 10×
into fresh SC with 2% raffinose and incubated further at
30°C with shaking at 200-230 rpm. After 6-8 hours, 180
μL of each sample was placed in wells of a 96 well plate
to measure the OD. Then, cells were transferred to 15 mL
plastic tubes and washed: they were spun (5 min at 3000
rpm = 1811 RCF) to form a pellet, supernatant was dis-
carded, pellet was resuspended in 11 mL sterile water, and
then cells were spun again (5 min at 3000 rpm).

While cells were being washed, the OD was measured
and dilutions were calculated to obtain starting OD val-
ues for the experiment of 0.25 (wild-type) or 0.3 (cells with
enhanced GFP tag). Wild-type cells started at a lower OD
to ensure that autofluorescence corrections are possible
from the beginning of the induction period. When wash-
ing was complete, cells were resuspended in the volume of
low fluorescence SC media indicated by the dilution cal-
culations. OD was measured again and adjustments made
as necessary to achieve desired starting OD values.

Finally, 180 μL aliquots of each sample were then pipet-
ted into wells of a 96-well plate. 20 μL of the appropriate
sterile sugar solutions in water were then added to the
wells. A polyolefin film cover was used to cover the plate,
and plate reader measurements were begun immediately.

Measuring using the plate reader
Plate readers were from the Tecan Infinity M200 series
(for combined OD and dual-wavelength fluorescence
measurements) (Tecan Group Ltd., Switzerland). We set
the temperature at 29.9°C (range 29.4°-30.4°C) with lin-
ear shaking (6 mm amplitude at 200-220 rpm). For OD
measurements, the absorbance wavelength was 595 nm
and the measurement bandwidth was 9 nm with 15 reads
and 0 ms settle time. For fluorescence measurements, the
excitation wavelength was 485 nm, the excitation band-
width was 9 nm, the emission wavelength was 525 nm (or
585 nm), the emission bandwidth was 20 nm, and reading
mode was top with 0 μs lag time, 20 μs integration time,
10 reads, and 0 ms settle time. The gain was set manually
to 105. To minimise photobleaching and fluorescence-
induced toxicity, measurements were made no more often
than every 10 minutes. The plate reader was switched on
and adjusted to the correct temperature around 1-2 hours
prior to the experiment.

Medium throughput measurements of gene expression
Selected strains from the yeast GFP fusion collection
(Life Technologies, California) were cultured in 100 μl SC
with 3% glycerol (w/v) in a 96 well plate at 30°C for 16
hours with shaking. A Biomek FX liquid handling robot
(Beckman Coulter) was used to dilute the cultures 1/10

into a fresh plate in SC with 3% glycerol. This plate was
incubated for 7 hours at 30°C to obtain log phase cells (OD
between 0.2 and 0.6 in all cases). An assay plate was then
prepared by the Biomek FX in which each well contained
100 μl of log phase cell suspension diluted into a total of
200 μl SC with 3% glycerol (w/v) and 2% glucose (w/v).
Fluorescence and optical density data were then recorded
using the plate reader.

Data analysis
A direct approach can be used, which although straight-
forward does not allow estimates of error and can give
negative values of the fluorescence per cell. We estimate
the curve ra, which is the ratio of the autofluorescence
at 585 nm to that at 525 nm, as a function of OD
(Eq. 3) by calculating the mean of f WT

585 / f WT
525 over all repli-

cates at each time point. To determine the OD at each
time point, we average OD values over all replicates and
then smooth the resulting average OD curve using local
regression with a second degree polynomial (the rloess
option in Matlab’s smooth command (Mathworks,
Natick, MA)). Each time point therefore corresponds to
one average OD value of the wild-type strain. To find the
fluorescence of the tagged strain, we find the value of ra
at the corresponding OD, with interpolation when nec-
essary, and then use Eq. 4 to find g for each replicate.
We average g over all replicates and smooth the result-
ing curve using local regression. Dividing this smoothed
curve by the (corrected) OD measurements for the tagged
strain gives the mean fluorescence per cell as a function of
time.

Gaussian processes
We use Gaussian processes to more robustly analyze the
data because we can then specify the degree of smooth-
ness of the fits, can make interpolations between and
beyond data points, and can straightforwardly propagate
errors from one stage of the data analysis to the next.

A Gaussian process is an infinite collection of random
variables with each variable associated with a point in
some range of an input variable and with any finite num-
ber of these random variables having a joint Gaussian
distribution [38]. Time is a typical input variable. A
Gaussian process is entirely specified by its mean and
covariance, both of which are functions of the input vari-
able. When fitting data, we initially consider a Gaussian
process with zero mean and with a particular covariance
function. The choice of covariance function determines
an a priori distribution over functions so that samples
from the Gaussian process plotted over many input points
have characteristic behaviours. For example, if the covari-
ance function is of the neural network form then sam-
pled functions have an a priori sigmoid-like shape. If the
covariance function is squared exponential, then sampled
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functions smoothly fluctuate. Given data with measure-
ment noise that is Gaussian, additive, and independently
and identically distributed, we can analytically calculate
the a posteriori mean and covariance function of the
Gaussian process by conditioning on the data the joint
distribution of both the observed data and the predicted
values. By sampling from this a posteriori Gaussian pro-
cess, we can generate functions consistent with the data
and our choice of a priori covariance function. The vari-
ation in these functions is a measure of the error in
the fitting. Covariance functions are specified by param-
eters, called hyperparameters, and we choose the most
appropriate hyperparameters by maximizing the marginal
likelihood [38] – the probability of the data given the
input points – and so by maximizing the evidence for
our choice of covariance function. We use a truncated
Newton algorithm (from the Python module SciPy) for all
optimizations.

Correcting the growth curve to be proportional to cell density
To ensure a linear relationship between OD and cell den-
sity (the number of cells per unit volume), we used dilu-
tion to have an accurate if relative measure of cell density
[7]. We diluted a yeast culture (grown overnight on 2%
glucose) at a known high OD in a series from 1× to 256×
in SC media. The cell density of the last sample in the
series is therefore 256 times smaller than the cell density
of the original sample. By comparing the measured ODs
of these samples to their known relative cell densities, we
observed that the deviation from linearity begins around
an OD of 0.5 (Figure 3c). To correct OD measurements,
we would like to find a relative cell density from a mea-
sured OD and so performed a regression on the data of
Figure 3c. We used a Gaussian process for the regression
with a covariance function that is the sum of a squared
exponential covariance function and a linear covariance
function. Such a covariance function generates smooth
functions that increase as the OD increases [38]. For
absolute quantification, we used a Neubauer bright-line
cytometer (depth: 0.100 mm, grid surface: 0.0025 mm2)
imaged on a Nikon Eclipse Ti microscope to estimate that
a relative cell density of 1.0 for the calibration curve, corre-
sponding to an OD of around 1.2, has an absolute density
of 1.46 × 107 cells/mL.

Estimating the mean fluorescence per cell and its error
To find the mean fluorescence per cell and an estimate
of its error, we use Gaussian processes. First, we cor-
rect the data for the OD of the media in which the cells
grow and for its fluorescence. Second, we estimate the
curve ra as a function of OD (Eq. 3) using data from
the wild-type strain, and generate sample ra functions to
determine how errors in measuring ra affect estimates of
mean fluorescence. Third, for each time point, we use

the measurements of fluorescence at 525 nm and 585 nm
for the fluorescently tagged strain, the samples of ra, and
samples of the OD correction curve to find a probability
distribution of the estimates of the fluorescence per cell.
The mean and standard deviation of this distribution are
our best-fit value and its error.

Correcting for the media: Although we expect both the
OD and fluorescence measured in wells containing only
media to remain constant over time, both change slightly
during the experiment reflecting perhaps small changes in
the plate reader. We use a Gaussian process with a squared
exponential covariance function to fit data from the media
for all replicates. Regression with Gaussian processes typ-
ically assumes a constant measurement error but the
measurement error in our case changes with time, at least
for some of the data sets. We therefore first estimate the
measurement errors using the standard deviation of the
10 nearest data points to each data point, and then run
a regression with a Gaussian process with measurement
errors fixed at these estimated values. If we fail to find
hyperparameters by maximizing the marginal likelihood
because the optimization algorithm fails to converge, we
try an second fit where the measurement error is assumed
constant and is itself fit as part of the optimization. Using
this combination of methods, we could automatically fit
all media data. The OD of the media as a function of time
was subtracted from all OD measurements, and the fluo-
rescence of the media as a function of time was subtracted
from all fluorescence measurements.

Fitting wild-type data to find ra: From Eq. 3, ra at a par-
ticular level of OD is given by the ratio of fluorescence at
585 nm to that at 525 nm for wild-type cells. Figure 3d
shows a typical example of this data. We use a Gaussian
process with a neural network covariance function, which
generates sigmoid-like functions, to find ra. We there-
fore assume that the measurement error in measuring
the ratio of fluorescences has a Gaussian distribution.
From Figure 3d, the measurement error changes with OD,
and we empirically estimate the measurement error at
each OD as the standard deviation of the 20 nearest data
points to the data point at that OD. We use this estimated
measurement error in our regression (Figure 3d).

We used sampling to estimate how errors in fitting ra
affect the fluorescence per cell. We sampled tens of ra
functions that are consistent with the data and which dif-
fer only because of measurement errors, at least given our
assumptions. We can therefore determine the error in the
estimated fluorescence per cell by finding the standard
deviation of the distribution generated by correcting the
fluorescence of the tagged strain by each of these sam-
ple ra functions. Although using Gaussian processes make
this sampling straightforward, we should sample ra at the
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OD levels measured for the tagged strain, not those for the
wild-type strain. We can interpolate ra to these OD values
using standard techniques [38], but we must also interpo-
late the measurement errors to the expected measurement
error in ra at the OD levels of the tagged strain. We use
regression with another Gaussian process to fit and inter-
polate the empirical measurement errors, with a squared
exponential covariance function to generate smooth func-
tions. With the interpolated measurement errors and the
best-fit hyperparameters of the neural network covariance
function found from the wild-type data, we can sample ra
functions.

Fitting the data from the tagged strain to find g: To
find the fluorescence of the tagged strain, g, we use a
Bayesian approach with uniform prior probabilities so that
the posterior probability of g is proportional to the likeli-
hood of g given the data [39]. From Eq. 1, and, assuming
Gaussian measurement errors for measuring each fluores-
cence value, then the likelihood of g at a particular time
point is

P( f525, f585|ra, rg , g, σ525, σ585)

∼
∫ ∞

0
da (σ585σ525)

−1 exp
[
− ( f525 − g − a)2

2σ 2
525

]

× exp
[
− ( f585 − rgg − raa)2

2σ 2
585

]

∼ (
σ 2

585+r2
aσ 2

525
)− 1

2 exp
[
− ( f585−raf525−(rg − ra)g)2

2(σ 2
585 + r2

aσ 2
525)

]

(5)

where σ525 is the measurement error at 525 nm and
σ585 is the measurement error at 585 nm. In Eq. 5, we
have extended the range of integration of the autofluores-
cence, a, to −∞ to ∞ to perform the integration, which
should give little effect if the posterior distribution of a is
sufficiently peaked at a positive value of a [39].

We wish to determine both the best-fit value of g and
its error. We do so by generating a distribution of sam-
ples of g consistent with the data and take the mean value
of g as the best estimate and its standard deviation as the
error in this estimate. We sample g from Eq. 5. For each
replicate, we generate 50 samples of ra functions at the
OD levels of the tagged strain. Using the one-to-one rela-
tionship between OD and time (Figure 1a), we map the
ra values to the values expected at particular time points.
Given a sample of a ra function, we use rejection sampling
to draw 1000 samples of g from Eq. 5 [40]. The measure-
ment errors σ525 and σ585 are found empirically by taking

the standard deviation of the 20 fluorescence measure-
ments closest to the fluorescent measurement at the time
point of interest. We include the errors in estimating the
relative cell density by sampling a corrected OD function
for each sample of ra and dividing the samples of g by
this corrected OD. Finally, averaging over 50 (samples of
ra and of corrected OD levels) × 1000 (samples of g) ×
the number of replicates, we find the mean and standard
deviation of g at each time point.

Access to data
We have written code to implement our correction
method that uses Python and other open source soft-
ware (available with our raw data at swainlab.bio.ed.ac.uk/
software/platereader and as Additional file 1).

Additional file

Additional file 1: Python software that implements our correction
methodology and the data from Figures 1 and 2.
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