#### SUPPLEMENTARY INFORMATION

Appendix S1 | Extended materials and methods information

**Appendix S2** | Supplementary references

**Supplementary Table S1** | Table of spring sites used to study plant responses to elevated CO<sub>2</sub>

**Supplementary Table S2** | Tests for heterogeneity in data collected for each trait measured across natural CO<sub>2</sub> spring sites

Supplementary Table S3 | Publication bias statistics for traits where publication bias was detected in  $CO_2$  spring meta-analysis

**Supplementary Figure S1** | Photosynthetic rate percentage difference between plants at elevated and ambient [CO<sub>2</sub>] at naturally occurring CO<sub>2</sub> springs from individual studies included in this meta-analysis

**Supplementary Figure S2** | Stomatal conductance (g<sub>s</sub>) percentage difference between plants at elevated and ambient [CO<sub>2</sub>] at naturally occurring CO<sub>2</sub> springs from individual studies included in this meta-analysis

### Appendix S1: Extended materials and methods information

outgassing OR vent) AND (plant/s)

Search strings used for systematic search on  $3^{rd}$  July 2017 were as follows: CO2 OR carbon dioxide) AND (spring OR natural OR enrichment/enriched OR mofette OR

Systematic searches of the literature returned 3,294 studies which were screened for relevance by title, and relevant titles were then assessed by abstract for their potential to meet the following stringent inclusion criteria:

- 1) Publications must study naturally growing plant species at both a (terrestrial) spring site and a local control site with similar environmental conditions
- 2) There must be a minimum difference of 100 ppm in average daily CO2 concentration between designated spring and control sites
- 3) Control sites must have an average daily CO2 concentration below 435 ppm and spring sites must have an average daily CO2 concentration above 465 ppm
- **4)** Traits measured must be quantitative for inclusion in the meta-analysis (for example studies only reporting presence/absence of species were not included)
- 5) At least three individuals must be sampled from each site per species, and at least two measurements must be made per plant (where the type of measurement taken allowed for this).
- 6) As required for effect size calculation, traits are only included if mean trait value, a measure of variance (standard error or standard deviation) and sample size are given in the study
- 7) Measurements of plants taken from springs with contamination by  $[H_2S] > 0.02$  ppm or  $[SO_2] > 0.015$ ppm are not included in this analysis

#### **Appendix S2: Supplementary references**

#### Data provided to meta-analyses

- 1. Bettarini, I., Vaccari, F. P., & Miglietta, F. (1998). Elevated CO2 concentrations and stomatal density: observations from 17 plant species growing in a CO2 spring in central Italy. *Global Change Biology*, **4**, 17-22.
- 2. Blaschke, L., Schulte, M., Raschi, A., Slee, N., Rennenberg, H., & Polle, A. (2001). Photosynthesis, soluble and structural carbon compounds in two Mediterranean oak species (Quercus pubescens and Q. ilex) after lifetime growth at naturally elevated CO2 concentrations. *Plant Biology*, 3, 288-298.
- 3. Chaves, M. M., Pereira, J. S., Cerasoli, S., Clifton-Brown, J., Miglietta, F., & Raschi, A. (1995). Leaf metabolism during summer drought in Quercus ilex trees with lifetime exposure to elevated CO2. *Journal of Biogeography*, 255-259.
- 4. Körner, C., & Miglietta, F. (1994). Long term effects of naturally elevated CO 2 on mediterranean grassland and forest trees. *Oecologia*, **99**, 343-351.
- 5. Miglietta, F., Raschi, A., Körner, C., & Vaccari, F. P. (1998). Isotope discrimination and photosynthesis of vegetation growing in the Bossoleto CO2 spring. *Chemosphere*, **36**, 771-776.
- 6. Rapparini, F., Baraldi, R., Miglietta, F., & Loreto, F. (2004). Isoprenoid emission in trees of Quercus pubescens and Quercus ilex with lifetime exposure to naturally high CO2 environment. *Plant, Cell & Environment*, **27**, 381-391.
- 7. Scholefield, P. A., Doick, K. J., Herbert, B. M. J., Hewitt, C. S., Schnitzler, J. P., Pinelli, P., & Loreto, F. (2004). Impact of rising CO2 on emissions of volatile organic compounds: isoprene emission from Phragmites australis growing at elevated CO2 in a natural carbon dioxide spring. *Plant, Cell & Environment*, 27, 393-401.
- 8. Schwanz, P., & Polle, A. (1998). Antioxidative systems, pigment and protein contents in leaves of adult Mediterranean oak species (Quercus pubescens and Q. ilex) with lifetime exposure to elevated CO 2. *The New Phytologist*, **140**, 411-423.
- 9. Stylinski, C. D., Oechel, W. C., Gamon, J. A., Tissue, D. T., Miglietta, F., & Raschi, A. (2000). Effects of lifelong [CO2] enrichment on carboxylation and light utilization of Quercus pubescens Willd. examined with gas exchange, biochemistry and optical techniques. *Plant, Cell & Environment*, 23, 1353-1362.
- 10. Tognetti, R., Longobucco, A., Miglietta, F., & Raschi, A. (1998). Transpiration and stomatal behaviour of Quercus ilex plants during the summer in a Mediterranean carbon dioxide spring. *Plant, Cell & Environment*, **21**, 613-622.

- 11. Tognetti, R., Longobucco, A., Miglietta, F., & Raschi, A. (1999). Water relations, stomatal response and transpiration of Quercus pubescens trees during summer in a Mediterranean carbon dioxide spring. *Tree Physiology*, **19**, 261-270.
- 12. Tognetti, R., Johnson, J. D., Michelozzi, M., & Raschi, A. (1998). Response of foliar metabolism in mature trees of Quercus pubescens and Quercus ilex to long-term elevated CO2. *Environmental and Experimental Botany*, **39**, 233-245.
- 13. Tognetti, R., Minnocci, A., Peñuelas, J., Raschi, A., & Jones, M. B. (2000). Comparative field water relations of three Mediterranean shrub species co-occurring at a natural CO2 vent. *Journal of Experimental Botany*, **51**, 1135-1146.
- 14. Jones, M. B., Brown, J. C., Raschi, A., & Miglietta, F. (1995). The effects on Arbutus unedo L. of long-term exposure to elevated CO2. *Global Change Biology*, **1**, 295-302.
- 15. Peñuelas, J., Castells, E., Joffre, R., & Tognetti, R. (2002). Carbon-based secondary and structural compounds in Mediterranean shrubs growing near a natural CO2 spring. *Global Change Biology*, **8**, 281-288.
- 16. Peñuelas, J., Filella, I., & Tognetti, R. (2001). Leaf mineral concentrations of Erica arborea, Juniperus communis and Myrtus communis growing in the proximity of a natural CO2 spring. *Global Change Biology*, **7**, 291-301.
- 17. Tognetti, R., & Peñuelas, J. (2003). Nitrogen and carbon concentrations, and stable isotope ratios in Mediterranean shrubs growing in the proximity of a CO 2 spring. *Biologia Plantarum*, **46**, 411-418. 18. Cook, A. C., Tissue, D. T., Roberts, S. W., & Oechel, W. C. (1998). Effects of long-term elevated [CO2] from natural CO2 springs on Nardus stricta: photosynthesis, biochemistry, growth and phenology. *Plant, Cell & Environment*, **21**, 417-425.
- 19. Marchi, S., Tognetti, R., Vaccari, F. P., Lanini, M., Kaligarič, M., Miglietta, F., & Raschi, A. (2004). Physiological and morphological responses of grassland species to elevated atmospheric CO2 concentrations in FACE-systems and natural CO2 springs. *Functional plant biology*, **31**, 181-194 20. Pfanz, H., Vodnik, D., Wittmann, C., Aschan, G., Batic, F., Turk, B., & Macek, I. (2007). Photosynthetic performance (CO2-compensation point, carboxylation efficiency, and net photosynthesis) of timothy grass (Phleum pratense L.) is affected by elevated carbon dioxide in post-volcanic mofette areas. *Environmental and Experimental Botany*, **61**, 41-48.
- 21. Vodnik, D., Pfanz, H., Wittmann, C., Macek, I., Kastelec, D., Turk, B., & Batic, F. (2002). Photosynthetic acclimation in plants growing near a carbon dioxide spring. *PHYTON-HORN-*, **42**, 239-244.
- 22. Onoda, Y., Hirose, T., & Hikosaka, K. (2007). Effect of elevated CO 2 levels on leaf starch, nitrogen and photosynthesis of plants growing at three natural CO 2 springs in Japan. *Ecological research*, **22**, 475-484.
- 23. Stock, W. D., Ludwig, F., Morrow, C., Midgley, G. F., Wand, S. J., Allsopp, N., & Bell, T. L. (2005). Long-term effects of elevated atmospheric CO 2 on species composition and productivity of a

southern African C 4 dominated grassland in the vicinity of a CO 2 exhalation. *Plant Ecology*, **178**, 211-224.

24. Fernandez, M. D., Pieters, A., Donoso, C., Tezara, W., Azkue, M., Herrera, C., ... & Herrera, A. (1998). Effects of a natural source of very high CO 2 concentration on the leaf gas exchange, xylem water potential and stomatal characteristics of plants of Spatiphylum cannifolium and Bauhinia multinervia. *The New Phytologist*, **138**, 689-697.

25. Marín, O., Rengifo, E., Herrera, A., & Tezara, W. (2005). Seasonal changes in water relations, photosynthesis and leaf anatomy of two species growing along a natural CO2 gradient. *Interciencia*, **30**, 33-38.

#### Other sites that have been used to study plant response to elevated CO2

Vejpustková, M., Thomalla, A., Cihak, T., Lomsky, B., & Pfanz, H. (2016). Growth of Populus tremula on CO2-enriched soil at a natural mofette site. *Dendrobiology*, 75.

Krüger, M., Jones, D., Frerichs, J., Oppermann, B. I., West, J., Coombs, P., ... & Strutt, M. (2011). Effects of elevated CO2 concentrations on the vegetation and microbial populations at a terrestrial CO2 vent at Laacher See, Germany. *International Journal of Greenhouse Gas Control*, **5**, 1093-1098 Bartak, M., Raschi, A., & Tognetti, R. (1999). Photosynthetic characteristics of sun and shade leaves in the canopy of Arbutus unedo L. trees exposed to in situ long-term elevated CO 2. *Photosynthetica*, **37**, 1-16.

Miglietta, F., & Raschi, A. (1993). Studying the effect of elevated CO 2 in the open in a naturally enriched environment in Central Italy. *Vegetatio*, **104**, 391-400.

Onoda, Y., Hikosaka, K., & Hirose, T. (2005). Natural CO2 springs in Japan: A case study of vegetation dynamics. *Phyton*, **45**, 389-394.

Van Loon, M. P., Rietkerk, M., Dekker, S. C., Hikosaka, K., Ueda, M. U., & Anten, N. P. (2016). Plant–plant interactions mediate the plastic and genotypic response of Plantago asiatica to CO2: an experiment with plant populations from naturally high CO2 areas. *Annals of botany*, *117*, 1197-1207.

Newton, P. C. D., Bell, C. C., & Clark, H. (1996). Carbon dioxide emissions from mineral springs in Northland and the potential of these sites for studying the effects of elevated carbon dioxide on pastures. *New Zealand Journal of Agricultural Research*, **39**, 33-40.

Ehleringer, J. R., Sandquist, D. R., & Philips, S. L. (1997). Burning coal seams in southern Utah: a natural system for studies of plant responses to elevated CO2. In *Plant Responses to Elevated CO2: Evidence from Natural Springs* (pp. 56-68). Cambridge University Press.

Woodward, F. I., Thompson, G. B., & McKee, I. F. (1991). The effects of elevated concentrations of carbon dioxide on individual plants, populations, communities and ecosystems. *Annals of Botany*, 23-38.

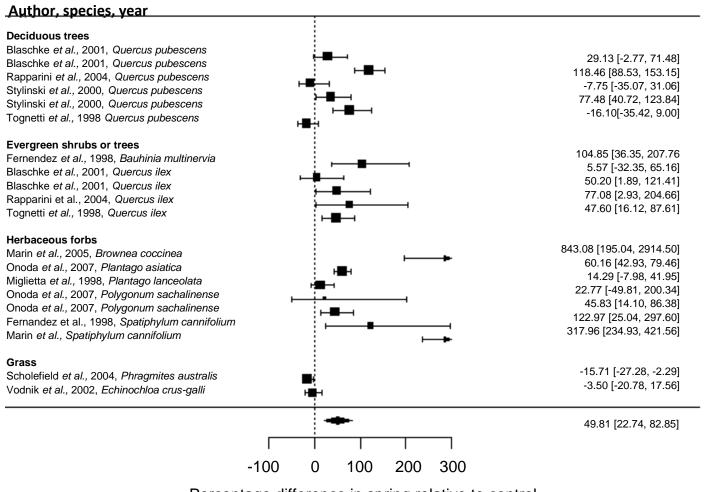
Sharma, S., & Williams, D. G. (2009). Carbon and oxygen isotope analysis of leaf biomass reveals contrasting photosynthetic responses to elevated CO 2 near geologic vents in Yellowstone National Park. *Biogeosciences*, **6**, 25-31.

Sajna, N., Meister, M., Bolhà r-Nordenkampf, H. R., & Kaligaric, M. (2013). Response of Seminatural Wet Meadow to Natural Geogenic CO 2 Enrichment. *International Journal of Agriculture & Biology*, **15**.

### Supplementary Table S1: Table of spring sites used to study plant responses to elevated $CO_2$

| Country                          | Site             | Data in<br>meta-analysis? | Latitude | Longitude | Gas composition of at the spring study site                                                |                                       |                    | Soil pH     |                 | Koepper                                                  |
|----------------------------------|------------------|---------------------------|----------|-----------|--------------------------------------------------------------------------------------------|---------------------------------------|--------------------|-------------|-----------------|----------------------------------------------------------|
|                                  |                  |                           |          |           | [CO <sub>2</sub> ]                                                                         | [H <sub>2</sub> S]                    | [SO <sub>2</sub> ] | Spring site | Control<br>site | climate<br>classification                                |
| Sites used in this meta-analysis |                  |                           |          |           |                                                                                            |                                       |                    |             |                 |                                                          |
| Iceland                          | Ólafsvík         | Υ                         | 64.9     | -23.7     | 519-1179 ppmv                                                                              | < 0.5<br>ppmv                         | -                  | -           | -               | Polar tundra<br>(ET)                                     |
|                                  |                  |                           |          |           |                                                                                            | (< 0.025<br>ppmv)                     |                    |             |                 |                                                          |
|                                  | Armaiolo         | Υ                         | 43.3     | 11.6      | ~500-2300<br>ppmmol                                                                        | -                                     | -                  | -           | -               | Temperate<br>with dry hot<br>summer (Csa)                |
| task.                            | Bossoleto        | Υ                         | 43.3     | 11.6      | 400-1200<br>ppmmol                                                                         | 0.022<br>ppmv                         | 0.012<br>ppmv      | 5.6-6.8     | 7.5-7.7         | Temperate<br>with dry hot<br>summer (Csa)                |
| Italy                            | I Borboi         | Υ                         | 43.4     | 10.7      | 500-1500<br>ppmmol                                                                         | 0.060<br>ppmmol                       | 0.004<br>ppmmol    |             | 6-7             | Temperate<br>with dry hot<br>summer (Csa)                |
|                                  | Laiatico         | Y                         | 43.4     | 10.8      | 400-1500<br>ppmmol                                                                         | 0.022<br>ppmv                         | 0.004<br>ppmv      | 6-7         | 6-7             | Temperate<br>with dry hot<br>summer (Csa)                |
| Slovenia                         | Strmec           | Υ                         | 46.7     | 16        | 500-1000<br>ppmmol                                                                         | -                                     | -                  | 5.0-5.2     | 5.0-5.2         | Temperate<br>without dry<br>season, warm<br>summer (Cfb) |
|                                  | Nibu             | Υ                         | 38.5     | 140.0     | ~450-850<br>ppmmol                                                                         | < 0.1<br>ppmv                         | _                  | 3.6-4.2     | 4.1-4.3         | Temperate<br>without dry<br>season, hot<br>summer (Cfa)  |
|                                  |                  |                           |          |           |                                                                                            | (< 0.025<br>ppmv)                     |                    |             |                 | Jammer (Cray                                             |
|                                  | Ryuzin-<br>numa  | Υ                         | 40.7     | 141.0     | ~550-890<br>ppmmol                                                                         | < 0.1<br>ppmv                         | -                  | 3.5-3.7     | 2.8-3.4         | Temperate without dry season, hot                        |
| Japan                            |                  |                           |          |           |                                                                                            | No smell<br>(< 0.025<br>ppmv)         |                    |             |                 | summer (Cfa)                                             |
|                                  | Yuno kawa        | Y                         | 40.7     | 141.0     | ~460-630<br>ppmmol                                                                         | < 0.1<br>ppmv<br>No smell<br>(< 0.025 | -                  | 3.7-4.5     | 3.7-4.5         | Temperate<br>without dry<br>season, hot<br>summer (Cfa)  |
| South<br>Africa                  | Pleasant<br>View | Υ                         | -30.7    | 30.02     | ~480-600<br>ppmmol                                                                         | ppmv)<br>-                            | -                  | 4.2-4.4     | 4.3-4.5         | Temperate<br>without dry<br>season, warm<br>summer (Cfb) |
| Venezuela                        | Sta. Ana         | Υ                         | 10.6     | -63.13    | (S1) ~34200-<br>35800 ppmmol<br>at the vent<br>(S2) ~26800-<br>27200 ppmmol<br>at the vent | < 0.1<br>ppmmol                       | -                  | -           | -               | Tropical<br>savannah (Aw)                                |

|                   |                                  |         | 1       |             | CO <sub>2</sub>                    |                  |                 |         |         |                                                          |
|-------------------|----------------------------------|---------|---------|-------------|------------------------------------|------------------|-----------------|---------|---------|----------------------------------------------------------|
|                   |                                  |         |         |             | concentrations                     |                  |                 |         |         |                                                          |
|                   |                                  |         |         |             | approx. 1000                       |                  |                 |         |         |                                                          |
| Other sites (     | used to study                    | plant r | esponse | to elevated | I CO <sub>2</sub>                  | •                | •               | •       |         |                                                          |
| Czech<br>Republic | Plesná<br>stream                 | N       | 50.1    | 12.46       | >600 ppm at 50<br>cm vertical      | -                | -               | -       | -       | Temperate<br>without dry<br>season, warm<br>summer (Cfb) |
| Germany           | Laacher See                      | N       | 50.4    | 7.25        | Gradient 100-<br>0% explored       | -                | -               | 4.0-6.0 | 5.5-6.3 | Temperate oceanic climate (Cfb)                          |
| Italy             | Orciatico                        | N       | 43.4    | 10.67       | Avg. 465<br>ppmmol                 | -                | -               | -       | -       | Temperate<br>with dry hot<br>summer (Csa)                |
| italy             | Solfatara                        | N       | 42.5    | 12.13       | 450-850<br>ppmmol                  | 0.245<br>ppmv    | 0.018pp<br>mv   | 3.3-2.1 | 4.5-4.1 | Temperate with dry hot summer (Csa)                      |
|                   | Tashiro                          | N       | 40.7    | 140.92      | 400-1000<br>ppmmol                 | < 0.03<br>ppmmol | <0.03pp<br>mmol | -       | -       | Temperate without dry season, hot summer (Cfa)           |
| Japan             | Asahi                            | N       | 38.2    | 140         | 2123-2509<br>ppm                   | -                | -               | -       | -       | Temperate without dry season, hot summer (Cfa)           |
|                   | Kosaka                           | N       | 40.4    | 140.8       | 503-7019<br>ppm                    | -                | -               | -       | -       | Temperate without dry season, hot summer (Cfa)           |
| New<br>Zealand    | Hakanoa<br>springs               | N       | -35.7   | 174.27      | 480-725<br>ppmv                    | < 0.18<br>ppmv   | -               | 5.2-5.7 | 5.2-5.7 | Temperate without dry season, warm summer (Cfb)          |
|                   | Burning<br>hills                 | N       | 37.3    | -111.37     | 400-1000<br>ppm                    | -                | -               | -       | -       | Cold-desert<br>climate (Bwk)                             |
|                   | Ichetuckn<br>ee river<br>springs | N       | 30.0    | -82.76      | 450-500<br>ppmmol                  | -                | -               | -       | -       | Temperate without dry season, hot summer (Cfa)           |
| USA               | Ochre<br>Springs                 | N       | 44.6    | -110.4      | 419-482<br>ppmv                    | -                | -               | -       | -       | Dry summer<br>subarctic<br>(Dsc)                         |
|                   | Mammoth<br>Upper<br>Terrace      | N       | 45.0    | -110.7      | 401-607<br>ppmv                    | -                | -               | -       | -       | Warm-<br>summer<br>continental<br>(Dfb)                  |
| Slovenia          | Rihtarovci                       | N       | 46.6    | 16.1        | Gradient 400<br>to >2500<br>ppmmol | -                | -               | -       | -       | Temperate without dry season, warm summer (Cfb)          |


# Supplementary Table S2: Tests for heterogeneity in data collected for each trait measured across natural $CO_2$ spring sites

| Statistic                                      | Q stat                                                   | Df          | p-val                                                                                        | l <sup>2</sup> |
|------------------------------------------------|----------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------|----------------|
| Description                                    | Is the variability<br>larger than woo<br>sampling variab | uld be expe | Percentage of total variation across studies that is due to heterogeneity rather than chance |                |
| Stomatal conductance                           | 360.6                                                    | 31          | <0.0001                                                                                      | 92.28%         |
| Abaxial stomatal index                         | 214.3                                                    | 22          | <0.0001                                                                                      | 88.75%         |
| Adaxial stomatal index                         | 109.5                                                    | 7           | <0.0001                                                                                      | 99.13%         |
| Abaxial stomatal density                       | 279.8                                                    | 24          | <0.0001                                                                                      | 93.93%         |
| Adaxial stomatal density                       | 100.8                                                    | 8           | <0.0001                                                                                      | 98.38%         |
| Photosynthetic rate                            | 180.7                                                    | 8           | <0.0001                                                                                      | 96.47%         |
| V <sub>cmax</sub>                              | 13.9                                                     | 6           | 0.0312                                                                                       | 56.42%         |
| J <sub>max</sub>                               | 21.1                                                     | 6           | 0.017                                                                                        | 71.17%         |
| Leaf chlorophyll content                       | 34.8                                                     | 7           | <0.0001                                                                                      | 80.88%         |
| Leaf carbon content                            | 63.3                                                     | 14          | <0.0001                                                                                      | 78.69%         |
| Leaf sugar content                             | 172.5                                                    | 4           | <0.0001                                                                                      | 95.94%         |
| Leaf starch content                            | 236.3                                                    | 12          | <0.0001                                                                                      | 96.04%         |
| Leaf total non-structural carbohydrate content | 311.8                                                    | 10          | <0.0001                                                                                      | 97.00%         |
| Leaf nitrogen content                          | 232.5                                                    | 22          | <0.0001                                                                                      | 89.79%         |
| Leaf carbon:nitrogen ratio                     | 8.1                                                      | 4           | 0.0893                                                                                       | 49.87%         |
| Specific leaf area                             | 33.5                                                     | 4           | <0.0001                                                                                      | 84.58%         |

# Supplementary Table S3: Publication bias statistics for traits where publication bias was detected in $CO_2$ spring meta-analysis

| Trait                    | Egger's tes | st for funnel<br>metry | Rosenthal's Fail-safe<br>number |        |  |
|--------------------------|-------------|------------------------|---------------------------------|--------|--|
|                          | T test      | P value                | Fail-safe<br>number             | 5N +10 |  |
| Abaxial stomatal index   | 2.7938      | 0.0109                 | 92                              | 125    |  |
| Adaxial stomatal density | -3.1970     | 0.0151                 | 95                              | 55     |  |
| Leaf chlorophyll content | 2.5425      | 0.0439                 | 0?                              | 50     |  |
| Leaf carbon content      | -2.3206     | 0.0372                 | 27                              | 85     |  |

Supplementary Figure S1: Photosynthetic rate percentage difference between plants at elevated and ambient [CO<sub>2</sub>] at naturally occurring CO<sub>2</sub> springs from individual studies included in this meta-analysis. Author(s) and species appear on the left hand side, numbers on the right hand side are effect size, with 95% confidence intervals in parentheses. Squares indicating mean effect size are drawn proportionally to the precision of the estimate. The summary polygon at the bottom of the plot indicates the mean effects size when all 20 estimates are analysed together using a random effects model. Note that in subgroup analysis plants were categorised as trees, which included both 'deciduous trees' and 'evergreen shrubs or trees', or herbs, which included 'herbaceous forbs' and grasses, rather than the functional groups used for visualisation here.



Percentage difference in spring relative to control

Supplementary Figure S2: Stomatal conductance (g<sub>s</sub>) percentage difference between plants at elevated and ambient [CO<sub>2</sub>] at naturally occurring CO<sub>2</sub> springs from individual studies included in this meta-analysis. Author(s) and species appear on the left hand side, numbers on the right hand side are effect size, with 95% confidence intervals in parentheses. Squares indicating mean effect size are drawn proportionally to the precision of the estimate. The summary polygon at the bottom of the plot indicates the mean effects size when all 32 estimates are analysed together using a random effects model. Note that in subgroup analysis plants were categorised as trees, which included both 'deciduous trees' and 'evergreen shrubs or trees' or herbs, which included 'herbaceous forbs' and grasses, or just herbaceous forbs, rather than the functional groups used for visualisation here.

#### Author, species, year **Deciduous trees** -73.26 [-77.27, -68.55] Bettarini et al., 1998, Fraxinus ornus -11.76 [-47.69, 48.83] Stylinski et al., 2000, Quercus pubescens -5.88 [-32.77, 31.76] Stylinski et al., 2000, Quercus pubescens -36.25 [-52.52, -14.39] Tognetti et al., 1998a, Quercus pubescens -45.11 [-63.98, -16.37] Tognetti et al., 1996, Quercus pubescens Evergreen shrubs or trees -43.75 [-59.88, -21.14] Jones et al., 1996, Arbutus unedo L. -19.90 [-34.54, -1.98] Tognetti et al., 2000, Erica arborea L. -17.75 [-37.18, 7.69] Tognetti et al., 2000, Juniperus communis L. -23.32 [-34.27, -10.55] Tognetti et al., 2000, Myrtus communis L. -40.47 [-64.23, -0.93] Chaves et al., 1995, Quercus ilex -13.10 [-38.47, 22.73] Tognetti et al., 1998b, Quercus ilex -18.87 [-35.19, 1.55] Tognetti et al., 1998a, Quercus ilex -6.11 [-40.42, 47.98] Tognetti et al., 1996, Quercus ilex Herbaceous forbs -15.60 [-39.03, 16.85] Bettarini et al., 1998, Convolvolus cantabrica 168.00 [12.67, 237.73] Bettarini et al., 1998, Conyza candensis 9.80 [-10.66, 34.95] Bettarini et al., 1998, Geranium molle -35.10 [-50.82, -14.36] Bettarini et al., 1998, Globularia punctata -20.58 [-41.35, 7.55] Onoda et al., 2007, Plantago asiatica -51.86 [-58.83, -43.71] Bettarini et al., 1998, Plantago lanceolata 21.35 [-13.87, 70.98] Bettarini et al., 1998, Plantago lanceolata -45.38 [-57.44, -29.90] Bettarini et al., 1998, Plantago lanceolata Onoda et al., 2007, Polygonum sachalinense -41.44 [-60.71, -12.71] -23.35 [-45.87, 8.55] Onoda et al., 2007, Polygonum sachalinense -56.89 [-69.94, -38.19] Bettarini et al., 1998, Polygonum hydropiper L. -42.14 [-59.50, -17.34] Marchi et al., 2004, Potentilla reptans -27.75 [-51.67, 8.03] Bettarini et al., 1998, Rumex crispus L. -38.14 [-47.16, -27.59] Miglietta et al., 1998, Scabiosa columbaria Marchi et al., 2004, Silene vulgaris -19.21 [-33.04, -2.53] -22.98 [-48.47, 15.12] Marchi et al., 2004, Tanacetum vulgaris L. -20.79 [-35.26, -3.07] Marchi et al., 2004, Trifolium pratense -39.71 [-50.64, 26.36] Marchi et al., 2004, Trifolium pratense -25.18[-28.38, -21.82] Marchi et al., 2004, Echinochloa crus-galli -27.23 [-36.50, -16.62]

Percentage difference in spring relative to control

50

100

200

-100

-50

0