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Abstract: Background: The long-term risk of recurrent ischemic stroke, estimated to be between
17% and 30%, cannot be reliably assessed at an individual level. Our goal was to study whether
machine-learning can be trained to predict stroke recurrence and identify key clinical variables
and assess whether performance metrics can be optimized. Methods: We used patient-level data
from electronic health records, six interpretable algorithms (Logistic Regression, Extreme Gradient
Boosting, Gradient Boosting Machine, Random Forest, Support Vector Machine, Decision Tree),
four feature selection strategies, five prediction windows, and two sampling strategies to develop
288 models for up to 5-year stroke recurrence prediction. We further identified important clinical
features and different optimization strategies. Results: We included 2091 ischemic stroke patients.
Model area under the receiver operating characteristic (AUROC) curve was stable for prediction
windows of 1, 2, 3, 4, and 5 years, with the highest score for the 1-year (0.79) and the lowest score for
the 5-year prediction window (0.69). A total of 21 (7%) models reached an AUROC above 0.73 while
110 (38%) models reached an AUROC greater than 0.7. Among the 53 features analyzed, age, body
mass index, and laboratory-based features (such as high-density lipoprotein, hemoglobin A1c, and
creatinine) had the highest overall importance scores. The balance between specificity and sensitivity
improved through sampling strategies. Conclusion: All of the selected six algorithms could be trained
to predict the long-term stroke recurrence and laboratory-based variables were highly associated with
stroke recurrence. The latter could be targeted for personalized interventions. Model performance
metrics could be optimized, and models can be implemented in the same healthcare system as
intelligent decision support for targeted intervention.

Keywords: healthcare; artificial intelligence; machine learning; interpretable machine learning;
explainable machine learning; ischemic stroke; clinical decision support system; electronic health
record; outcome prediction; recurrent stroke

1. Introduction

Predictive modeling of stroke, the leading cause of death and long-term disability [1],
is crucial due to high individual and societal impact. Each year, about 800,000 people
experience a new or recurrent stroke in the United States [2]. It has been estimated that
the 5-year risk of stroke recurrence is between 17% and 30% [3,4]. Recurrent stroke has a
higher rate of death and disability [5]. Therefore, the identification of patients who are at a
higher risk of recurrence can help the care-providers prioritize and define more vigorous
secondary prevention plans for those at risk, especially when there are limited resources.
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To date several predictive models of recurrent stroke, using regression or other statis-
tical methods, have been developed; however, the clinical utility of these models tends to
be limited due to the narrow scope of variables used in these models [6]. In a recent study,
multivariable logistic models of 1-year stroke recurrence, developed based on 332 patients,
using clinical and retinal characteristics (using 20 variables) have shown promising results
with an area under the receiver operating characteristic (AUROC) curve of 0.71–0.74 [7].
Large real-world patient-level data from electronic health records (EHR) and machine learn-
ing (ML) methods can be leveraged to capture a greater number of features to help build
better prediction models [8]. In a recent study of 2604 patients, ML has been successfully
used to predict the favorable outcome following an acute stroke at three months [9]. We also
showed that ML can be used for flagging stroke patients in the emergency setting [10–12].

The present study aimed at using rich longitudinal data from EHR to construct an
ML-enabled model of long-term (up to 5-years) recurrent stroke. We evaluated Extreme
Gradient Boosting (XGBoost), Gradient Boosting Machine (GBM), Random Forest (RF),
Support Vector Machine (SVM), and Decision Tree (DT), and benchmarked these algorithms’
performance against Logistic Regression (LR) as these are interpretable models and feature
importance can be extracted for further validation and assessment by care providers. We
hypothesized that (1) all of the modeling algorithms can be trained to predict long-term
stroke recurrence, (2) A wide range of clinical features associated with stroke recurrence can
be identified, and (3) performance metrics can be improved through sampling processes.

2. Methods

All of the relevant codes developed as well as summary data generated for this
project can be found at https://github.com/TheDecodeLab/GNSIS_v1.0/tree/master/
ModelingStrokeRecurrence (accessed on 19 March 2021).

2.1. Data Source

Database description and processing: this study was based on the extracted data
from the Geisinger EHR system, Geisinger Quality database, and the Social Security
Death database to build a stroke database called “Geisinger Neuroscience Ischemic Stroke
(GNSIS)” [13]. GNSIS includes demographic, clinical, laboratory data from ischemic stroke
patients from September 2003 to May 2019. The study was reviewed and approved by
the Geisinger Institutional Review Board to meet “non-human subject research”, for using
de-identified information.

The GNSIS database was created based on a high-fidelity and data-driven phenotype
definition for ischemic stroke developed by our team. The patients were included if they
had a primary hospital discharge diagnosis of ischemic stroke; a brain magnetic resonance
imaging (MRI) during the same encounter to confirm the diagnosis; and, an overnight
stay in the hospital. The diagnoses were based on International Classification of Diseases,
Ninth/Tenth Revision, Clinical Modification (ICD-9-CM/ICD-10-CM) codes. For each
index stroke, the following data elements were recorded: (1) date of the event, (2) age
of the patient at the index stroke, (3) encounter type, (4) ICD code and corresponding
primary diagnosis of index stroke, (5) presence or absence (and date) of recurrent stroke,
and (6) ICD code and corresponding primary diagnosis for the recurrent stroke. Other
data elements include sex, birth date, death date, last medical visit within the Geisinger
system, presence or absence of comorbidities, presence or absence of a family history of
heart disorders or stroke, and smoking status. In the case of multiple encounters due
to recurrent cerebral infarcts, the first hospital encounter was considered as the index
(first-time) stroke. To improve the accuracy of comorbidity information based on ICD-9-
CM/ICD-10-CM diagnosis, either two outpatient visits or one in-patient visit were used
to assign a diagnosis code to a patient. Our database interfaces with the Social Security
Death Index on a biweekly basis to reflect updated information on the vital status. The
manual validation of a random set of patients, including reviewing the MRI, to ensure all
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patients in the GNSIS database had a correct diagnosis of acute ischemic stroke indicated a
specificity of 100%.

Data pre-processing: Units were verified and reconciled if needed and distributions
of variables were assessed over time to ensure data stability. The range for the variables
was defined according to expert knowledge and available literature—and outliers were
assessed and removed. To ensure that patients were active, the last encounter of patients
was recorded.

2.2. Study Population

For this study, we excluded patients with recurrent stroke within 24 days of the index
stroke. We organized the included patients into six groups. One control group and five
case groups. The control group consisted of patients who did not have a stroke recurrence
during the 5-year follow-up. Case groups 1, 2, 3, 4, and 5 comprised of patients who
had a recurrent stroke between 24 days and 1, 2, 3, 4, and 5-years, respectively. The
24 day cut-off was selected to ensure that the recurrent stroke was independent of the
index stroke; as our data demonstrate, the number of stroke recurrences stabilizes after
approximately 24 days (Figure 1A). Nevertheless, we repeated the analysis by including
the patients with a stroke recurrence within the 24 days for comparison. Patients with
stroke-related or other vascular death might be excluded from this study if they did not
meet the inclusion/exclusion criteria stated above.
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Geisinger Quality database as well as Social Security Death database.

2.3. Data Processing, Feature Extraction, and Sampling

Training-testing set: Each of the cases and control groups was randomly split into
80:20 training and testing sets.

Imputation: A total of 53 features were used. Table 1 includes data on the missingness.
Imputation of the missing values was performed separately on training and testing sets
using Multivariate Imputation by Chained Equations (MICE) package [14]. The quality
of the imputations was examined using t-test, summary statistics, as well as strip and
density plots of the missing features to ensure distribution of the variables was comparable
before and after imputation. Only four variables suffered from missingness at relatively
higher levels.
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Table 1. Patient demographics, past medical and family history in different groups. Detailed description of the variables is provided in the Geisinger Neuroscience Ischemic Stroke
(GNSIS) study [13]. IQR: interquartile range; HDL: high-density lipoprotein; LDL: low-density lipoprotein.

Patient Characteristics % Missing Statistics (All
Patients)

Control
Group Case Group 1 Case Group 2 Case Group 3 Case Group 4 Case Group 5

Total number of patients - 2091 1654 210 306 375 411 437

Age in years, mean (SD) - 67 (13) 66 (13) 71 (14) 71 (13) 71 (13) 71 (13) 71 (13)

Age in years, median (IQR) - 68 (58–77) 67 (57–76) 73 (62–83) 72 (63–81) 73 (63–81) 73 (63–81) 73 (63–81)

Male, n (%) - 1079 (52%) 53% 47% 46% 46% 47% 47%

Body mass index (BMI) in kg/m2, mean (SD) 2.63% 30 (7) 30 (7) 29 (6) 29 (6) 29 (6) 29 (7) 29 (6)

Body mass index (BMI) in kg/m2, median [IQR] 2.63% 29 (26–33) 29 (26–33) 28 (24–32) 28 (25–32) 28 (25–32) 28 (25–32) 28 (25–32)

Diastolic Blood Pressure, mean (SD) 31.90% 76 (12) 76 (12) 75 (13) 75 (12) 75 (12) 75 (12) 74 (12)

Systolic Blood Pressure, mean (SD) 31.90% 137 (22) 136 (22) 139 (26) 139 (25) 140 (24) 139 (24) 139 (24)

Hemoglobin (Unit: g/dL), mean (SD) 1.82% 14 (2) 14 (2) 13 (2) 14 (2) 14 (2) 14 (2) 14 (2)

Hemoglobin A1c (Unit: %), mean (SD) 25.11% 7 (2) 7 (2) 7 (2) 7 (2) 7 (2) 7 (2) 7 (2)

HDL (Unit: mg/dL), mean (SD) 5.40% 47 (15) 47 (15) 45 (13) 45 (14) 45 (14) 45 (14) 45 (14)

LDL (Unit: mg/dL), mean (SD) 5.79% 102 (40) 103 (40) 103 (44) 100 (43) 101 (42) 101 (41) 100 (41)

Platelet (Unit: 103/uL), mean (SD) 1.82% 232 (77) 233 (76) 227 (70) 229 (73) 231 (80) 230 (78) 229 (78)

White blood cell (Unit: 103/uL), mean (SD) 1.82% 9 (3) 9 (3) 8 (3) 8 (3) 9 (3) 9 (3) 9 (3)

Creatinine (Unit: mg/dL), mean (SD) 2.58% 1 (1) 1 (0.5) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)

Current smoker, n (%) - 288 (14%) 14 (1) 12 (6) 12 (4) 13 (3) 13 (3) 13 (3)

Difference in days between Last outpatient visit
prior to index date and index date, mean (SD) 26.16% 347 (726) 345 (691) 371 (882) 354 (846) 369 (855) 352 (826) 354 (840)

MEDICAL HISTORY, n (%)

Atrial flutter 41 (2%) 28 (2%) 4 (2%) 9 (3%) 11 (3%) 13 (3%) 13 (3%)

Atrial fibrillation 319 (15%) 230 (14%) 35 (17%) 55 (18%) 72 (19%) 82 (20%) 89 (20%)

Atrial fibrillation/flutter 324 (15%) 233 (14%) 36 (17%) 56 (18%) 74 (20%) 84 (20%) 91 (21%)

Chronic Heart failure (CHF) 159 (8%) 103 (6%) 33 (16%) 42 (14%) 49 (13%) 53 (13%) 56 (13%)
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Table 1. Cont.

Patient Characteristics % Missing Statistics (All
Patients)

Control
Group Case Group 1 Case Group 2 Case Group 3 Case Group 4 Case Group 5

Chronic kidney disease 223 (11%) 142 (9%) 55 (26%) 68 (22%) 74 (20%) 78 (19%) 81 (19%)

Chronic liver disease 35 (2%) 23 (1%) 2 (1%) 7 (2%) 10 (3%) 11 (3%) 12 (3%)

Chronic liver disease (mild) 33 (2%) 21 (1%) 2 (1%) 7 (2%) 10 (3%) 11 (3%) 12 (3%)

Chronic liver disease (moderate to severe) 7 (0.3%) 5 (0.3%) 0 (0%) 1 (0.3%) 1 (0.3%) 2 (0.5%) 2 (0.5%)

Chronic lung diseases 391 (19%) 296 (18%) 51 (24%) 70 (23%) 83 (22%) 92 (22%) 95 (22%)

Diabetes 615 (29%) 439 (27%) 86 (41%) 122 (40%) 151 (40%) 165 (40%) 176 (40%)

Dyslipidemia 1298 (62%) 994 (60%) 142 (68%) 211 (69%) 258 (69%) 285 (69%) 304 (70%)

Hypertension 1495 (72%) 1150 (70%) 168 (80%) 240 (78%) 293 (78%) 327 (80%) 345 (79%)

Myocardial infarction 215 (10%) 159 (10%) 30 (14%) 43 (14%) 51 (14%) 53 (13%) 56 (13%)

Neoplasm 284 (14%) 211 (13%) 35 (17%) 49 (16%) 61 (16%) 65 (16%) 73 (17%)

Hypercoagulable 29 (1%) 24 (1%) 4 (2%) 4 (1%) 5 (1%) 5 (1%) 5 (1%)

Peripheral vascular disease 313 (15%) 219 (13%) 46 (22%) 65 (21%) 75 (20%) 88 (21%) 94 (22%)

Patent Foramen Ovale 241 (12%) 184 (11%) 30 (14%) 41 (13%) 47 (13%) 53 (13%) 57 (13%)

Rheumatic diseases 76 (4%) 53 (3%) 11 (5%) 14 (5%) 18 (5%) 21 (5%) 23 (5%)

FAMILY HISTORY

Heart disorder 943 (45%) 747 (45%) 85 (40%) 130 (42%) 165 (44%) 182 (44%) 196 (45%)

Stroke 361 (17%) 279 (17%) 39 (19%) 60 (20%) 72 (19%) 77 (19%) 82 (19%)
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Feature selection: We performed feature selection using different strategies. The
feature sets were: Set 1: all features; Set 2: all features except medication history; Set 3:
features selected by at least two data-driven strategies; and Set 4: minimum set, obtained
as the intersect of Set 2 and Set 3 (Table S1). The full set of features (Sets 1, 2) were selected
based on clinical expertise and previous studies [6,15]. Feature selection (Sets 3, 4) was
performed based on three data-driven approaches for each set of case-control.

The data-driven approaches were: (1) filter-based methods including Pearson corre-
lation [16] and univariate filtering; (2) embedded methods including RF [17] and Lasso
Regression [18]; and (3) wrapper methods including the Boruta algorithm [19] and recur-
sive feature elimination. Feature importance scores were scaled between zero and 100, with
higher scores representing higher variable contributions. Using the reduced set of features
will ensure variables with high collinearity are removed.

Sampling: The training dataset after applying the case-control definition was imbal-
anced. Many of the classification models trained on class-imbalanced data are biased
towards the majority class. To avoid poor performance of minority class (recurrent stroke)
compared with the dominant class, we balanced out the number of cases and controls
by up-sampling and down-sampling methods. We applied the up-sampling method to
the prediction window with the lowest and median rate of stroke recurrence and down-
sampling to the prediction window with the median rate of stroke recurrence. In the
up-sampling, we used the Synthetic Minority Over-sampling Technique (SMOTE) [19]. In
the down-sampling, we randomly selected patients from the control group.

2.4. Model Development and Testing

We used six interpretable ML algorithms and four feature sets to develop a classi-
fication model for 1, 2, 3, 4, and 5-year recurrence prediction window. We developed
24 models for each prediction window. The ML algorithms included LR [20], XGBoost [21],
GBM [22], RF [17], SVM [23], and DT [24]. We included SVM, LR, and DT as these could
provide benchmarking metrics as well as better flexibility in terms of implementation into
cloud-based EHR vendors. Therefore, simpler and faster models could provide strategic
alternatives for future implementation if the results from this study indicate, similar to
other studies [25], that by including a large number of features, models can reach conver-
gence to the point of algorithm indifference (or marginal improvements). A parameter grid
was built to train the model with 10-fold repeated CV with 10 repeats. Furthermore, 5-fold
repeated CV for the prediction window with the median rate of stroke recurrence was also
performed. Model tuning was performed by an automatic grid search with 10 different
values to try for each algorithm parameter randomly. For each model, we used 20% of
the data for model testing and calculated specificity, recall (sensitivity), precision (positive
predictive value, PPV), AUROC, F1 score, accuracy, and computation time for model
training. The modeling pipeline is summarized in Figure 1B.

3. Results

All of the detailed summary results with comprehensive performance metrics, fea-
ture importance and computation time for the 288 models this project are provided as
Supplementary Information (see Tables S1–S3).

3.1. Patient Population and Characteristics

A total of 2091 adult patients met the inclusion criteria; 114 patients had a recur-
rent stroke within 24 days from their index stroke and were excluded from the analysis
(Figure 1A). Out of 2091 patients, 51.6% were men. The median age was 68.1 years (IQR
(interquartile range) = 58–77). The three most common comorbidities were hypertension
(72%), dyslipidemia (62%), and diabetes (29%). Table 1 includes the patients’ demographics
and past medical history. The rate of stroke recurrence was 11%, 16%, 18%, 20%, and 21%
at 1, 2, 3, 4, and 5-year window, respectively.
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This study was based on 53 features. Table S1 summarizes the results from the
feature selection process. Age, sex, BMI, systolic blood pressure, hemoglobin, high-density
lipoprotein (HDL), creatinine, smoking status, chronic heart failure, chronic kidney disease,
diabetes, hypertension, and peripheral vascular disease were selected by all of the different
data-driven approaches for the five different case-control designs.

3.2. Models Can Be Trained to Predict the Long-Term Stroke Recurrence

Model AUROC was stable for the five case-control designs with the highest score
for the 1-year prediction window and the lowest score for the 5-year window (Figure 2,
Table S2). The best AUROC for the 1-year prediction window was 0.79 (Table S2, model#63).
The top ten models (AUROC: 0.79–0.74) were from the 1-year prediction window. The
best AUROC for the 2, 3, 4 and 5-year prediction windows were 0.70, 0.73, 0.73, and 0.69
respectively. Furthermore, when comparing features included in the models, the AUROC
was highest when all of the features were used. The variation in AUROC was higher
across the various study window and feature sets for DT, while the score variance was
lowest for RF. The ROC curve for the different models is shown in Figure 3 for the 1-year
prediction window.

Based on the accuracy, RF (RF, mtry = 14) model, using 26 features (Set3), had the
best performance for a 1-year prediction window (accuracy: 90% (95% CI: 86%–92%), PPV:
80%, specificity: 100%). The average accuracy by using the six models and four sets of
features was 88% (Table S2, model numbers 1–24). The prediction accuracy decreased as
the prediction window widened to 2-years (average accuracy: 85%) with the best accuracy
score reached by LR (86%, 95% CI: 82%–89%) and PPV of 80% with a specificity of 99%,
Table S2 model number 79. The average accuracy of the 3-year prediction window was 82%
for the 4-year prediction window. The average accuracy of the 5-year prediction window
was 78%.

Out of the 24 models for the 1-year prediction window, one model reached a perfect
PPV, while 11 models reached a 100% specificity. For the 2-year prediction window, 7 out
of the 24 models reached a PPV of 100% while 9 reached a specificity of 100%. Overall,
models based on all features had higher PPV. Model sensitivity and specificity had the best
tradeoff when GBM was used. The highest model sensitivity was achieved using both DT
and GBM, while the best specificity was achieved using RF, SVM, and XGBoost. When we
compared the 3-year prediction window with and without the 24 days cut-off, the average
AUROC, sensitivity, and specificity were unaffected; however, the average model accuracy
was reduced by 5% when excluding the 24 days interval. Detailed performance metrics for
the 288 models are presented in Table S2.
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Figure 3. Area under the receiver operating characteristic (AROC) curve using six classifiers for the 1-year prediction
window. The feature Set 3 is used for this figure. (A) Model without sampling; (B) Model with up-sampling at a 1:2 ratio;
(C) Model with up-sampling at a 1:1 ratio. The best performer model (AUROC of 0.79) is when up-sampling is used with
Random Forest algorithm (panel B).

3.3. Age, BMI, and Laboratory Values Highly Associated with Stroke Recurrence

Age and BMI had the highest overall feature importance at 90% ± 5% and 58 ± 10%,
respectively. Laboratory values specifically LDL, HDL, platelets, hemoglobin A1c, crea-
tinine, white blood cell, and hemoglobin were highly ranked in our different modeling
frameworks. The feature importance of laboratory-based features ranged from 49% ± 10%
to 39% ± 11% for HDL and platelet, respectively. Laboratory values had an average feature
importance score of 44%, the highest among the different feature categories. Medications
(statin, antihypertensive, warfarin, and antiplatelet), were also important features. Figure 4
(and Table S3) includes the feature importance of different models and the overall average
feature importance across the models and different prediction windows. The difference in
days between the last outpatient visit before the index date and index date (45% ± 12%)
and certain comorbidities were other important features for the recurrence models.
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3.4. Models’ Performance Metrics Improved through Sampling Strategies

Given the low prevalence of recurrent stroke in our dataset (11–21%), we applied
up- and down-sampling to the training dataset for the prediction window prior to the
model training.

The application of up-sampling the minority class using 1:2 and 1:1 ratio for the
1-year prediction window improved the sensitivity to 55% while only slightly affecting
the specificity to 91%. The model AUROC averaged 0.67 before up-sampling to 0.68 after
up-sampling with five of the models reaching an AUROC above 0.75. The AUROC of the
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test set for the 3-year prediction window remained at 0.69 while the AUROC of the training
set improved as expected with up-sampling (Figure 5, Table S2).
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4. Discussion

We have taken a comprehensive approach to develop and optimize interpretable
models of long-term stroke recurrence. We have shown that (1) the six algorithms used
could be trained to predict the long-term stroke recurrence, (2) many of the clinical features
that were highly associated with stroke recurrence could be actionable, and (3) model
performance metrics could be optimized.

There have been multiple clinical scores developed for predicting recurrence after
cerebral ischemia with limited clinical utility [6]. Among all, only Stroke Prognostic
Instrument (SPI-II) [26] and Essen Stroke Risk Score (ESRS) [27] were designed to predict
the long-term (up to 2-years) risk of recurrence after an ischemic stroke. SPI-II can be
applied to patients with transient ischemic attack (TIA) and minor strokes; yet, ESRS
application focuses on stroke. The main limitations of SPI-II are focusing on patients with
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suspected carotid TIA or minor stroke, developed using a cohort of 142 patients. The ESRS,
derived from the stroke subgroup of the clopidogrel versus aspirin among patients at risk
of ischemic events (CAPRIE) trial, includes only eight parameters. In a validation study,
the PPV for each tool were low, raising questions about their utility [28–30]. Previous
validation studies of SPI-II demonstrated a c-statistic of 0.62 to 0.65, which can be judged
as only fair [26,31,32]. In addition, SPI-II has poor performance in stratifying recurrent
stroke in isolation as compared with the composite of recurrent stroke and death. The
above demonstrates that the SPI-II score’s performance is driven mostly by its ability to
predict mortality not a recurrence. There is an unmet need for better predictive measures
of long-term prediction given the high rate and devastating consequences of a recurrent
stroke. Other studies over the past few years have shown the power of ML in predicting
short and long-term outcomes in various complex diseases [8,9,25].

4.1. Models Could Be Trained to Predict the Long-Term Stroke Recurrence

Our results showed that a high-quality training dataset with a rich set of variables can
be utilized to develop models of recurrent stroke. Among the 288 models, prediction of
stroke recurrence within a 1-year prediction window had an AUROC of 0.79, an accuracy
of 88% (95% CI: 84%–91%), PPV of 42%, and specificity of 96% using RF with up-sampling
the training dataset (Table S2, model number 63). The LR-based models have similar results
when compared to more complex algorithms such as XGBoost or RF. Our results showed
that 21 (7%) models reached an AUROC above 0.73 while 110 (38%) models reached an
AUROC above 0.7. Furthermore, the AUROC for the training and testing dataset were
within a similar range which corroborates that models were not suffering from over-fitting.
As expected, a model based on LR took a fraction of the time for training when compared
to XGBoost, RF, or SVM (Table S2).

We tested the prediction window for up to 5-years. Our results showed that the
average model accuracy declined from 85% for the 1-year window to 78% for the 5-year
window. However, the shorter prediction window provided the lowest rate of recurrence
and therefore highest data imbalance, affecting model performance. The average model
sensitivity increased as the prediction window widened, likely due to the increase in
sample size and recurrent stroke rate. The optimal prediction window could depend on
the richness of longitudinal data used for model training, in our dataset, that was between
2 and 4-years.

4.2. Clinical Features Highly Associated with Stroke Recurrence

In this study, 53 features were used as the full set (set1), followed by a subset of features
excluding medication history (Set 2, 31 features). We also applied feature selection and
created data-driven features (Set 3) and a minimum set of features (Set 4) for comparison. In
most of the experiments more comprehensive feature set led to higher model performance,
even though some features had some level of collinearity. In general, baseline clinical
features, such as age, BMI, and laboratory values were among the most important features.
Our results also highlighted that the last outpatient visit before the index stroke was
important for the prediction of recurrence; patients in the control group had the lowest
average number of days when compared to the five different case groups.

Analyzing the feature importance revealed that in general laboratory values were
highly influential in the prediction models. The pattern of the importance of features was
similar when considering different prediction windows, with many comorbidities and
medications having the lowest relative impact. Laboratory values (LDL, HDL, platelets,
HbA1c, creatinine, and hemoglobin), and blood pressure have shown to be high-ranking
for all of the five different prediction windows and all of the different modeling framework
with few exceptions. This finding highlights the fact that these potentially actionable
features (e.g., HbA1c) may have more importance when compared to the corresponding
comorbidities in the patient’s chart. The binary nature of medical history without the
corresponding measures may have limited power in predicting recurrence. However, one
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of the main limitations of using more comprehensive laboratory values is missingness,
especially when the missing is not completely at random.

4.3. Model Performance Metrics Optimized Based on the Target Goals

We have also shown that model performance metrics, such as specificity and sensitivity
can be optimized based on the availability of resources and institutional priorities. We
were able to improve the sensitivity of the models for the 1 and 3-year prediction window
by sampling the training dataset to address the data imbalance. The tradeoff between
specificity and sensitivity was of special interest given that different healthcare systems
likely have different constraints, availability of resources, and infrastructures to implement
preventive strategies to reduce stroke burden. Some of the resources may include, the
number of providers needed to schedule follow up appointments or to discuss medication
plans and ensure that the patient is compliant; or availability of resources to provide
home-care or telehealth for patients needing those services for continuity of care. Thus,
optimizing sensitivity and specificity should be aligned with the institution’s priorities.
Here we demonstrated that sampling strategies could be useful tools in achieving optimal
tradeoffs by increasing the sensitivity of the models up to 55% even with a low rate of
stroke recurrence.

4.4. Study Strengths, Limitations, and Future Directions

The EHR data used in model development was longitudinally rich. However, that
also leads to some of the study limitations. There is an inherent noise associated with the
use of administrative datasets such as EHR, including biased patient selection and lack
of information regarding stroke severity captured for approximately half of the patients.
However, separate logistic regression models were employed to study the association
of NIHSS with one-year stroke recurrence and did not show any association (OR: 1.01,
95% CI: 0.97–1.05, p = 0.625). Our phenotype definition to extract patients with stroke
was strict, leading to 100% specificity on a randomly selected sample, which also means
that our criteria likely missed some of the cases (for instance, if the patient had some
MRI contraindication). Nevertheless, MRI is part of our stroke order-set and is performed
for every stroke patient unless the patient refuses or has a contraindication (e.g., non-
compatible pacemaker, etc.). We also did not include transient ischemic attacks since it is
associated with significant misdiagnosis [33].

As future directions, we are expanding this study at two different levels by includ-
ing additional layers of data and improving the model and model optimization. We are
expanding the GNSIS dataset by incorporating a larger number of laboratory-based fea-
tures; unstructured data from clinical notes such as signs and symptoms during the initial
phases of patient evaluation; information about stroke subtypes; and genetic information
from a subset of patients enrolled in the MyCode initiative [34]. We are also expanding
our modeling strategies by (1) improving the imputation for laboratory values for EHR-
mining [35,36], which could improve patient representation and reduce algorithmic bias;
(2) applying natural language processing to expand the feature set from clinical notes;
(3) developing polygenic risk score [37] using genetic information from a subset of our
GNSIS cohort; (4) improving model parameter optimization using sensitivity analysis (SA)-
based approaches [38–41]; and (5) expanding the study by incorporating more advanced
methodologies, including deep learning models to compare with binary classification
developed in this study. Finally, we are planning on developing models that account for
the competing risk of death and other major vascular events in addition to ischemic stroke.

In conclusion, predicting long term stroke recurrence is an unmet need with high
clinical impact for improved outcomes. Using rich longitudinal data from EHR and opti-
mized ML models, we have been able to develop models of stroke recurrence for different
prediction windows. Model performance metrics could be optimized and implemented in
the same healthcare system as an intelligent decision support system to improve outcomes.
Even though validating the model in patients recruited at a later time point could be
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done within the Geisinger system, external validation will be necessary to predict how the
model predictions may be affected with regard to other health care systems and patient
demographics. External validation to assess generalizability and identify potential biases
will be an important next step of this study as well. Finally, based on our findings, we
recommend that studies aimed at using ML for the prediction of stroke recurrence should
leverage more than one modeling framework, ideally including also logistic regression as
benchmarking framework for comparison.

Supplementary Materials: The following are available online at https://www.mdpi.com/2077-0
383/10/6/1286/s1, Table S1. Feature selection applied to cases and controls based on four cri-
teria. Set 1: all features; Set 2: all features except medication history; Set 3: features selected
by at least two data-driven strategies; Set 4: minimum set, obtained as the intersect of Set 2
and Set 3; Table S2. Comprehensive model performance measures for the 288 prediction models.
Link: https://github.com/TheDecodeLab/GNSIS_v1.0/tree/master/ModelingStrokeRecurrence/
SupplementaryMaterials; Table S3. Feature importance ranking for the different modeling frameworks.
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