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A B S T R A C T

QSAR modelling on Thirty (34) novel quinazoline derivatives (EGFRWT inhibitors) as non-small cell lung cancer
(NSCLC) agents was performed to develop a model with good predictive power that can predict the activities of
newly designed compounds that have not been synthesised. The EGFRWT inhibitors were optimized at B3LYP/6-
31G* level of theory using Density Functional Theory (DFT) method. Multi-Linear Regression using Genetic
Function Approximation (GFA) method was adopted in building the models. The best one among the models built
was selected and reported because it was found to have passed the minimum requirement for the assessment of
QSAR models with the following assessment parameters: R2 of 0.965901, R2

adj of 0.893733, Qcv
2 of 0.940744,

R2
test of 0.818991 and LOF of 0.076739. The high predicted power, reliability, robustness of the reported model

was verified further by subjecting it to other assessments such VIF, Y-scrambling test and applicability domain.
Molecular docking was also employed to elucidate the binding mode of some selected EGFRWT inhibitors against
EGFR receptor (4ZAU) and found that molecule 17 have the highest binding affinity of -9.5 kcal/mol. It was
observed that the ligand interacted with the receptor via hydrogen bond, hydrophobic bond, halogen bond,
electrostatic bond and others which might me the reason why it has the highest binding affinity. Also, the ADME
properties of these selected molecules were predicted and only one molecule (34) was found not orally
bioavailable because it violated more than the permissible limit set by Lipinski's rule of five filters. This findings
proposed a guidance for designing new potents EGFRWT inhibitors against their target enzyme.
1. Introduction

Among the foremost cancer issues that results in loss of lives each year
in the globe which was estimated for almost one-third of the entire cancer
deaths is lung cancer. Non-small cell lung cancer (NSCLC) is the principal
subset of lung cancers that estimates for about 85% of the problems
raised above [1]. The most common cause of NSCLCs recognised was
EGFR kinase. It was found in about 10–15% and 30–40% of the popu-
lation of patients in Caucasia and Asia. It mostly affects women and
cigarette smokers in general [1].

Development of inhibitors for mutant-selective kinase is among the
difficulties faced in medicinal chemistry and is the principal concern for
EGFR tyrosine kinase inhibitors [2]. The remedy of epidermal growth
factor receptor (EGFR) to managed non-small cell lung cancers with the
T790M resistance mutation prevails a vital medical necessity [3].

In patients with stimulating modifications of EGFR, EGFR inhibitors
show a very high response rate. EGFR inhibitors are categorised into two
classes: First generation EGFR inhibitors which are referred to reversible
Ibrahim).
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inhibitors and include gefitinib and erlotinib. The second class which
consist the second and third generation EGFR inhibitors. The second and
third generation EGFR inhibitors are referred to as irreversible inhibitors
(examples are afatinib and osimertinib). All these classes of drugs were
designed to mitigate the problem of NSCLC most especially the
EGFRL858R mutations (First generation EGFR inhibitors were designed to
treat this type of mutation), EGFRT790M mutations (while Second gen-
eration EGFR inhibitors were designed for the treatment of this type of
mutation) and EGFRT790M/L790M double mutations (third generation
EGFR inhibitors) were designed to treat this type of mutation [2, 4, 5, 6].

QSARmodeling is a molecular modeling method which quantitatively
correlate response variable (biological activities) and molecular de-
scriptors (physicochemical properties) of a molecule [7]. In addition, the
QSAR technique of computer-aided drug design plays a significant role in
predicting the biological activities of small molecules that have not been
synthesised [8]. Another virtual screening method applied in computer
aided drug design is molecular docking which give an overview of how
the ligand and the receptor interact with one another using their
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Table 1. The Formula, IC50 and pIC50 of the data set.

S/No. Formula IC50 nM pIC50 (nM)

D1 C28H27ClFN5O3 27 7.568636

D2 C28H25ClF3N5O3 29 7.537602

D3 C28H25ClF2N6O5 13 7.886057

D4 C29H25ClF5N5O3 30 7.522879

D5 C29H28ClF2N5O5S 24 7.619789

D6 C28H25Cl2FN6O5 14 7.853872

D7 C28H25ClF2N6O5 5.0 8.30103

D8 C29H25ClF2N6O3 1.3 8.886057

D9 C29H28ClF2N5O5S 57 7.244125

D10 C28H25Cl2FN6O5 8.3 8.080922

D11 C28H25ClF2N6O5 43 7.366532

D12 C28H24ClF4N5O3 365 6.437707

D13 C28H26ClF2N5O3 3 8.522879

D14 C28H26ClFN6O5 50.9 7.293282

D15 C27H25ClF2N6O3 4.3 8.366532

D16 C28H27ClF2N6O4 242.4 6.615467

D17 C21H11ClF3N5O3 44 7.356547

D18 C22H14ClF2N5O4 68 7.167491

D19 C28H26ClF2N7O4 2.6 8.585027

D20 C29H28ClF2N7O4 6.6 8.180456

D21 C30H28ClF2N7O5 21 7.677781

D22 C28H26ClF2N7O4 13 7.886057

D23 C25H21ClF2N6O4 50 7.30103

D24 C26H23ClF2N6O4 9.2 8.036212

D25 C28H26ClF2N5O4 6.3 8.200659

D26 C28H26F2N6O5 53 7.275724

D27 C29H25ClFN7O5 722 6.141463

D28 C32H32ClFN6O6 2426 5.615109

D29 C31H32ClFN6O7 172 6.764472

D30 C32H35ClFN7O6 503 6.298432

D31 C34H31ClFN7O6 374 6.427128

D32 C35H29ClFN7O6 390 6.408935

D33 C34H31ClFN7O6 169 6.772113

D34 C35H31ClF2N6O6 39 7.408935
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individual 3D structures [9]. To have an insight on how body response to
the administration of drugs there is need to study the ADME and drug
likeness of the drugs before it reaches the final (clinical) stage [10].

The aim of this work is to develop a model with good predictive
power which could be used to predict the inhibitory activities of newly
designed compounds using QSAR technique, study the mode of binding
interactions between some selected EGFRWT Inhibitors and EGFR enzyme
via docking and also to predict the ADME properties of these selected
EGFRWT Inhibitors.

2. In-silico computational method

2.1. Dataset source

Thirty four (34) quinazoline derivatives bearing various 6-benzamide
moieties as potent EGFRWT inhibitors with their inhibitory activities
Table 2. General limit required for the QSAR model assessment.

Symbol Name

R2 Co-efficient of determination

Q2 Cross-Validation Co-efficient

R2- Q2 Difference between R2 and Q2

N(ext, & test set) Minimum number of external and test set

R2
ext. Co-efficient of determination of external and test set

2

(IC50) in nM were selected from the work of Hou et al., for this research
[11]. The inhibitory activities (IC50) of all the dataset were then con-
verted to their corresponding negative logarithms (pIC50) using Eq. (1)
[12]. Table 1 presents the structures, IC50 and pIC50 for all the data set
used in this research.

pIC50 ¼ -log IC50 � 10�9 (1)

2.2. Sketching of structures and optimum structure generations

After data collection, the sketching of the 2D structures of the studied
molecules was achieved using Chemdraw software version 12.0.2 [13].
After sketching the 2D-structures of the dataset, Spartan 14 software was
used to convert the 2D-structures to 3D-strucutres before energy mini-
mization. Energy minimizing was performed to reduce constrain in the
structures before geometry optimization. Geometry optimization is a
process of finding the most optimum structure of a molecule on potential
energy surface and this was performed by utilizing Spartan 14 software.
DFT at B3LYP/6-311G* level of theory was used in finding the most
optimum structures of all the studied molecules on global minima on the
potential energy surface (PES) [14].
2.3. Descriptors computation, data pre-treatment and daataset splitting

In order to compute the independent variables (descriptors), the most
optimum structures obtained in 2.2 above were saved in SDF a file format
that is been recognized by the software used in computing the de-
scriptors, PaDEL descriptor tool kit. PaDEL descriptor tool kit was used to
compute both Fragment count descriptors, Topological descriptors and
Geometrical descriptors [15].

To eliminate redundant and constant descriptors, data pre-treatment
was performed manually in this regard.

After pre-treating the data, Data division software was further used in
splitting the data into model building and validation set utilizing
Kennard-Stone algorithm [16]. The model building which comprise 24
molecules (70%) were used for the generation of the models as the name
implies and the validation set which contain 10 molecules (30%) were
used for the assessment of the generated models [17].
2.4. Building of the model

The models were built utilizing Genetic Function Approximation
(GFA) method with the descriptors as independent parameter and the
actual pIC50 as the response parameter. In the case of variable selection,
the GFA creates an original population of descriptor sets and determines
the most suitable set from it by utilizing evolutionary crossover and
mutation speculators which generates a succeeding derivative popula-
tion of descriptor sets. GFA select most highly correlated descriptors to
develop so manymodels which is one of the distinct characteristic of GFA
[18]. The MLR-GFA equation for the model is shown below:

pIC50 ¼ X1y1 þ X2y2 þ……þ Z (2)

where X's are the descriptors, y's are the co-efficient of the corresponding
descriptors and z is the regression constant.
Recommended Value Reported Model

�0.6 0.965901

�0.5 0.940744

�0.3 0.025157

�5 34

�0.5 0.818991



Table 3. The symbols, descriptions and classes of descriptors for the selected model.

S/no Symbol Description Class

1 ATSC6m Centered Broto-Moreau autocorrelation - lag 6/weighted by mass 2D

2 ATSC8e Centered Broto-Moreau autocorrelation - lag 8/weighted by Sanderson electronegativities 2D

3 MATS7m Moran autocorrelation - lag 7/weighted by mass 2D

4 SpMax3_Bhp Largest absolute eigenvalue of Burden modified matrix - n 3/weighted by relative polarizabilities 2D

5 SpMax5_Bhs Largest absolute eigenvalue of Burden modified matrix - n 5/weighted by relative I-state 2D

6 maxHBint10 Maximum E-State descriptors of strength for potential Hydrogen Bonds of path length 10 2D
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2.5. Assessment of the model built

The assessment parameters used in evaluating or validating the
quality of a QSAR model are the; Squared correlation coefficient of the
training set (R2

training), Adjusted R2 (R2
adj), Cross-validation coefficient

(Qcv
2 ), and Squared correlation coefficient of the test set (R2

test) [19, 20,
21].

The large value of these parameters seem to be important but not
enough [22]. In this regard, the multi-collinearity between descriptors
can be identified using their variation inflation factors (VIF), to identify
whether these descriptors correlate with each other or not. If the
estimated VIF values are equal to 1 it means there is no correlation be-
tween them; if it happens to be between 1–5, there is high chance of
Table 4. The pIC50, Predicted pIC50 and the residual values for the studied
molecules.

S/No pIC50 (nM) Predicted pIC50 Residual values

1 7.568636 7.567486 0.00115

2 7.537602 7.606153 -0.06855

3z 7.886057 8.032265 0.146208

4 7.522879 7.608232 -0.08535

5z 7.619789 7.674559 0.05477

6 7.853872 7.912141 -0.05827

7 8.30103 8.065812 0.235218

8z 8.886057 8.031683 -0.85437

9z 7.244125 7.727673 0.483548

10 8.080922 8.089178 -0.00826

11 7.366532 7.364126 0.002406

12 6.437707 6.340232 0.097475

13 8.522879 8.30143 0.221449

14 7.293282 7.433613 -0.14033

15 8.366532 8.392319 -0.02579

16 6.615467 6.52072 0.094747

17 7.356547 7.367656 -0.01111

18z 7.167491 7.755543 0.588052

19 8.585027 8.461748 0.123279

20 8.180456 8.16481 0.015646

21 7.677781 7.640802 0.036979

22 7.886057 7.873891 0.012166

23z 7.30103 7.33266 0.03163

24 8.036212 8.080832 -0.04462

25 8.200659 8.331855 -0.1312

26 7.275724 7.494222 -0.2185

27z 6.141463 6.35151 0.210047

28z 5.615109 5.551742 -0.06337

29z 6.764472 6.226603 -0.53787

30 6.298432 6.288255 0.010177

31z 6.427128 6.061555 -0.36557

32 6.408935 6.312643 0.096292

33 6.772113 6.892031 -0.11992

34 7.408935 7.44403 -0.0351

z ¼ Test set.

3

accepting the model; and if it is greater than 10, the model cannot be
accepted is therefore rejected [23]. It can be calculated using the equa-
tion below:

VIF¼ 1
1� R2

(3)

The assessment of importance and participation of each descriptor to
the selected model is made using the value of the mean effect (ME) of
each descriptor. The equation used in calculating the ME is shown below:

MEj ¼
Bj

Pi¼n
j¼1dijPm

j Bj
Pn

i dij
(4)

where ME represents the mean effect of a descriptor j in a model, the
coefficient of the descriptor J is represented by βj in the model and the
value of the descriptor in the data matrix for each molecule in the model
building set is dij, n is the number of molecules in the model building set
and m is the number of descriptor that appear in the model [24].

Y-Scrambling test was performed to assure the robustness of a model
and also the model was not achieved by chance correlation. It is done by
reshuffling the actual activities and holding the descriptors fixed to
generate new QSAR models for many trials, the new built QSAR models
were anticipated to give low Q2 and R2 value. The validation parameter
for this test is cRp (cR2p > 0.5) [25].
2.6. Applicability domain

The applicability domain (AD) of a model was carried out to deter-
mine whether a model can be regarded valid and void if the model can
make a good prediction of new activities of the training and test mole-
cules. As such, the model is subjected to AD to find out whether there are
influential or outliers molecules in the studied ones [26]. Leverage
approach is among the methods used in assessing the AD of QSARmodels
and thus is given as hi:

hi ¼ xi (X
T X)-K xi

T (i¼A,…, Z) (5)

where the model building set matrix I is given by xi, n � k descriptor
matrix of the model building set is represented by X and XT is the
transpose matrix X used in generating the model. The thresh-hold for the
value of X is the warning threshold (h*) which is presented in the
equation below:

h* ¼ 3(xþ1)/q (6)

where the number of chemicals of the model building set is given by q,
and the number of the descriptors in the model under evaluation is
represented by x.
2.7. Molecular docking analysis

To elucidate the mode of binding interactions between the active site
of EGFR enzyme and some selected EGFRWT inhibitors (ligands), A Dell
Latitude E6520 computer system, with the following specification: Intel
® Core™ i7 Dual CPU,M330 @2.75 GHz 2.75GHz, 8GB of RAM was



Table 5. VIF, ME and correlation between descriptors of the selected model.

ATSC6m ATSC8e MATS7m SpMax3_Bhp SpMax5_Bhs maxHBint10 VIF ME

ATSC6m 1 1.323879 0.360912

ATSC8e -0.07726 1 1.07747 -0.19827

MATS7m -0.45739 0.119644 1 1.411965 0.295192

SpMax3_Bhp 0.149602 0.190649 -0.06125 1 1.28331 0.112306

SpMax5_Bhs 0.052436 -0.04711 0.079716 0.282227 1 1.384011 -0.35122

maxHBint10 -0.27332 -0.06722 0.378736 -0.19724 0.357375 1 1.526247 0.781081

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 2 4 6 8 1 0Re
sid

ua
ls

Actual pIC50

Trng Test

Figure 2. XY (Scatter) Plot of actual pIC50 against the residuals of both the test
and training sets of the selected model.
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utilized with the help of Pyrex virtual screening software, Chimera,
PyMOL and Discovery studio.

2.8. Ligands and EGFR enzyme preparation for the molecular docking
computational analysis

The first thing to do in any molecular docking analysis is ligands
preparation. The preparation of the ligands was adopted from the opti-
mized structures in 2.2 above saved in pdb file format using Spartan’14
wave software [27]. The next thing ought to be done is the retrieval of 3D
structure of the EGFR enzyme to be used in this study. The EGFR enzyme
with pdb code: 4zau was downloaded from the Protein Data Bank
(RSCPDB). Discovery Studio Visualizer was utilized in preparing the
EGFR enzyme for the docking analysis, in the course of the preparation,
hydrogen was added, water molecule, heteroatoms and co-ligands pre-
sent on the crystal structure were completely eliminated and saved in pdb
file.

2.9. Execution of the molecular docking computational analysis

Autodock vina of Pyrex software was used for the docking of the li-
gands to the active site of EGFR enzyme (pdb ID: 4zau) [28]. Re-coupling
of the ligand-receptor (complexes) for further investigation was done
with the help of Chimera software [29]. The elucidation of the binding
mode interactions of the complexes was achieved using PyMOL and
Discovery studio visualizer [30, 31].

2.10. ADME and drug-likeness properties prediction

SwissADME a free online web tool used in evaluating ADME
and drug-likeness properties of small molecules was used to predict
the ADME and drug-likeness properties of some selected EGFRWT in-
hibitors among the data set [32]. SMILES is the input file for SwissADME
which contains a molecule per line separated by a space with a name
A
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Figure 1. (A) XY (Scatter) Plot of the actual pIC50 against predicted pIC50 of training
the selected model.

4

(optional). Molecules can be inserted in SMILES format or pasted, or
drawn using the molecular sketcher available in the web tool. If the
molecule is ready, the calculations can be setup by clicking on the “Run”
button [32].

The Lipinski's rule of five filter is very useful at pre-clinical stage of
drug discovery which state that if any compound violate more than 2 of
these criteria (Molecular weight < 500, Number of hydrogen bond do-
nors �5, Number of hydrogen bond acceptors �10, Calculated Log p � 5
and Polar surface area (PSA) <140 Å2), the compound is said to be
impermeable or badly absorbed [33].

3. Result and discussion

3.1. QSAR modeling

The reported model was observed to have excelled the limit for the
evaluation of a good model with the following evaluation parameters: R2
B
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set (B) XY (Scatter) Plot of the actual pIC50 against predicted pIC50 of test set of



Table 6. Y-scrambling test.

Model R R2 Q2

Original 0.888285 0.789051 0.520506

Random 1 0.210234 0.044198 -0.64726

Random 2 0.517313 0.267612 -0.4446

Random 3 0.591649 0.350049 -0.09228

Random 4 0.397103 0.157691 -0.47247

Random 5 0.485224 0.235442 -0.76149

Random 6 0.521054 0.271497 -0.35543

Random 7 0.294695 0.086845 -0.59685

Random 8 0.490146 0.240243 -0.30231

Random 9 0.393085 0.154516 -0.42651

Random 10 0.521333 0.271788 -0.17528

Random Models Parameters

Average r: 0.442183

Average r2: 0.207988

Average Q2: -0.42745

cRp2: 0.68434
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Table 7. The Ligand-Receptor, Binding affinity, Hydrogen bond, Bond distance, Halo

S/No Ligand-Receptor (4ZAU) Binding affinity (Kcal/mol) Hydrogen Bond B

D2 Complex 2 -9.2 GLU762
THR790
MET793
PHE723

2
2
2
3

D8 Complex 8 -9.0 THR790
GLU762
MET793
GLU762
GLU762

2
2
2
3
3

D13 Complex 13 -9.1 GLU762 THR790MET793 PHE723 2
2
2
3

D17 Complex 17 -9.5 MET793
MET793
THR854
ASP855

2
2
2
2

D34 Complex 34 -9.4 ARG841
ASN842
LYS745
UNK1

2
2
2
3
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of 0.965901, R2
adj of 0.893733, Qcv

2 of 0.940744, R2
test of 0.818991 and

LOF of 0.076739 as reported by [21] (Table 2).
pIC50 ¼ 1.496601581 * ATSC6m - 1.098227666 * ATSC8e þ

0.786519460 *MATS7mþ 0.410257932 * SpMax3_Bhp - 1.755609854
* SpMax5_Bhs þ 2.392960763 * maxHBint10 þ 5.590744728

The details of the descriptors in the reported model were presented in
Table 3. The negative coefficients of these descriptors (ATSC8e and
SpMax5_Bhs) highlighted their negative correlation to the inhibitory
activities of the quinazoline derivatives (EGFRWT inhibitors). The lesser
the number of these descriptors in the structures of these EGFRWT in-
hibitors, the higher the potency of these EGFRWT inhibitors toward their
target EGFRWT enzyme. On the other hand, the positive co-efficient of
ATSC6m, MATS7m, SpMax3_Bhp and maxHBint10 descriptors in the
reported model gives the positive correlation of these descriptors to the
inhibitory activities of EGFRWT inhibitors. That is, the more the presence
of these types of descriptors in the structures of these EGFRWT inhibitors
the more the inhibitory activities of the EGFRWT inhibitors toward their
target enzyme.
6 0 . 8 1 1 . 2

AGES

est Set

f the selected model.

gen, Hydrophobic and Other Amino Acid Residues of some selected ligands.

ond distance (Å) Halogen, Hydrophobic and Other Amino Acid Residues

.64857

.51221

.63455

.7012

MET793, LYS745, LEU718, VAL726, ILE759, ALA743, LEU844

.70633

.4631

.4998

.4801

.54155

MET793, LYS745, LEU844, LEU718, VAL726, ALA743

.63651

.48211

.6795

.70877

MET793, LYS745, LEU718, ILE759, LYS745, VAL726, ALA743, LEU844

.61394

.18464

.57601

.68794

GLN791, LYS745, LEU718, MET766, CYS797, ALA743, ALA743,VAL726

.7122

.07811

.54982

.62317

LEU788, ASP855, CYS797, VAL726, LYS745, LEU718, ALA743, LEU844
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3.1.1. Description of the descriptors that appear in the reported model
ATSC6m and ATSC8e are Moreau–Broto autocorrelation of a Topo-

logical Structure, ATS (The ATS descriptor is a graph invariant describing
how the property considered is distributed along the topological struc-
ture). These descriptors can be seen as a special case in which other types
of descriptors can also be derived from [34]. This is the most known
spatial autocorrelation defined on a molecular graph G as

ATSk ¼ 1
2
�
XA

i¼1

XA

j¼1

wi �wj � δ
�
dij; k

� ¼ 1
2
��wT ⋅ kB ⋅w

�

MATS7m is a Moran autocorrelation which if applied to a molecular
graph. Moran coefficient usually takes value in the interval [-1, þ1].
Positive autocorrelation corresponds to positive values of the coefficient
whereas negative autocorrelation produces negative values [34]. It can
be defined as

Ik ¼
1
Δk
�P

A

i¼1

PA
j¼1

ðwi � wÞ ��wj � w
� � δ�dij; k

�

1
A �
PA
i¼1

ðwi � wÞ2

SpMax3_Bhp and SpMax5_Bhs are the maximum absolute eigen-
value of Burden modified matrix - n 3/and - n 5/weighted by relative I-
state and relative polarizabilities, called leading eigenvalue or spectral
radius, SpMaxA is the maximum absolute value of the spectrum. These
kinds of functions were called by Ivanciuc matrix spectrum operators.
This eigenvalue has been suggested as an index of molecular branching,
this descriptor talks about branching in molecules [35]. As seen from the
regression equation and ME values (Table 5), SpMax5_Bhs contributes
negatively to the inhibitory activities of the studiedmolecules. It suggests
that reducing chain branching in the studied molecules will improve the
inhibitory activities of the studied molecules toward their target enzyme.

MaxHBint10 is a maximum E-State descriptors of strength for po-
tential hydrogen bonds of path length 10. Based on the regression
equation and ME values (Table 5), this descriptor gave the highest
contribution toward the inhibitory activities of the studied molecules.
Increasing the number of hydrogen bond in the molecules might increase
their potency against their target protein.

The XY (Scatter) plot of predicted activities of both the test and
training sets against the actual pIC50 was shown in Figure 1A & 1B. The
significance of the reported model was confirmed by the distribution of
the values around the straight line. Also, the R2 values from the plots
agree with those of the training and test for the internal and external
assessment.

On the other hand, the XY (Scatter) plot of actual pIC50 against the
residuals of both the model building and validation sets was shown in
Figure 2. The unusual occurrence of these residuals on either side of zero
on the plot shows the non-existence of methodological error in the re-
ported model.

The pIC50, Predicted pIC50 and the residual values for all the studied
molecules were presented in Table 4. The low residual values noted in the
table verified the reliability of the reported model.

The correlation statistical analysis of the descriptors in the reported
model was performed (Table 5) and the descriptors were found not to
correlate with one another. This shows the high performance of the de-
scriptors utilized in generating the reported model. To further confirm
whether there is a similarity or not between the descriptors in the re-
ported model, The VIF values of these descriptors in the model building
set were estimated and realized to be less than 2 (Table 5) indicating
the applicability of the reported model and thus the descriptors were
independent of one another. The ME value (Table 5) gives the contri-
bution of a descriptor in opposition to other ones in the reported
model. The signs point the various directions of either increase or
decrease in the values of these descriptors which will improve the
6

inhibitory activities of the studied molecules. It is observed that from the
model and ME values (Table 5), maxHBint10 descriptor gives the
highest contribution.

The Y-scrambling test was presented in Table 6 for the 10 randomly
generated models and the R2 and Q2 values for the newly generated
random models were determined to be very low. This has affirmed the
obtainability of the reported model was not by chance and further
confirm its robustness.

The plot of leverages against standardized residuals of both the model
building and validation sets (Williams plot) presented in Figure 3 iden-
tified two (2) influential compounds from which were all in the valida-
tion set. It is very paramount to decipher that these molecules (influential
compounds) with leverage value greater than the threshold h*(h* ¼
0.875) are not put into consideration when designing new EGFRWT in-
hibitors. These molecules might be structurally different from those used
to generate the reported model and, thus may have a different mecha-
nism of action.
3.2. Molecular docking analysis

The mode of binding interactions between the active site of EGFR
receptor (4zau) and some selected EGFRWT inhibitors (ligands) was
elucidated through molecular docking (Table 7). From Table 7, Com-
plex 17 was identified to have the highest binding affinity of -9.5 kcal/
mol. With the help of discovery studio visualizer, the ligand was clearly
observed to have interacted with the active site of EGFR receptor via
Hydrogen bond with the following amino acid residues MET793,
MET793, THR854 and ASP855 with bond distances of 2.61394 (Å),
2.18464 (Å), 2.57601 (Å) and 2.68794 (Å). The interaction was not
only via hydrogen bond, it also interacted with the active site of the
EGFR receptor via halogen bond (GLN791), hydrophobic bond
(LEU718, CYS797, LYS745, ALA743, ALA743, and VAL726), electro-
static bond (LYS745) and others (MET766) which might be the reason
why it has the highest binding affinity. The next one identified with
good binding affinity after the one mentioned above (complex 17) is
complex 34. It interacted in the active site of the receptor through
hydrogen bond with ARG841, ASN842, LYS745, UNK1 residues with
bond distances of 2.7122 (Å), 2.07811 (Å), 2.54982 (Å), and 3.62317
(Å). It also interacted with the active site of the EGFR receptor through
halogen bond (LEU788), hydrophobic bond (VAL726, LYS745,
LEU718, ALA743 and LEU844), electrostatic bond (ASP855) and others
(CYS797). The rest other three complexes interacted in the active site of
the receptor through hydrogen bond, halogen bond, electrostatic and
hydrophobic bond as shown in Table 7. Figure 4 & Figure 5 showed the
3D and 2D structures of the complexes. Based on the molecular docking
results, the most common amino acids to all of the examined com-
pounds were MET793, LEU718, LYS745 and VAL726 (Table 7). The
most important amino acids that might be responsible for the higher
binding affinity were CYS797, GLN 791 and ASP855 due to their
interaction with the molecules with higher binding affinity (Table 7).
Halo substituted molecules (Complex 17) were found to fit better in the
active site of the receptor than those with bulkier substituents (Com-
plex 34) as shown in Figure 5.

On comparing the QSAR and docking results, the molecule with the
highest activity was among those having higher binding affinity. This
means that there is little correlation between the QSAR and themolecular
docking studies.
3.3. ADME properties prediction

The ADME properties of these selected EGFRWT inhibitors were pre-
dicted and presented in Table 8. From Table 8, it can be observed that
only one among these molecules violated more than the maximum
permissible limit of the criteria stated by Lipinski's rule of five, it means



Figure 4. 3D structures of (A) Complex 2, (B) Complex 8, (C) Complex 13, (D) Complex 17 and (E) Complex 34 using PyMOL.
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there is a high tendency all of these molecules might be pharmacologi-
cally active except molecule 34 which has more than 3 violation. In a null
shell the remaining four (4) molecules are said have good absorption, low
toxicity level, orally bioavailable and permeable properties. The
Bioavailability Radar gives an overview of the drug-likeness of all the
selected molecule (Figure 6.). The painted pink area shows the range for
each properties (Lipophilicity: XLOGP3 between �0.7 and þ5.0, size:
MW between 150 and 500 g/mol, polarity: TPSA between 20 and 130 A2,
solubility: log S not higher than 6, saturation: fraction of carbons in the
sp3 hybridization not less than 0.25, and flexibility: no more than 9
rotatable bonds). Based on this criteria, all the molecules are said to be
orally bioavailable except molecule 34 which is too Flexible, Polar,
Lipophilic and Insoluble. The plot of WLOGP against TPSA (Boiled-egg
plot) to predict gastrointestinal absorption and brain penetration of the
selected molecules was shown in Figure 7. It can be seen from the plot
7

that none of the molecules possess the BBB permeant but they are within
the GI absorption region.

4. Conclusion

A very high predictive model was developed using QSAR modelling
technique on some EGFRWT inhibitors. The reported model was selected
and reported because of its fitness with the following assessment pa-
rameters: R2

trng¼ 0.919035, R2
adj¼ 0.893733, Q2

cv¼ 0.866475, R2
test¼

0.636217, and LOF ¼ 0.215884. The high predicted power, reliability,
robustness of the reported model was verified by other assessments such
as AD, Y-scrambling test and found to be statistically fit. The molecular
docking results of the examined compounds showed that CYS797, GLN
791 and ASP855 amino acids might be responsible for the higher binding
affinity of molecule 17 (-9.5 kcal/mol) and 34 (-9.4 kcal/mol). Also, the



Figure 5. 2D structures of (A) Complex 2, (B) Complex 8, (C) Complex 13, (D) Complex 17 and (E) Complex 34 with bond distances using Discovery stu-
dio visualizer.
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Table 8. ADME properties.

S/N MW HB donor HB acceptor WLOGP TPSA Lipinski violations

D2 571.98 2 7 6.49 88.61 1

D8 579 2 9 5.8 112.4 1

D13 553.99 2 8 5.93 88.61 1

D17 473.79 2 8 6.67 112.73 1

D34 705.11 2 11 7.26 143.66 3

Figure 6. The bioavailability radar of (A) molecule D2 (B) molecule D8 (C) molecule D13 (D) molecule D17 and (E) D34.

M.T. Ibrahim et al. Heliyon 6 (2020) e03289
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Figure 7. The plot of WLOGP against TPSA for the selected molecules.

M.T. Ibrahim et al. Heliyon 6 (2020) e03289
results of ADME properties predicted indicated that only molecules 34
among others was nor orally bioavailable as it has violated more
than the maximum permissible limit for the orally bioavailability of
drugs set by Lipinski's rule of five. This research was able to identified
compound 17 as a lead among the studied compounds and proposed
when designing new compounds it should be used as template for
structural modification.
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