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Positron emission tomography (PET) and magnetic resonance imaging (MRI) are
established imaging modalities for the study of neurological disorders, such as epilepsy,
dementia, psychiatric disorders and so on. Since these two available modalities vary in
imaging principle and physical performance, each technique has its own advantages
and disadvantages over the other. To acquire the mutual complementary information
and reinforce each other, there is a need for the fusion of PET and MRI. This combined
dual-modality (either sequential or simultaneous) could generate preferable soft tissue
contrast of brain tissue, flexible acquisition parameters, and minimized exposure to
radiation. The most unique superiority of PET/MRI is mainly manifested in MRI-based
improvement for the inherent limitations of PET, such as motion artifacts, partial
volume effect (PVE) and invasive procedure in quantitative analysis. Head motion during
scanning significantly deteriorates the effective resolution of PET image, especially for
the dynamic scan with lengthy time. Hybrid PET/MRI device can offer motion correction
(MC) for PET data through MRI information acquired simultaneously. Regarding the PVE
associated with limited spatial resolution, the process and reconstruction of PET data
can be further optimized by using acquired MRI either sequentially or simultaneously.
The quantitative analysis of dynamic PET data mainly relies upon an invasive arterial
blood sampling procedure to acquire arterial input function (AIF). An image-derived input
function (IDIF) method without the need of arterial cannulization, can serve as a potential
alternative estimation of AIF. Compared with using PET data only, combining anatomical
or functional information from MRI for improving the accuracy in IDIF approach has
been demonstrated. Yet, due to the interference and inherent disparity between the
two modalities, these methods for optimizing PET image based on MRI still have many
technical challenges. This review discussed upon the most recent progress, current
challenges and future directions of MRI-driven PET data optimization for neurological
applications, with either sequential or simultaneous acquisition approach.

Keywords: positron emission tomography (PET), magnetic resonance imaging (MRI), neuroimaging, motion
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INTRODUCTION

Positron emission tomography (PET), a noninvasive imaging
modality, presents the physiological and pathophysiological
process at molecular level by using various positron tracers
(Jones and Rabiner, 2012). This powerful imaging technique is
considered to be ideally suitable for monitoring molecular events
in the early course of neurological disease, as well as during the
course of medical treatment (Gambhir, 2002). However, PET
imaging can only offer relatively poor anatomical information,
spatial and temporal resolution, which are regarded as its major
deficiencies. On the other hand, magnetic resonance imaging
(MRI) provides a higher quality of soft tissue resolution, and
has higher temporal resolution. Thus, MRI is considered to
be an excellent structural and functional imaging modality,
which also has obvious advantages in neurological applications
(Thomalla et al., 2018). With the development of technology,
MRI-based functional imaging including functional MRI (fMRI),
magnetic resonance spectroscopy (MRS), diffusion weighted
imaging (DWI), and perfusion weighted imaging (PWI), have
been introduced into research and clinic extensively.

Although these two available modalities vary in imaging
principle and physical performance, each technique has its
own advantages and disadvantages over the other. To acquire
the mutual complementary information and reinforce each
other, there is a need for the fusion of PET and MRI. This
combined dual-modalities (either sequential or simultaneous)
could generate preferable soft tissue contrast of brain tissue,
flexible acquisition parameters and minimized exposure to
radiation (Musafargani et al., 2018). Fusion of PET and
MRI images acquired at different time points from separated
devices, has been performed routinely for brain imaging in
a number of clinical centers (Zhu et al., 2017b; Ding et al.,
2018). However, it must be pointed out that the physiological
or mental state studied, respectively, by PET and MRI may
differ in varying levels during the two separated imaging
sessions. Since patient’s condition could change between the
two sessions of scanning, the confidence of findings from two
imaging modalities relating to each other will be questioned
(Queiroz et al., 2018). Brain imaging was destined to be the
first applications of hybrid (simultaneous) PET/MRI system,
which lead to real multiparametric functional analysis by using
the two powerful modalities. Currently, studies on distinctive
practicability of hybrid PET/MRI are rapidly appearing for
neurological applications (van Bergen et al., 2018). This review
discussed upon the most unique superiority of PET/MRI, which
is mainly manifested in MRI-based improvement for the inherent
limitations of PET.

Due to the sequential imaging design of PET/MRI study, head
motion between the two acquisitions or within PET scanning
could cause errors, especially for the dynamic scan with lengthy
time. Hybrid PET/MRI device can offer motion correction (MC)
for PET data through MRI information acquired simultaneously
(Chen et al., 2018). As MRI could offer better soft tissue resolution
than CT, fusion of PET and MRI has more pulling power
and results in combining excellent structural information with
functional PET data. These MRI-based structural information

could be used for not only providing anatomical reference, but
also addressing spatial resolution limitations of PET imaging.
Regarding the partial volume effect (PVE) associated with limited
spatial resolution, the process and reconstruction of PET data
can be further optimized by using MRI information acquired
either sequentially or simultaneously. The quantitative analysis of
dynamic PET data relies upon an invasive arterial blood sampling
procedure to acquire arterial input function (AIF). An image-
derived input function (IDIF) method without the need of arterial
cannulization, can serve as a potential alternative estimation of
AIF. Compared with using PET data only, combining anatomical
or functional information from MRI for improving the accuracy
in this approach has been demonstrated. Yet, due to the
interference and inherent disparity between the two modalities,
these methods still have many technical challenges. This review
discusses upon the most recent progress, current challenges
and future directions of MRI-driven PET data optimization for
neurological applications, with either sequential or simultaneous
acquisition approach.

MRI-BASED MC

Since image quality of PET highly depends on the counts of
photons captured within the field of view, data acquisitions
of PET commonly require several minutes per position or per
frame. The intrinsic spatial resolution of clinical PET scanners
is considered to be in the range of 3∼5 mm, which may not
be achieved due to either involuntary or voluntary motion
during PET scanning (Blume et al., 2010; Kustner et al., 2017).
The inevitable motion in varying degrees includes two distinct
categories, nonrigid (deformable) and rigid motion. Both cardiac
and respiratory motion can be regarded as deformable motion
(Bousse et al., 2016). The head movement, a type of rigid motion,
is mainly due to the translation or rotation of head during PET
study. The effective resolution of PET image could be significantly
deteriorated by such motion artifacts (Ouyang et al., 2013).

In the clinical practice of brain PET imaging, the visual
evaluation of static PET images is generally not apparently
influenced by slight head motion. However, such blurring
could induce an unrealistic picture of PET tracer distribution.
Furthermore, the impaired image quality could give rise to
bias and increased variability in the statistical comparison of
group studies (Herzog et al., 2005). Despite the fact that not
all the head of patients with neurological disorders move more
than healthy subjects, a greater percentage of these patients
are tend to experience head motion (Ikari et al., 2012). Apart
from the introduced blurring and image quality degradation,
head motion also impedes the co-registration of these two
modalities and further induces emission-attenuation mismatch.
Therefore, head motion should be corrected before or within data
reconstruction in order to obtain precise lesion identification and
data quantification.

Although the dedicated head holders have been designed to
minimize head motion during PET and/or MRI scanning, the
excessive restriction generally reduces the comfort level (Lalush,
2017). Head holders and earphones used in the hybrid PET/MRI
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scanner will attenuate the PET signal as well. In addition, some
subjects in neurological research may not be able to remain
absolute still in spite of wearing head holder.

Approaches for MC
MC algorithm attempting to compensate for head movement is
another feasible strategy, which can be divided into two groups.
The first group of this category is frame-based MC (FBMC)
methods, in which the head motion is corrected by co-registering
a sequence of PET images to the reference template (Montgomery
et al., 2006). Nevertheless, FBMC methods are considered to be
reliable only if the variance among various frames is less than
5 mm (Jin et al., 2013). Although commercially available fusion
software performs well for co-registering separately acquired
PET and MRI images, they cannot compensate for the rigid
motion presented within frame. Compared to standalone MRI
or PET/CT system, movement artifacts introduce a tougher issue
in hybrid PET/MRI scanner. Thus, an sensitive and effective
technique for motion-detection and MC should be utilized,
and the dynamic arrangement of PET frames should achieve
a proper compromise between signal to noise ratio (SNR) and
MC accuracy (Cabello and Ziegler, 2018). Another group of
MC methods for compensating head movement are known
as event-based methods, which adjust the raw list-mode PET
images such that the realistic coincidence events are restored
to the standard coordinate resembling the acquisition in the
absence of any head motion (Catana et al., 2011; Keller et al.,
2015). This method requires real-time monitor of the head
motion during PET imaging, by using either an optical motion
tracking system or other simultaneous imaging modality such
as MRI with excellent anatomical information (Kyme et al., 2018;
Chen et al., 2019).

Real-time head motion tracking system using camera
or infrared light makes allowance for the reliability of
MRI sequences and PET data with severe head movements
(Montgomery et al., 2006; Olesen et al., 2012). This type
of MC enables considerable image improvement of the PET
data (Marner et al., 2017). Since motion tracking data are
intrinsically acquired from optical camera and are transformed
into the dynamic frames by using a calibration, deviation of
the transformation parameter may ruin the endeavor from head
tracking system (Zahneisen et al., 2014). It is difficult to maintain
the line-of-sight between the optical markers and detectors due
to the limited space in the scanners. In addition, the fixation of
the target on head can have several technical issues (Aksoy et al.,
2011). During facial movements, it may not hold true that the
marker taped to the head has a relatively fixed position to the
brain. Friction between posterior head and MRI coil may also
slightly shift the relative position between scalp and skull during
head motion (Gumus et al., 2015).

MRI provides high brain soft-tissue contrast and temporal
resolution, which makes it ideal for demonstrating the dynamic
head motion. With the involvement of PET and MRI dual-
modalities in brain imaging, MRI-driven MC (MRMC) for
voluntary head motion during a lengthy PET study can be crucial
in maintaining the alignment between a series of PET and MRI
images (Reilhac et al., 2018). Hybrid PET/MRI system allows for

acquiring MRI images with dynamically changing anatomy at
well as list-mode PET acquisition. The accurate acquisition time
of each photon pair is also logged in this procedure. Then, MRMC
of PET images refers to the orientation and position changes
obtained by simultaneous MRI data, and the motion blurring
of PET data can be alleviated by the retroactive correction.
Furthermore, the MRMC often applies the deformable models
for cardiac or respiratory motion in the thorax, while the rigid
models for brain motion in the skull (Catana et al., 2011; Fürst
et al., 2015; Manber et al., 2015). Up to now, various MRMC
strategies have been applied in the neurologic field, and their
feasibility suggested by several proof-of-principle studies (Catana
et al., 2011; Ullisch et al., 2012).

Procedure of MRMC
Although MRMC techniques are diverse and complicated, several
essential routine procedures are involved (Figure 1). Above all,
simultaneous acquisition of fast MRI signals is considered to
be the primary premise for MRMC. During the PET scanning,
head motion tracking signals using various MRI sequences infer
the real-time head movement. The commonly used fast MRI
navigator sequences for head motion comprise fast echo planar
imaging (EPI) sequences, and active MRI microcoils (Catana
et al., 2011; Ullisch et al., 2012; Huang et al., 2014a,b; Keller
et al., 2015). MRI navigator volumes can be acquired between
other scheduled MRI sequences at multiple time points. At each
sample point, a series of navigator volumes are acquired to
check the noise and brain motion in the process of navigator-
to-navigator registration (Keller et al., 2015). All the navigators
acquired intermittently from each sample point are rigidly
registered to the first one, and the motion magnitude and
direction of each sample point are calculated. Alternatively,
applications of image analysis software also allows for the
head motion tracking by realigning the series of brain image
volumes acquired using EPI sequence with a high temporal
resolution of about 2–3 s (Ullisch et al., 2012). This head
motion parameter extracted from an amount of EPI could
be exploited for correcting both fMRI and PET images. In
addition, active MRI microcoils could also be used as fiducial
markers (Huang et al., 2014a,b). This approach offers the
possibility of tracking the real-time head motion during brain
PET acquisition, and improves the temporal resolution compared
with other MRMC methods.

As head motion is monitored by repetitive MRI images, the
time point when head motion is beyond a default threshold
is determined as a symbol of actual movement and a framing
boundary for the recombination of the raw list-mode PET
images. By this means, the successive PET data are divided
into a series of discrete temporal subunits, each of which
maintains a specific fixed head pose. This procedure is referred
to as PET framing.

Based on the head pose information as mentioned above,
the process of PET correction is completed by assembling
all the framed PET images into a single PET image. This
decisive step may be conducted in the format of either within-
reconstruction or post-reconstruction. Regarding to the former,
the entire procedures of head motion modeling and PET
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FIGURE 1 | Schematic of MRMC procedures. MRI tracking sequences can be used to monitor the head motion during PET scanning. Each time point when head
motion is beyond a default threshold is determined as a symbol of actual movement and a framing boundary for the recombination of the list-mode PET images. By
this means, the successive PET raw data are divided into a series of discrete temporal subunits, each of which maintains a specific fixed head pose. Then, the
process of MRMC for PET data either within-reconstruction or post-reconstruction is completed by assembling all the framed PET images into a single PET image.

correction are integrated with the PET image reconstruction
(Fürst et al., 2015; Chen et al., 2019). But for the latter,
each frame of PET data is reconstructed separately and then
realigned into a reference brain template, and summed eventually
(Catana et al., 2011). Without loss of PET SNR, significant
improvement in lesion detection and reducing artifacts derived
from misalignment could be generated by MRMC (Chun et al.,
2012; Chen et al., 2019).

MRI-BASED PARTIAL VOLUME
CORRECTION

Spatial resolution signifies the minimum differentiable distance
between two points within an image. Various factors, including
detector size, positron range, noncollinearity and reconstruction
method, contribute to the actual spatial resolution of PET
device. In either multidetector or continuous single detectors
PET scanners, the dominant factor affecting the intrinsic spatial
resolution is the detector size or the number of photons
detected, respectively. A positron travels a distance in tissue
before annihilation, and the distance relies on the energy of
this positron. Therefore, the positron kinetic energy spectrum
of specific radioisotope determines the effective positron range,
which results in the degradation of spatial resolution (Cal-
Gonzalez et al., 2015). In addition, due to the residual momentum
of the positron at the annihilation position, two 511 keV photons
are emitted at a slight deviation from 180◦. This noncollinearity
also degrades the spatial resolution of PET scanner, and further
deteriorates with larger diameter of detector ring.

Compared with MRI or CT, one of the principal limitations
of PET imaging is the relatively low spatial resolution

(van der Vos et al., 2017). It is usually referred to as PVE that
the relatively limited spatial resolution affects images both
visually and quantitatively. Most of the PVE of PET image can
be generally regarded as two distinct effects: spill-out of data
from inside region and spill-in of data from outside region.
Consequently, the edge area of target regions, which has different
tissue type or physiological state from adjacent regions, is
supposed to be affected by PVE most seriously (Erlandsson et al.,
2012). The degree of spill-over between contiguous regions relies
on the point-spread function of the medical imaging system,
which is customarily modeled as a 3-dimensional (3D) Gaussian
function and principally characterized by the extent of full-width
at half-maximum (FWHM). Since the cerebral cortex of human
is only a few millimeters thick, gray matter suffers from the severe
PVE in PET imaging.

Tissue fraction effect (TFE), another component of the PVE,
is the result of sampling effect related to the finite voxel size of
images. Each single voxel of brain images may contain multiple
tissue types [e.g., gray matter, white matter, cerebrospinal fluid
(CSF), and blood vessel in brain]. Compared to the spill-over
effect between contiguous regions, TFE only accounts for a
minor weight of PVE in PET data, but is of greater concern
in CT or MRI images. The existing works for TFE correction
in emission tomography mostly concentrate on the tissue of
lung or myocardium, using density information derived from
CT (Pretorius and King, 2009; Holman et al., 2015; Matsunaga
et al., 2017). Considering the absence of dedicated MRI-based
technique for TFE correction in PET images, this review will not
go any further to discuss this subtopic.

The PVE phenomenon can be ameliorated by using several
partial volume correction (PVC) methods on PET image
(Meechai et al., 2015). Reversing the image degradation is
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vital for precise quantification of PET data and for avoiding
confounding factors derived from PVE. Due to the intrinsic
physical limitations of temporal resolution, spatial resolution
and noise performance, PET image generally has poorer image
quality than MRI. Based on this premise, it is usually supposed
that anatomical data derived from MRI can be used to
polish up these limitation of PET image (van Bergen et al.,
2018). Furthermore, brain is an ideal tissue for the MRI-
based PVC by PET/MRI multimodal imaging due to several
reasons. First of all, essential co-registration and segmentation
of neuroimaging can be performed by using widely available
software, such as SPM, MRIcron and so on (Zhu et al., 2017a).
These manipulations improve the quantitative errors of PET
data induced by poor spatial resolution, using separately or
simultaneously acquired MRI images (Meltzer et al., 1996;
Erlandsson et al., 2016). Secondly, PET combined with MRI could
provide complementary information in neuroscience research
(Aiello et al., 2016). And then, since the transformations between
PET and MRI images require rigid model only, the processes of
co-registration and segmentation for PET/MRI data are feasible
and informative.

With regard to the refined definition of specific brain tissue,
MRI has high quality of soft tissue contrast, which is especially
critical in brain imaging. The anatomical information obtained
either sequentially or simultaneously with the acquisition of PET
data facilitates the accurate image registration procedure, which
is the prerequisite for PVC and other correction techniques.
Furthermore, the high quality of MRI soft tissue contrast can
give a better segmentation of various tissue types of brain
(Meltzer et al., 1999). Anatomical details obtained from the MRI
structural image could be used to optimize brain PET in the form
of MRI-based PVC.

Before the advent of hybrid PET/MRI system, MRI-based
PVC of PET data mainly relies on the separately acquired PET
and MRI images (Meltzer et al., 1990). These methods are still
available and can be transplanted into the data processing of
hybrid PET/MRI system. It is suggested that the process becomes
more efficient if these data have been truly simultaneously
acquired (Pichler et al., 2010; Musafargani et al., 2018). Combined
PET/MRI dual-modalities can offer clear advantages for PVC
of PET data, and the degree of adjustment needed for co-
registration should be minimal. Therefore, the rising hybrid
PET/MRI system could further facilitate the utilization of MRI-
based PVC in routine clinical application.

For the present, there is an amount of studies focused on
the clinical application of MRI-based PVC for PET images
(Ouyang et al., 1994; Reader et al., 2003). As shown in Table 1,
the widest utilization of PVC techniques for PET is mainly in
the neurological applications (Fessler et al., 1992; Gindi et al.,
1993; Ouyang et al., 1994; Su et al., 2017). Being similar to the
classification of MRMC, the PVC techniques can also be divided
into two main categories, including post-reconstruction methods
and within-reconstruction methods (Gutierrez et al., 2012; Chen
et al., 2019). Moreover, post-reconstruction methods further fall
into two categories: region-based and voxel-based PVC methods.
The within-reconstruction methods for PVC can be superior,
and considered to be derived from post-reconstruction ones

(Nuyts et al., 2005). However, the most PVC methods can provide
different amounts of recovery due to different tissues, subject
conditions and tracers (Shidahara et al., 2017). Therefore, the
utility of specific MRI-based PVC in brain PET imaging should
be examined on the basis of an application-specific consideration
(Minhas et al., 2018).

Region-Based PVC
The most common region-based PVC method using MRI
anatomical data is geometric transfer matrix (GTM), which
represents a linear transformation between the realistic regional
activities and the raw data (Rousset et al., 1998). This preliminary
GTM algorithm of MRI-based PVC attempted to correct regional
activity in the comparatively thin gray matter affected by the
nearby confounding tissues. The corrected value, or called
recovery coefficient, obtained from MRI can be used to correct
the mean raw value within the selected ROI (the target region)
in 2D level. Then, this method was described in 3D mode
with a sinogram implementation for PET striatal imaging using
18F-DOPA (Frouin et al., 2002). Besides regional evaluation,
GTM algorithm also allows the activity correction for the entire
brain simultaneously.

Compared to mis-registration, the errors in segmentation of
the brain have been found to be of greater significance for the
accuracy of PVC. In addition, the performance of segmentation
performed on clinical MRI with lesions shows quite substantial
differences from on MRI of normal subjects. It is suggested that
segmentation using SPM is superior to HBSA or EMS in the GTM
process for 18F-fluoro-deoxy-glucose (18F-FDG) and 18F-DOPA
brain PET data (Zaidi et al., 2006). In the support of SPM and
Freesurfer software, GTM method has been introduced into the
PVC process for PDE10A enzyme and D2/3 receptors PET data
(Fazio et al., 2017).

Recently, a novel analytically derived symmetric GTM
(sGTM) method, depending on the spillover between regional
spread functions rather than between regions, shows better noise
characteristics and robustness compared with the conventional
GTM method (Sattarivand et al., 2012). However, since these
methods can only obtain the corrected regional mean activity,
small lesions less than the size of the default ROI should
remain under cover.

Voxel-Based PVC
To further improve the entire brain PET image in voxel level
after reconstruction, voxel-based PVC has been proposed as a
feasible PVC method through enhancement or deconvolution
guided by MRI anatomical information (Arakawa et al., 2017).
Researchers use MRI anatomical data to create a brain tissue map
by assigning the voxels value representing gray and white matters
as 1, and CSF as 0 (Meltzer et al., 1990). This binary matrix is
then convolved with the line spread function of PET to create
a composite brain image assuming no background activity after
co-registration. Correction of the PET tracer distribution from
CSF, known as the MZ approach, is then performed in voxel level
by dividing the actual PET image using the corresponding brain
tissue map described above.
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TABLE 1 | Studies on MRI-based partial volume correction for PET neuroimaging.

References Categories of PVC PVC algorithm

Müller-Gärtner et al., 1992; Arakawa et al., 2017 Voxel-based PVC Gray matter PET algorithm determined by MRI

Fessler et al., 1992 Within-reconstruction PVC Spatially-variant penalized-likelihood method for tomographic image
reconstruction based on a weighted Gibbs penalty

Gindi et al., 1993 Within-reconstruction PVC A model for Bayesian reconstruction with MRI anatomical priors

Ouyang et al., 1994 Within-reconstruction PVC A modified Bayesian reconstruction called the “weighted line site” method using
the prior boundary information

Meltzer et al., 1990, 1996 Voxel-based PVC Two or four-compartment extension of gray matter PET algorithm

Bowsher et al., 1996 Within-reconstruction PVC Region labeling approach by assigning higher prior probabilities

Ardekani et al., 1996 Within-reconstruction PVC Minimum cross-entropy reconstruction

Lipinski et al., 1997 Within-reconstruction PVC Markov-GEM algorithm and Gauss- EM algorithm

Sastry and Carson, 1997 Within-reconstruction PVC Tissue composition model using segmented MR images

Rousset et al., 1998; Baker et al., 2017; Fazio
et al., 2017; Smith et al., 2017

Region-based PVC GTM method based on the principles of linear systems and pairwise interaction
between identifiable regions

Rangarajan et al., 2000 Within-reconstruction PVC A novel EM2 algorithm

Quarantelli et al., 2004 Voxel-based PVC Comparison among M-PVEc, MG-PVEc, RPVEc and mMG-PVEc

Baete et al., 2004 Within-reconstruction PVC Anatomy-based maximum-a-posteriori reconstruction algorithm using
segmented MR images

Boussion et al., 2006 Voxel-based PVC 2D mutual multiresolution analysis

Nuyts, 2007 Within-reconstruction PVC MAP reconstruction using mutual information and joint entropy to define
anatomical priors

Tang and Rahmim, 2009 Within-reconstruction PVC One-step-late MAP algorithm with the joint entropy

Shidahara et al., 2009; Grecchi et al., 2017 Voxel-based PVC The synergistic use of functional and structural data based on the
multiresolution property of the wavelet transform

Tang et al., 2010 Within-reconstruction PVC Direct 4D reconstruction with the joint entropy

Le Pogam et al., 2011 Voxel-based PVC 3D voxel-wise mutual multiresolution algorithm

Wang and Fei, 2012 Voxel-based PVC Voxel-based utilizing edge information on MR images

Sattarivand et al., 2012 Region-based PVC Symmetric GTM method based on spillover between RSFs

Vunckx et al., 2012 Within-reconstruction PVC Comparison among A-MAP,joint entropy and modified locally joint entropy

Coello et al., 2013 Voxel-based PVC Hybrid voxel-region-based approach called LoReAn algorithm

Yan et al., 2015 Voxel-based PVC MRI-guided filtering method

Tang and Rahmim, 2015 Within-reconstruction PVC Wavelet-based JE MAP algorithm

Hutchcroft et al., 2016; Chen et al., 2019 Within-reconstruction PVC Kernel method employing patch-based MR image features to form the matrix

EM, expectation maximization; GTM, geometric transfer matrix; RSFs, regional spread functions; LoReAn, Local Regression Analysis; MAP, maximum a posteriori.

CSF and WM adjacent to GM also have different degree of
18F-FDG uptake, which of GM is about 4 times higher than
WM (Kennedy et al., 1978). Different variants of these methods
are referred to as two-(MZ), three-(MG), or four-compartment
models (Meltzer et al., 1990, 1996; Müller-Gärtner et al., 1992).
With these voxel-based strategies, a study coupling of diverse
automated ROI placement and four alternative methods for
PVC provides a software tool for flexible integrated analysis
of brain PET/MRI data (Quarantelli et al., 2004). Regardless
of introducing WM value calculation, two programs taking
into account spillover effects between any feasible couple of
ROIs, allows a recovery of actual GM activities with a higher
degree of accuracy than others. An improved algorithm based
on the theory of multiresolution analysis for images with
different spatial resolutions can provide the possibility to acquire
accurately corrected PET images without the definition of ROI
(Boussion et al., 2006).

An alternative method based on mutual multiresolution
analysis (MMA) algorithm restricted to the entire brain, adopts
cerebral atlases as the reference of anatomical information,

in order to minimize the mismatches between functional and
anatomical data (Shidahara et al., 2009). However, this approach
depends on the application of a 2D modeling, in which the
correction is conducted slice by slice independently. Thus,
artifacts may be introduced when significant correlation does not
exist between anatomical and functional information. A novel
model with 3D wavelet decomposition method has been designed
to solve this issue, and proven in 11C-PIB and 18F-FDG PET
imaging (Le Pogam et al., 2011; Grecchi et al., 2017). In
addition, deconvolution-based PVC methods could generate
voxel-based improved images without the requirement of MRI
image segmentation (Wang and Fei, 2012). This simplified
approach using edge information on MRI data rather than
tissue classification information, can be particularly feasible
for the PET images improvement in either separated or
hybrid PET/MRI system.

Apart from GM, WM involvement has been known to exist
in Alzheimer’s disease (AD) and several vascular diseases as well.
Extensive examination of cerebral glucose metabolism or other
pathophysiological states in WM using PET imaging, requires to
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develop PVC methods concerning the subcortical WM regions,
in order to correct for the spill-out of activity from GM into WM
(Coello et al., 2013). It consists of solving the convolution issue
in voxel level by using Local Regression Analysis (LoReAn) with
regional information derived from co-registered MRI images.
Combined with voxel-wise MRI-guided filtering method and
PVC, the optimization of PET images is more likely to be
achieved (Yan et al., 2015). Definitely, most of these mentioned
voxel-based PVC methods can be introduced into the process of
PET data reconstruction.

Within-Reconstruction PVC
Although promising improvements were noted in iterative
deconvolution accompanied with regularization or denoising, it
has been considered to be difficult for these post-reconstruction
deconvolution-based methods to control redundant noise
while obtaining sound resolution recovery (Le Pogam et al.,
2011). Therefore, the within-reconstruction or reconstruction-
based PVC method was developed to achieve more precise
quantification of PET images (Reader et al., 2003).

Theoretically, the PET tracer distribution should be
corresponding to the anatomical structure. In other words,
all the voxels in the same tissue type are considered to have
similar tracer uptake. Based on this assumption, the PVE on PET
may induce the distribution discrepancy of raw data between
PET and MRI. Therefore, a range of methods attempt to promote
the PET image in line with the actual tracer distribution by
incorporating priori anatomic models derived from MRI, within
the reconstruction process rather than in a separate procedure
after PET reconstruction. The commonly used algorithms
involved in reconstruction are maximum a posteriori (MAP) or
penalized likelihood formulation (Fessler et al., 1992; Baete et al.,
2004). These within-reconstruction PVC methods have been also
explored long before the advent of available hybrid PET/MRI
system (Gindi et al., 1993; Sastry and Carson, 1997).

The original strategy of within-reconstruction PVC methods
is based on anatomical boundary information derived from MRI,
which defines corresponding boundaries of PET images (Fessler
et al., 1992; Gindi et al., 1993; Ouyang et al., 1994; Su et al., 2017).
In this form of PVC models, the iterative algorithm incorporates
the anatomic data into the PET image reconstruction process
within a Bayesian framework (Fessler et al., 1992). Besides, these
anatomical data derived from MRI are considered as a priori
information. The smoothing procedure is routinely used to
reduce noise, but may further degrade the resolution in practice.
Thus, the application of anatomical prior information allows
for preventing the resolution degradation and preserving the
inherent anatomic features of PET image (Gindi et al., 1993).
A potential difficulty in this process is that some anatomical
boundaries may not correspond to functional boundaries exactly.
In other words, different functional distributions could exist
in the identical anatomic region, whereas several functional
distributions in different brain tissues might be quite similar.
Therefore, a modified approach, in which only structural
information having high joint probability with corresponding
PET images are adopted, could provide further improvement in
PET image quality (Ouyang et al., 1994).

Later, various methods were proposed by utilizing anatomical
segmentation information, which facilitates a smooth tracer
distribution within each anatomical region (Bowsher et al.,
1996; Lipinski et al., 1997; Sastry and Carson, 1997; Rangarajan
et al., 2000; Baete et al., 2004). The approximation of tissue
model used in several post-reconstruction methods, can be
included in the within-reconstruction PVC process as well
(Bowsher et al., 1996; Baete et al., 2004). Similar to the post-
reconstruction procedure, this algorithm was used to calculate
the activity of each voxel within GM by using prior knowledge
of activity distribution in the WM and CSF, on the basis
of aligning the PET with anatomical information through
state-of-the-art segmentation algorithm on high-resolution MRI
(Baete et al., 2004). Based on the segmented MRI-guided tissue
composition model, the activity is modeled as the sum of all
contained tissue types in each individual voxel, and weighted
by the composition fraction of each tissue type (Sastry and
Carson, 1997). Then, the reconstruction algorithm formulates
the corresponding activities of each tissue type at each voxel,
within a Bayesian framework. To further handle the mismatch
between anatomical and functional regions specifically, joint
mixture model without requiring exactly homologous regions has
been designed (Rangarajan et al., 2000).

Recently proposed PVC techniques use not only boundary
or segmentation information, but also intensity signal to model
the similarity between functional and anatomical images (Tang
and Rahmim, 2009). This prior aims to generate homogeneous
partitions in the PET image, in which the corresponding MRI
also has an approximately homogeneous intensities distribution.
Mutual information (MI) and its related joint entropy (JE)
term have been introduced to create priors for PET image
reconstruction without PVC (Somayajula et al., 2011). In the
case with obvious disparities between anatomical and functional
data, merely using MI tends to induce biased estimation in
consideration of the marginal entropy term, whereas JE can
serve as a more robust meter (Tang and Rahmim, 2009;
van Golen et al., 2014).

The performance of the JE prior alone is not better than that
of the other kinds of priors all the time (Vunckx et al., 2012).
These within-reconstruction PVC measures only classify voxels
based on the intensity values of MRI, while neglecting inherent
spatial information of brain tissue. In a recent study, structural
spatial information generated by using wavelet multi-resolution
analysis is embedded in the JE between functional and anatomical
image intensities (Tang and Rahmim, 2015). This modified MAP
reconstruction algorithm involves derivatives of the subband JE
measures in regard to the individual voxel intensities of PET
image matrix. Compared to the intensity-only MAP algorithm,
the wavelet-based JE-MAP algorithm yields comparable regional
mean activities, and demonstrates robust performance in the
clinical patient studies with PET and MRI data. Furthermore,
significant enhancements in terms of SNR performance were also
indicated, when performing directly parametric reconstruction
of dynamic PET data by using the PET-MRI JE measure
(Tang et al., 2010).

An alternative method for incorporating anatomical side
information into the process of PET reconstruction based
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upon kernel methods has been proposed (Wang and Qi, 2015).
This algorithm has obvious advantage of simplicity for the
implementation using maximum likelihood expectation
maximization (ML EM) reconstruction, and is initially focused
on the reconstruction of dynamic PET data. Kernel based
anatomically-aided reconstruction is derived from the patch-
based MRI image features other than temporal features in
dynamic PET reconstruction (Hutchcroft et al., 2016). It has
been suggested that this Kernel method could be transplanted
into the PET data optimization for simultaneous PET/MRI
neuroimaging study (Chen et al., 2019).

Clinical Application of MRI-Based PVC
The main target region for dopaminergic PET imaging
is nigrostriatal system. Classical voxel-based PVC methods
requiring tissue segmentation, assume regional homogeneous
and known radioactivity levels for all regions except the
target region for correction. These methods cannot solve
the contamination between two or even more different GM
structures. Since the activity level in striatum containing caudate
and putamen is different from that in cortex, it is doubted
that these voxel-based PVC methods are directly applied into
striatal imaging with 11C-Raclopride or other dopaminergic
tracers. Another potential limitation of voxel-based PVC is that
the matrix scale for 3D implementation is substantially large.
Because of large storage and calculative requirements, its clinical
implementation subjects to the hardware configuration. It is a
region-based method rather than a voxel-based method that
avoids handling large matrices (Sattarivand et al., 2012). Region-
based PVC methods still draw special attention in PET imaging,
especially in striatal imaging (Smith et al., 2017).

Apart from the progressive atrophy of cerebral cortex,
well-known pathological features of AD are amyloid plaque
aggregation and tau pathology. The available tracers for
the in vivo imaging of amyloid deposition includes 11C-
PIB, 18F-florbetapir, 18F-florbetaben, and 18F-flutemetamol. The
nonspecific tracer uptake in WM calls for correcting the
contaminated signal of GM in amyloid PET imaging. MZ
and MG voxel-based PVC methods have been utilized in 18F-
flutemetamol and 11C-PIB PET imaging (Lowe et al., 2017).
However, conventional anatomy-based PVC methods may result
in severe biases in AD patients, since the degrees of cortical
atrophy and Aβ deposition between various brain regions are
heterogeneous. Region-based voxel-wise (RBV) correction, an
improved PVC method, combines the benefits of GTM method
and voxel-wise correction (Thomas et al., 2011). Homogeneity
is assumed within a sub-region of cortex, but not necessarily
within the entire GM or WM. Therefore, this RBV correction
method is superior to conventional anatomy-based PVC methods
in accounting for within-compartment variability.

Since each PVC method for PET may have very different
property due to its given assumption and algorithms, the
corrected PET images need careful interpretation. In a cross-
sectional 18F-FDG PET study, the effects of aging on cerebral
glucose uptake were analyzed with or without PVC (Greve
et al., 2016). sGTM or GTM PVC methods are recommended
in ROI analysis, while GTM-based RBV in voxel-wise analysis.

In another recent study, five PVC methods, including MG,
GTM, and other three methods, were applied to PET images
using 18F-THK5351 or 11C-PIB (Shidahara et al., 2017). Different
PVC methods result in different SUVRs within regions of high
tracer uptake, and the degree of disparity between corrected and
uncorrected images depends on PVC algorithm, type of tracer
and subject condition. Though the similar mean values in each
region of 11C-PIB PET images were observed between GTM
and MG methods by using absolute quantitative analysis, further
studies are still required to investigate the effect of voxel-wise
PVC (Su et al., 2015b; Matsubara et al., 2016). Theoretically,
MG method is not the best voxel-wise PVC method for amyloid
PET studies, due to assuming homogeneous tracer uptake per
tissue fractional volume in entire GM. Since the erroneous results
stemming from this assumption are mostly predominant in
voxels surrounded by regions with high 11C-PIB uptake, several
improved voxel-wise analyses using RBV and Markov random
field MRI-based PVC methods are preferable (Thomas et al.,
2011; Bousse et al., 2012). However, the regional correspondence
between amyloid PET and postmortem measures of amyloid load
can not be obtained, whether or not applying PVC methods
mentioned above (Minhas et al., 2018).

Another hallmark of AD, tau pathology, can be detected
in vivo using PET tracer 18F-AV1451 or 18F-THK523. Unlike
11C-PIB, hippocampal 18F-THK523 retention is related to
several cognitive parameters and the degree of hippocampal
atrophy (Villemagne et al., 2014). Typical spatial distribution
of aggregated tau in AD patients is substantial tracer retention
in neocortical regions throughout temporal parietal and frontal
cortex, and this distribution is remarkably different from that
of young healthy adults or old adults. These results are similar
after applying GTM PVC approach, except an obvious increase
of choroid plexus retention adjacent to the hippocampus (Scholl
et al., 2016; Baker et al., 2017).

Longitudinal clinical trials of AD progression and treatment
response require semi-quantitative or quantitative approach for
the analysis of brain amyloidosis. Besides the definition of
reference regions, amyloid PET results are also affected by PVE in
longitudinal studies, especially in patients with obvious atrophy
(Brendel et al., 2015). The annual rate of amyloid deposition
detected using 11C-PIB is 3.4 times greater by GTM approach
and 1.59 times greater with MZ approach in comparison to
the degree without any PVC (Su et al., 2015b). The impact
of modified voxel-based MG PVC method on 18F-florbetaben
PET images is considered to be associated with the degree of
atrophy (Rullmann et al., 2016). Therefore, this PVC method
increases the capability to discriminate between AD patients and
healthy subjects, and the potential to investigate dynamic changes
in brain amyloid deposition over time using 18F-florbetaben
PET imaging. Based on the comparative analysis of 1024
software pipelines with diverse combinations of methodological
choices, the optimal longitudinal measure of amyloid deposition
using 11C-PIB should be the combination of reference region
including voxels in the WM and the whole cerebellum with
two-compartment MZ PVC approach (Schwarz et al., 2017).
Measurements using GTM PVC approach have significantly
worse within-subject variability than those using MZ, MG, or
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no PVC (Schwarz et al., 2019). Consequently, in longitudinal
amyloid PET, GTM PVC method is considered to be less suitable
than other traditional approaches when investigating within-
person alteration over time. Compared to amyloid PET study,
rare evaluation of PVC approaches has been carried out in
longitudinal tau PET study. Mean rates of within-subject variance
over time using MZ PVC are slightly more obvious than those
without PVC in longitudinal 18F-AV1451 PET study (Jack et al.,
2018). It remains an open question what PVC algorithm is the
optimal approach for serial tau PET imaging.

MRI-BASED QUANTITATIVE ANALYSIS

PET using 15O-tracers are considered to be the golden standard
for measuring cerebral blood flow (CBF), cerebral blood volume
(CBV), oxygen extraction fraction (OEF), and cerebral metabolic
rate of oxygen (CMRO2). The quantitative analysis of these
dynamic PET data relies upon an invasive arterial blood sampling
procedure to acquire AIF, which is mandatory for kinetic models
to calculate the rate constants between different compartments.
The AIF refers to the time activity curve (TAC) of injected
tracer in arterial blood plasma delivered to the target tissue.
This laborious invasive procedure not only is vulnerable to
the measurement error, but also may induce potential risk of
complications. In addition, due to the strong magnetic field
in and around hybrid PET/MRI scanner, arterial sampling
becomes more challenging and requires additional specialized
equipment. Therefore, it is extremely valuable to develop a
robust AIF estimation technique to quantify brain hemodynamic
parameters, without requiring invasive arterial blood sampling.

IDIF method obtained from PET data itself, can serve as a
potential alternative estimation of AIF. Blood pool, ventricles
of the heart or major vessels, has been taken to measure
the IDIF. Several studies define the ROI of blood pool as
reference region directly on the PET images alone. To reduce
the spillover and PVE, the approach of ROI definition can be
combined with anatomical information from MRI, other than
with PET data only. Initially, ROIs on MRI images are drawn
to delineate the internal carotid arteries. Depending on precise
co-registration and segmentation, ROIs derived from MRI are
transferred into the PET images of the same subject. Then,
the TAC can be calculated for each ROI to estimate the blood
input function based on MRMC and PVC. This method by
extracting IDIF rather than measuring arterial blood-sampling
has been validated in 18F-FDG studies (Chen et al., 1998). The
combination of PET information with MRI segmented regions,
especially by segmenting the left and right carotid arteries
separately, demonstrates an improvement over regions based
solely on MRI or PET alone (Fung et al., 2009). Apart from
co-registration and segmentation, the MRI images can be also
used to delineate the centerline of each carotid. High resolution
PET, guided by MRI-based IDIF using carotid centerline method
and a fixed recovery coefficient, allows for the noninvasive CBF
measurements (Fung and Carson, 2013).

To achieve more reliable tissue segmentation, several 3D
approaches with higher spatial resolution have been proposed for

determination of IDIF (Caldeira et al., 2015). Magnetic resonance
angiography (MRA) is a group of MRI techniques to image blood
vessels including the arteries inside the brain and neck. Owing
to the short echo time and flow compensation, time-of-flight
(TOF) MRA makes the flowing blood brighter than other static
tissue. Via precise location of the carotid artery identified in
MRA, a technique for IDIF measurement based on co-registered
MRA images has been developed and validated in the quantitative
analysis of 15O-H2O PET study (Su et al., 2013; Okazawa et al.,
2018). In addition to the feasibility for the reproducible CBF
estimation without arterial cannulization, good agreement is also
observed between MRA-based IDIF and conventional arterial
blood sampling. With the support of co-registered TOF-MRA
images, IDIF extracted from 11C-PIB PET imaging has been
also applied for the amyloid imaging quantification (Su et al.,
2015a). However, this technique is supposed to be sensitive
to co-registration errors. Since the motion of head or neck
can change the carotid position and shape, the co-registration
of sequentially acquired anatomical and functional modalities
may be difficult.

This TOF MRA-based IDIF method could be further
implemented into hybrid PET/MRI system, so as to quantify the
OEF and CBV more accurately (Su et al., 2017). Furthermore,
after optimizing the dose of 15O-H2O in hybrid device, a
short time-frame PET angiogram during arterial phase can be
reconstructed with sufficient counts (Khalighi et al., 2018). This
PET angiogram data has the potential to measure the extent of
spill-over, and the IDIF guided by the true arterial volume based
on TOF MRA. Since manual operation should be minimized
in IDIF process, fully automated generation of IDIF using
simultaneous PET/MRI without arterial catheterization is ideal
in clinical practice (Jochimsen et al., 2016).

Hybrid MRI-PET device offers new insights into different
brain status by simultaneously assessing cerebral oxygen
consumption, metabolism and perfusion. The superiority for the
combination of functional measurements from both modalities
is considered to be far beyond anatomical co-registration
only. AIF obtained from the Gd-DTPA in MRI can be
converted into 18F-FDG AIF in PET, while metabolic rates
of glucose calculated with AIFs derived from two modalities
also found no statistical difference (Poulin et al., 2013). This
dynamic contrast-enhanced MRI data provides high temporal
resolution, which is the primary prerequisite for the accurate
pharmacokinetic parameters estimation. A limitation of this
conversion method is the need of at least one accurate blood
sampling. Therefore, an upgraded conversion method using AIF
derived from an reference region in MRI with Gd-DTPA has
been proposed (Poulin et al., 2015). Another possible strategy
is the automatic detection for the first pass bolus of Gd-DTPA.
Automatically detecting blood signal enables the direct IDIF
extraction to obviate the procedure of reference tissue delineation
(Evans et al., 2013).

Phase-contrast (PC) MRI utilizing phase differences to
distinguish blood signal from other static tissues, is an established
imaging technique for estimation of global CBF (Vestergaard
et al., 2017). Global CBF detected by PC MRI may be applied
as a reference region for quantitative analysis of PET data to
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avoid the need of blood sampling. Since 15O-H2O PET and PC
MRI are acquired simultaneously in hybrid system, it adds no
additional scanning time for the accurate measurements of CBF
(Ssali et al., 2018).

FUTURE PERSPECTIVE

At present, there are abundant available fusion software for fusing
PET data with separately acquired MRI images satisfactorily
(Ding et al., 2018). However, only hybrid PET/MRI system
can provide the real time matched functional information
representing disease states, which may undergo changes between
the two separated imaging studies. Since various studies apply
different MC procedures and analysis methods, no clear
consensus of its clinical value has been achieved. The clinical
application of MRMC is only just beginning, and its technical
evidence for brain PET study is encouraging.

PET/MRI technique is an quickly changing field, in which
lots of methodologies are maturing (Cabello and Ziegler, 2018).
A workflow of MRI-based PET optimization and reconstruction
is illustrated in Figure 2. Despite the obvious merits and
bright prospects of hybrid PET/MRI device, there are still
several points in favor of sequential PET/MRI acquisitions.
First of all, the two devices could be also operated separately
on occasion, which significantly reduces the redundant costs.
Secondly, pharmacokinetic time scales of many tracers are not
exactly matched between PET and MRI examinations. The most

commonly used PET agent, 18F-FDG, requires an interval of
uptake time during which MRI data can be obtained in separated
device. Last but not least, hybrid PET/MRI system will still face
more technologic challenges compared with those of sequential
PET/MRI device in the near future (Wehrl et al., 2015).

Attenuation correction (AC) methods for PET require
information of the spatial parameters of tissue attenuation
coefficients, which is generally represented in the form of
attenuation map. CT-based AC for PET data has been considered
as the “golden standard” in clinical imaging. MRI, however,
cannot provide information on electron density, which is critical
for the process of PET AC. By far, the MRI-based AC for
PET data is still one of the major challenges in obtaining
accurate PET quantification in hybrid PET/MRI imaging system
(Chen and An, 2017). The MRI-based AC strategies that
have been extensively pursued especially for brain imaging,
can be divided into two classes: atlas-based approaches and
segmentation-based approaches. Atlas-based AC methods allow
the accurate attenuation maps for PET brain imaging, especially
for patients without abnormal anatomy. Complex computations
in this approach are time consuming, which handicaps its widely
clinical application. Compared with atlas-based AC methods,
segmentation-based AC methods need shorter computation time
and can account for anatomic variation. To further distinguish
bony structure from air accurately, several novel methods based
on machine learning have been developed to effectively capture
the relationship between the CT and MRI images and derive
the attenuation map (Lei et al., 2018; Yang et al., 2019). Since

FIGURE 2 | Flow chart of MR-based PET data optimization and reconstruction. Corrections for photon attenuation, head motion and partial volume effect of PET
data can be achieved by using specific MR sequences, and conducted in the format of either within- or post-reconstruction. Precise image co-registration and
segmentation are the prerequisite for various MR-based PET data optimization procedures. MRI-based image-derived input function method could be further
applied in the quantitative analysis of dynamic PET imaging.
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database of pediatric age-matched healthy subjects is difficult to
acquire, MRI-based AC methods targeted toward this age group
are scarce. With the development of machine learning, deep
learning in particular, this issue may be solved properly. In view
of the multiparametric strengths of MRI, generating attenuation
maps using multiple MRI inputs would be another promising
research direction (Gong et al., 2018).

The premise for the MRI-based MC and PVC is the similar
distribution in specific tissue between these two modalities.
However, it is possible that the distribution pattern of functional
information provided by PET is not in accordance with the
MRI-based structural information all the time. Therefore, the
rationality of using MRI to guide the PET data process may
be doubted. This issue calls for a robust approach to evaluate
the accuracy of MRI-based correction methods. Though there
are various phantoms available for different purposes, such as
calibrations of physical performance, dose algorithm accuracy,
geometrical accuracy and image quality, the complex structure
and geometry of brain cannot be fully imitated (Beichel
et al., 2017). Therefore, the piecewise-uniform distributions
of these phantoms may mislead the analysis of MRI-based
correction methods to a certain extent. In order to overcome
these problems, the emerging 3D printing technology has
the potential to offer more versatile and accurate solutions
(Filippou and Tsoumpas, 2018).

The majority of the MC procedures are complex, multi-
step and require simultaneous acquisition of PET and MRI
data. Accurate path of head motion measured by simultaneous
MRI could generate precise reference trajectory for the PET
MC. However, continuous monitor with such manner blocks
the diversified utility of MRI for other informative sequences.
In addition, MRMC is generally related to prominent costs,
and it is unclear whether the MRMC-related clinical benefits
outweigh it. On the other hand, reducing demands on MRI
navigator during the course of PET imaging can decrease the
MRMC-related costs. Since fast motions cannot be accurately
detected with excessively low sampling rate of specified MRI
navigator sequence, a degree of compromise between MRMC-
related costs and sampling quality should be achieved. Several
researchers suggested that direct reconstruction using event-by-
event motion correction for dynamic brain PET is achievable
and robust (Germino et al., 2017; Jiao et al., 2017). On the
other hand, accurate MC may be achieved at a cost of resolution
loss to some extent (Reilhac et al., 2018). These issue may
also be solved by the combination of MRI navigator sequence
and optical motion tracking system, which complement each
other’s advantages. In the near future, researches focused on how
MRMC influences the particular tasks for brain PET imaging are
extremely expected.

In the MRI-based PVC process, both the co-registration
of brain PET data and anatomical information derived from
MRI and the segmentation of brain regions maintaining a
relatively uniform distribution of tracer uptake are the two critical
beforehand steps. The effect of PVC would be vulnerable to the
errors occurring in the procedure of either co-registration or
segmentation. Besides, this detrimental influence on the accuracy
of PVC algorithms not only relates to the region-based approach,

but also the voxel-based one. A robust image segmentation
procedure, other than the conventional ROI analysis, is in
desperate need for the process and analysis of images. Predictably,
joint segmentation methods integrating anatomical information
from MRI with functional data from PET would facilitate the
interpenetration of two images within uniform platform, and the
more precise delineation of brain.

Though MRI-based IDIF is an attractive noninvasive
alternative to arterial blood sampling, it is also a very challenging
field associated with diverse problems impeding its clinical
utilization. Due to the absence of large blood pools in brain, IDIF
can only depend on intracranial blood vessels. Most algorithms
for PET and MRI co-registration are based on the rigid brain
structures rather than carotids. In addition, the carotid is a
relatively small and elastic tissue. The position change of head
or neck can elongate and bend the carotid. As a result, a precise
brain co-registration cannot promise a good co-registrations
of the carotid arteries. Since the degree of mismatch between
the PET and MRI images for one carotid may be different
from the contralateral one, it is also necessary to co-register
the left and right carotids independently by complicated co-
registration algorithms in separated PET/MRI device. Definitely,
the hybrid PET/MRI device could serve as a perfect solution to
minimize this problem.

For pediatric patients, the superiority of PET/MRI is
associated with the reduction of radiation exposure and the
shortening of anesthesia or sedation duration. Nevertheless,
the brain glucose metabolism and other functional states
undergo dynamic change throughout the whole course of brain
development. It must be mentioned that the regional glucose
utilization of different brain regions does not change in a parallel
pattern with age. Thus, the variable brain sizes and metabolism
patterns of pediatric patients may induce dramatic artifacts in
these MRI-based correction procedures. Extensive efforts are still
required to refine the application of these methods in this special
and considerable population.

As discussed above, MRI images acquired either sequentially
or simultaneously can be applied to improve the PET data
quality. On the other side, optimized PET data could be also
used to verify a variety of functional MRI techniques. This
cross-calibration method allows the validation of MRI-based
functional parameters, including cerebral perfusion, neuronal
activation, brain rest state, brain connectivity and so on.
Taking the cerebral perfusion for example, discrepancies between
cerebral perfusion derived from MRI and CBF evaluated by
15O-H2O PET imaging may be obvious. The utilization of
simultaneous PET/MRI device affords the opportunity for cross-
validation of different techniques, and the further definition of
techniques confounds in this basic physiological measurement.
In addition, brain functional connectivity between different
regions can be measured by fMRI procedures, in the absence of
specific neurotransmitters information of these connected areas.
Undoubtedly, the integral map of brain functional connectivity
requires intensive collaboration between PET and MRI. Higher
level of information synthesis from both PET and MRI to acquire
a brand-new parameter of brain function is an attracting field,
which is still relatively unexplored.
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