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While spinal cord injuries (SCIs) result in a vast array of functional deficits, many of
which are life threatening, the majority of SCIs are anatomically incomplete. Spared
neural pathways contribute to functional and anatomical neuroplasticity that can
occur spontaneously, or can be harnessed using rehabilitative, electrophysiological,
or pharmacological strategies. With a focus on respiratory networks that are affected
by cervical level SCI, the present review summarizes how non-invasive respiratory
treatments can be used to harness this neuroplastic potential and enhance long-term
recovery. Specific attention is given to “respiratory training” strategies currently used
clinically (e.g., strength training) and those being developed through pre-clinical and
early clinical testing [e.g., intermittent chemical stimulation via altering inhaled oxygen
(hypoxia) or carbon dioxide stimulation]. Consideration is also given to the effect of
training on non-respiratory (e.g., locomotor) networks. This review highlights advances
in this area of pre-clinical and translational research, with insight into future directions for
enhancing plasticity and improving functional outcomes after SCI.
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INTRODUCTION

Respiratory dysfunction is one of the leading causes of morbidity and mortality for individuals
with spinal cord injury (SCI) (DeVivo et al., 1993; Winslow and Rozovsky, 2003; Garshick et al.,
2005; Hoh et al., 2013). Damage to the neural networks controlling respiration frequently occurs
following mid- or high-cervical injuries, which disrupt the phrenic motor circuit. The phrenic
network is responsible for diaphragm innervation, which is often considered the primary muscle
of respiration (Feldman, 1986; Lane, 2011; Hoh et al., 2013). Therefore, damage to this circuit
results in diaphragm paresis or paralysis leading to respiratory deficits (Jackson and Groomes,
1994; Linn et al., 2000). In addition, injuries at this level will at least partially denervate intercostal
and abdominal motor pools that are innervated by spinal motor neurons in the thoracic and
lumbar spinal cord. The intercostal and abdominal respiratory circuits are also primary respiratory
networks that are important for regular inspiratory and expiratory behaviors. Impaired respiratory
muscle function can lead to decreased inspiration and vital capacity, potentially complete apnea,
ventilator assistance (Jackson and Groomes, 1994; Linn et al., 2000; DiMarco, 2005; Onders et al.,
2007), and secondary respiratory complications such as pneumonia (Dalal and DiMarco, 2014).
While some spontaneous recovery – or functional plasticity – can occur after injury, it is limited
(Vinit et al., 2006; Fuller et al., 2008; Lane et al., 2009), and significant deficits in breathing persist
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for months post-injury (Fuller et al., 2008; Vinit et al., 2008).
There are many methods to assess the extent of these respiratory
deficits. These include measures of ventilation, or “breathing
behavior” (tidal volume, minute ventilation) and respiratory
nerve or muscle activity (diaphragm EMG or phrenic nerve
recording) (Lane et al., 2008a).

For the purpose of this review neuroplasticity is defined as
the ability of the nervous system to change either anatomically
and/or functionally, resulting in persistent alterations in
sensorimotor function. These changes can be classified as
either beneficial (adaptive plasticity) or detrimental (maladaptive
plasticity). While plasticity has been extensively studied during
development, learning, and memory, there is a rapidly growing
interest in the neuroplastic potential of the injured or
degenerating nervous system and how it can be therapeutically
harnessed. One prominent example of neuroplasticity after spinal
cord injury (SCI) has been documented in the respiratory system
with spontaneous functional improvement. Here we summarize
experimental as well as clinical evidence for spontaneous
respiratory neuroplasticity, discuss methods used to harness this
via intentional stimulation of respiratory circuits, and provide
a summary of studies that propose mechanisms implicating
neurotrophic factors as key players.

RESPIRATION AFTER SPINAL CORD
INJURY

The neural networks mediating respiratory muscle function,
comprising spinal interneurons and lower motoneurons,
are distributed throughout the rostro-caudal neural axis.
Motoneurons that innervate inspiratory, expiratory, and
accessory respiratory muscles can be found throughout the
cervical, thoracic, and lumbar spinal cord (Lane, 2011). The
primary inspiratory muscles include the diaphragm, external
intercostal and scalene muscles, while the primary muscles of
expiration are the internal intercostals, rectus abdominals and
obliques (Van Houtte et al., 2006; Terson de Paleville et al.,
2011). The accessory respiratory muscles, which include the
sternocleidomastoid, scalenes, and upper trapezius, are recruited
when ventilatory demands are higher than normal (Terson
de Paleville et al., 2011; Figure 1). Given the rostro-caudal
distribution of these motor networks, injury at any level of
the spinal cord can compromise respiratory function. For
example, a high cervical SCI usually results in denervation
and loss of coordination of all respiratory muscles, leading to
quadriplegia and respiratory deficits. This leads to paradoxical
movement of the chest walls (De Troyer et al., 1986; De
Troyer and Estenne, 1990), decreased pulmonary volumes
(Anke et al., 1993; Hopman et al., 1997; Tow et al., 2001)
and ineffective cough (Brown et al., 2006; Terson de Paleville
et al., 2011). Impaired clearance increases risk of secondary
complications such as pneumonia (Brown et al., 2006). Even
among those people living with SCI that recover voluntary
control of breathing, underlying respiratory deficits persist
that can manifest in less overt ways, such as sleep-disordered
breathing and episodes of hypoxia.

To treat these deficits respiratory training has been used to
stimulate plasticity in networks spared post-SCI. Respiratory
training encompasses rehabilitative, resistive, and activity-
based training methods to improve and strengthen the neural
respiratory circuitry and their corresponding muscles. Early
use of respiratory training aimed to strengthen respiratory
muscles, using techniques to target inspiratory and expiratory
muscles (Figure 1).

RESPIRATORY NEUROPLASTICITY
AFTER SPINAL CORD INJURY

Spontaneous respiratory neuroplasticity has been reported in
both clinical (Hoh et al., 2013) and experimental studies (Mitchell
and Johnson, 2003; Goshgarian, 2009; Lane et al., 2009; Nicaise
et al., 2013; Warren and Alilain, 2014), serving as an excellent
example of how the nervous system adapts to injury in order to
maintain a vital, physiological function. While this spontaneous
plasticity indicates the neuroplastic potential of the respiratory
system, the amount of recovery attributable to this plasticity
is limited, and long-term deficits in diaphragm activity persist.
While neural plasticity can be used to describe changes in
both neuronal and non-neuronal components, neuroplasticity
(frequently referred to in this text) usually refers selectively to
changes in the neuronal networks (see Box 1 for definitions).

Anatomical Neuroplasticity
Anatomical respiratory plasticity typically refers to changes
within respiratory circuitry, especially neuronal connectivity, that
can arise spontaneously after injury or be driven by treatment.
Within the spinal cord, there is evidence of spontaneous plasticity
involving axonal sprouting, rerouting (Vinit et al., 2005; Vinit
and Kastner, 2009; Darlot et al., 2012), and the formation of new
polysynaptic connections with phrenic motoneurons via cervical
spinal interneurons (Lane et al., 2008b, 2009; Sandhu et al., 2009;
Darlot et al., 2012).

One of the most commonly described models of pre-
clinical SCI used to study respiratory plasticity has been
a lateral Hemisection (Hx) at the second cervical (C2)
spinal level. This injury model provides a historical example
of respiratory plasticity: the crossed-phrenic phenomenon
[CPP (Porter, 1895)]. Although this injury paralyzes the
ipsilateral hemidiaphragm immediately, Porter demonstrated
that transection of the contralateral phrenic nerve (paralyzing
both hemidiaphragms) activated bulbospinal axons that crossed
the spinal midline (decussated) below the C2 level to innervate
the phrenic motor pool [reviewed in Goshgarian (2003)].
Several lines of research support this, demonstrating that CPP
can be elicited soon after injury (O’Hara and Goshgarian,
1991; Goshgarian, 2003; Golder and Mitchell, 2005; Vinit
et al., 2006), which suggests that this acute response does not
require an anatomical change. Cross correlational analyses of
phrenic nerve recordings supported this showing that post-injury
function was mediated by bulbospinal pathways (Sandhu et al.,
2009). However, these recordings also suggested a progressive
recruitment of spinal interneurons into the injured phrenic
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FIGURE 1 | Primary muscles of respiration and their neural circuitry. Schematic diagram of human torso showing the location of the primary muscles of inspiration
and expiration and the spinal levels that innervate them.

network, which may be further contributing to functional
plasticity. There is evidence of other supraspinal plasticity from
sprouting monosynaptic respiratory bulbospinal projections
(Vinit and Kastner, 2009; Ghali, 2017) and serotonergic centers
(Bach and Mitchell, 1996; Ling et al., 2001; Zhou et al.,
2001a; Hodges and Richerson, 2010; Hsu and Lee, 2015) onto
phrenic circuitry.

While the focus of these anatomical studies has been on neural
pathways within the spinal cord, respiratory plasticity occurs
throughout the neural axis. Respiratory neuroplasticity extends
throughout the CNS within the brain, brainstem, spinal cord,
peripheral nervous system (Mantilla and Sieck, 2009; Nicaise
et al., 2012b), spinal afferents (Iscoe and Polosa, 1976; Potts et al.,
2005; Vinit et al., 2007; Nair et al., 2017), and muscle (Raineteau
and Schwab, 2001; Oza and Giszter, 2014, 2015). Identifying
and enhancing this anatomical plasticity is crucial to improving
respiratory recovery after SCI. Another consideration is that not
all plasticity is beneficial. Certainly, depending on the condition,
anatomical changes can occur that worsen the potential for
recovery. An important example of this in respiratory networks
after human SCI is the progressive decline in respiratory muscle
anatomy and function with assisted-ventilation (Powers et al.,
2002, 2013; Levine et al., 2008; Smuder et al., 2016). To promote
respiratory recovery post-SCI, treatments need to take these
changes into account.

Molecular Neuroplasticity
Molecular neuroplasticity encompasses an altered synthesis of
cytokines, such as trophic factors, that can create a plasticity-
promoting environment, attracting axons to the appropriate
targets. An example is an increase in brain-derived neurotrophic
factor (BDNF) and nerve growth factor (NGF) after injury or
therapeutic intervention (Baker-Herman et al., 2004). Within the
respiratory circuit, BDNF upregulation occurs within the phrenic
motor neuron pool and is integral in enhancing anatomical
plasticity (Baker-Herman et al., 2004; Sieck and Mantilla,
2009; Wilkerson and Mitchell, 2009; Mantilla et al., 2013,

2014; Gill et al., 2016; Hernandez-Torres et al., 2016; Martinez-
Galvez et al., 2016) and promoting rhythmic diaphragm activity
(Mantilla et al., 2013; Gransee et al., 2015).

Functional Neural Plasticity
Functional neural plasticity is the restoration of activity in
damaged pathways or increased activity in spared pathways to
compensate for damage, which can occur after mild, moderate,
and severe SCI (Baussart et al., 2006; Golder et al., 2011; Lane
et al., 2012; Nicaise et al., 2012a,b, 2013; Awad et al., 2013;
Alvarez-Argote et al., 2016). It can also occur at either the neural
or behavioral level, resulting in restorative or compensatory
motor function (see Box 1).

An example of restorative plasticity within the neural network
is the CPP following a C2Hx, and restorative function within
the ipsilateral diaphragm. This plasticity is characterized by
the activation of ordinarily latent, contralateral respiratory
bulbospinal pathways that cross the spinal midline below the
injury. This restoration in function occurs after inducing a
respiratory stress such as asphyxia, hypoxia, hypercapnia or
contralateral phrenicotomy (Porter, 1895; Lewis and Brookhart,
1951; Goshgarian, 2003; Golder and Mitchell, 2005). In contrast,
neural compensation is an altered (e.g., elevated) activity
within non-injured respiratory circuits and respective muscles.
This form of adaptive functional compensates for deficits
post injury. For example, an increase of activity within the
contralateral phrenic circuit after a C2Hx or C3/4 contusion
injury compensates for deficits within ipsilateral circuitry (Golder
et al., 2001, 2003).

Behavioral restoration of function is the ability to breathe in
the same way after an injury as pre-injury. This ventilation can
be measured through plethysmography to record the flow and
tidal volume of breathing. An example of this is that following a
cervical contusion injury, there is a progressive recovery toward
a more normal breathing behavior in post-injury weeks (Choi
et al., 2005). In contrast, behavioral compensation manifests as
an altered pattern of ventilation after injury. An example of this
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BOX 1 | Defining terminology. This box highlights definitions of terms used
throughout this review.
Plasticity: Lasting anatomical and/or functional changes within neural
networks or the behaviors they contribute to. These changes usually arise in
response to some form of perturbation (e.g., traumatic injury or degenerative
disease). Plasticity can also be stimulated or enhanced by increasing activity
within these same neural networks (e.g., locomotor training,
respiratory training).
Neural plasticity: Plasticity within central and peripheral neural networks.
This has also been used to encompass the muscles they innervate
(neuromuscular plasticity). While neuroplasticity has been used
interchangeably with neural plasticity, it can perhaps be more appropriately
used to selectively describe changes in the neuronal networks rather than
changes in both neuronal and non-neuronal components (neural). Importantly,
while plasticity is often thought of as being something that is beneficial, there
is a growing appreciation for the fact that plasticity can be adaptive (resulting
in beneficial consequences) or maladaptive (resulting in detrimental
consequences). An example of the latter would be axonal sprouting and
increased connectivity within networks that lead to increased pain or
spasticity. For the most part, the plasticity discussed in the present review
refers to beneficial types.
Anatomical neuroplasticity: Plasticity that typically refers to changes within
neuronal connections which can arise via change in synaptic inputs in existing
neuronal networks, increased dendritic growth to receive additional inputs, or
axonal growth facilitating new neuronal connections. Notably, this neuroplastic
axon growth typically arises from collateral sprouts in axonal pathways that
were completely spared by injury, from collateral sprouts within injured
pathways but proximal to the site of injury, and/or collateral sprouts from
injured or non-injured primary afferents. Modest changes can arise
spontaneously after injury or be enhanced by treatment.
Molecular neuroplasticity: Plasticity that encompasses an altered synthesis
of cytokines, such as trophic factors, that can create a plasticity-promoting
environment, attracting axons to the appropriate targets (or inappropriate
targets in the case of maladaptive plasticity).
Functional neural plasticity: The restoration of activity in damaged
pathways or increased activity in spared pathways to compensate for
damage, which can occur after mild, moderate, and severe SCI (restorative
vs. compensatory plasticity).
Restorative neural plasticity: Restoration of function in respiratory circuits
(and muscles they control) that have been directly compromised/
paralyzed by injury.
Compensatory neural plasticity: Altered activity within respiratory circuits
(and the muscles they control) that are not directly compromised by injury.
Restorative behavioral neural plasticity: Restoration of the ability to
perform ventilation in exactly the same manner as it was performed
prior to injury.
Compensatory behavioral plasticity: Effective ventilation, but performed in
a manner different from how it was performed prior to injury (e.g., rapid,
shallow breathing).
Maladaptive neural plasticity: The amplitude or pattern of neural output
may become dysfunctional (e.g., weakened or arhythmic), limiting recovery or
contributing to deficit.
Maladaptive behavioral plasticity: Onset of inappropriate
patterns of ventilation.
Activity based therapy (ABT): Non-invasive means of increasing motor
activity with simultaneous sensory stimulation. In very simple terms this can be
thought of as exercise or rehabilitation. Therapeutically, ABTs have been used
in both a task specific basis (e.g., training for function within a specific
network) or non-task specific basis (e.g., use of respiratory training to improve
functional in non-respiratory networks).
Task-specific training: Increasing activity or exercise within specific
networks to perform a specific task. For instance, training locomotor networks
for rhythmic, patterned locomotion versus stance. Similarly, within the
respiratory networks, training for breathing under certain conditions may train
for activity within networks primarily known to be involved with that activity
(e.g., hypoxia vs. hypercapnia). Data from task-specific training, however,
needs to be very carefully interpreted as most forms of ABTs can still have
off-target effects (e.g., effects on tasks not trained for).

is rapid, shallow breathing seen after SCI (Choi et al., 2005;
Fuller et al., 2009; Golder et al., 2011; Nicaise et al., 2013;
Jensen et al., 2019). This phenomenon is also seen following
injuries in humans (Ledsome and Sharp, 1981; Haas et al.,
1985). This change in breathing behavior likely compensates for
respiratory deficits.

The extent of functional neuroplasticity and motor recovery
is closely tied to anatomical plasticity and changes within the
circuit or the extent of the lesion. For example, with a more mild
contusive injury, there will be a higher likelihood of recovery
and limited functional deficit (Alvarez-Argote et al., 2016).
Restorative functional plasticity relies on anatomical pathways
to be connected, or in some cases, strengthen connections, form
new connections, or establish novel pathways. Accordingly, this
has been reported several weeks to months following injury.
In contrast, compensatory plasticity typically occurs soon after
injury and initially relies solely on existing anatomical substrates.
With continued change in activity within those pathways,
however, there can be progressive anatomical changes that
further contribute to, or reinforce, compensatory functions.

METHODS TO ENHANCE PLASTICITY

Given the promise seen with neuroplasticity after SCI, there
has been increased effort in the past decade to develop
treatments capable of enhancing this plasticity and promoting
respiratory recovery after injury. These treatments stimulate the
nervous system either through neural interfacing (e.g., electrical
stimulation) or through physical stimuli (e.g., locomotor training
and respiratory rehabilitation) (Figure 2). Stimulation activates
spared neural networks and can encourage the formation
of new pathways, contributing to modest repair of damaged
circuitry. These activation strategies can promote beneficial
changes in anatomical and functional plasticity and contribute
to improved outcomes after SCI. Important considerations for
any of these methods will be timing and dose of the treatment,
as well as, efforts to preserve adaptive plasticity and limit
maladaptive plasticity.

Rapid advances are being made in both neural interfacing
and electrical stimulation strategies (e.g., intraspinal, epidural,
transmagnetic, and functional electrical stimulation; Figure 2).
Multidisciplinary collaborations between mechanical and
electrical engineers, material scientists and neurobiologists,
have led to the development of highly novel and translationally
appropriate devices that are being tested in both pre-clinical and
clinical studies. Scientists and clinical professionals widely agree,
however, that non-invasive rehabilitative strategies will always
represent an effective means of helping injured individuals regain
some functional improvement. Rehabilitative strategies provide
the physical stimulus to enhance plasticity and provide a less
invasive alternative to electrical stimulation. One example of
these rehabilitative strategies is activity-based training (ABTs).

Activity-Based Therapies
Activity-based therapies (ABTs) have extensively shown to
promote neuroplasticity and improve function post-SCI in
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FIGURE 2 | Stimulating activity to enhance plasticity. Schematic diagram of neural interfaces (left) and activity based (right) strategies to drive neural activity. Neural
interfaces include strategies that can be applied to the periphery [e.g., functional electrical stimulation of diaphragm via diaphragm pacer, (A)]. Electrical stimulation
can be applied to the spinal cord via epidural stimulation (B) and intraspinal stimulation (C) as well as non-invasively, supraspinally, via transcranial magnetic
stimulation (D). Activity-based therapies use physical stimuli to result in increased respiratory drive and neural stimulation via strategies like resistance training (Ei) or
intermittent hypoxia (Eii), and locomotor training, e.g., via treadmill (F). Modified from Hormigo et al. (2017), Zholudeva et al. (2018).

several sensory, motor, and neurological disorders (stroke, brain
injury, and SCI) (Vinit et al., 2009; Dale-Nagle et al., 2010a;
Hormigo et al., 2017). ABTs increase activity, often in a repeated,
intermittent or “set”-like fashion, in mature neural pathways.
Experimental and clinical studies have demonstrated that these
ABT strategies can strengthen existing neuronal networks,
stimulate synaptic and dendritic growth/plasticity, and increase
baseline neuronal activity (facilitation/potentiation) (Harkema,
2001; Dunlop, 2008; Lynskey et al., 2008; Dale-Nagle et al., 2010a;
Singh et al., 2011a,b; Houle and Cote, 2013; Martinez et al.,
2013; Hormigo et al., 2017). These changes can also refine and
prune synaptic connections and promote the recruitment of
other neurons (e.g., spinal interneurons) into the neural network
(Rank et al., 2015; Sandhu et al., 2015; Streeter et al., 2017). Spinal
interneurons (SpINs) are a vital component of neuroplasticity
(Zholudeva and Lane, 2018; Zholudeva et al., 2021), that can
change their pattern of activity and are reported to alter their
connectivity to contribute to novel anatomical pathways. Most
importantly, this neuroplastic potential can be therapeutically
driven by either electrical stimulation or ABTs (Harkema, 2008;
van den Brand et al., 2012; Houle and Cote, 2013).

In an effort to better understand the mechanisms underlying
therapeutically driven plasticity, several pre-clinical studies
investigated changes in cytokine expression within the networks
being targeted. ABTs have been shown to increase the expression
of several neurotrophic factors within the injured spinal cord
(Baker-Herman et al., 2004; Dunlop, 2008; Wilkerson and
Mitchell, 2009). A caveat in interpreting the role of these growth
factors is their widespread distribution throughout the neural
axis. For, example, ABT increases BDNF expression across

multiple spinal levels. Despite this, ABT-driven expression of
neurotrophic factors within denervated neuronal networks may
provide a non-invasive means of attracting axonal growth and
enhance functional connectivity (Baker-Herman et al., 2004; Lu
et al., 2005; Sieck and Mantilla, 2009; Bonner et al., 2010, 2011;
Weishaupt et al., 2012, 2013; Mantilla et al., 2013; Hernandez-
Torres et al., 2017). Serotonergic neurons appear to be especially
responsive to increased growth factor expression. Consistent with
this notion, there is increased serotonergic input onto spinal
motor circuitry and increased serotonergic receptor expression
(Houle and Cote, 2013). These neuroplastic molecular changes
can be harnessed for therapeutic gain. As the contribution of
cytokines to neuroplasticity is more clearly defined, treatments
may be better refined to optimize outcome.

Perhaps the most extensively studied ABT is locomotor
training, either over-ground, treadmill, or with robotics (e.g.,
Lokomat R©). Locomotor training has demonstrated beneficial
effects on plasticity and locomotor function following a range
of SCIs, with different spinal levels and severities (Singh et al.,
2011a,b; Galea et al., 2013; Hajela et al., 2013; Hillen et al., 2013;
Hubli and Dietz, 2013; Martinez et al., 2013; Morawietz and
Moffat, 2013; Bonizzato and Martinez, 2021). Locomotor training
uses repetition to strengthen muscles, stimulate afferent feedback,
enhance motor output, and thus drive related neural plasticity
(Harkema, 2001).

While historically the focus of locomotor training was to
improve locomotion, it has also been shown to improve a range
of non-locomotor functions, including bladder (Ward et al.,
2014) and cardiovascular function (Ditor et al., 2005a,b; Hicks
and Ginis, 2008). More recent studies have also demonstrated
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that treadmill training can enhance respiratory recovery in
people with chronic cervical and thoracic injuries (Terson de
Paleville et al., 2013). This improvement in respiratory function
was speculated to be due to increased heart rate and minute
ventilation (increase cardiopulmonary activity) during treadmill
training (Terson de Paleville et al., 2013). However, the extent
of respiratory improvement may also be “dose-dependent.”
Terson de Paleville saw improvements in respiratory function for
subjects who received 60 min of stepping on a treadmill, 5 days
a week for an average of about 12 weeks (Terson de Paleville
et al., 2013). In contrast, individuals who received passive robot-
assisted stepping did not improve cardiopulmonary function
(Jack et al., 2011). One limitation might be achieving sufficient
increase in limb afferent stimulation to encourage locomotor-
respiratory coupling post-SCI (Sherman et al., 2009). This
hypothesis is supported by hindlimb stimulation (a passive event)
producing respiratory rhythm entrainment (Iscoe and Polosa,
1976; Morin and Viala, 2002; Potts et al., 2005), increasing
phrenic motor output (Persegol et al., 1993).

While the mechanisms explaining how locomotor training can
promote respiratory plasticity remain unclear, there are some
lines of evidence suggesting that training in the activity you
wish to recover might provide a more direct and efficacious
strategy. Thus, there has been growing interest in the field of SCI,
to entrain respiratory plasticity by stimulating and increasing
respiratory activity.

Respiratory Training
Respiratory training is the repetitive activation (either electrical
or physical) of inspiratory and expiratory muscles in a systematic
way to strengthen respiratory pathways and the muscles they
innervate. The term “respiratory training” originated from
respiratory axillary muscle training to improve breathing after
cervical SCI in 1967 (Imamura, 1967). As the number of
publications on respiratory training and SCI continues to
increase, so has the definition and use for “respiratory training”
(Figure 3). While the origins of respiratory training are within
exercise physiology, it has also been used in elderly populations
and for many disorders such as chronic obstructive pulmonary
disease (COPD), Parkinson’s disease, multiple sclerosis, speech
pathologies, and voice disorders (Sapienza and Wheeler, 2006).
Respiratory training now broadly refers to strengthening the
primary and accessory (including inspiratory and expiratory)
respiration muscles (Sapienza and Wheeler, 2006; Sapienza
et al., 2011). These are further divided into inspiratory and
expiratory training strategies (Bolser et al., 2009; Martin et al.,
2011; Sapienza et al., 2011; Laciuga et al., 2014). Deciding
which training paradigm to use depends on the needs of the
individual. For example, an individual with a high cervical injury
will have inspiratory and expiratory deficits and will require a
training technique that targets both muscle groups. However, an
individual with a lower thoracic injury may require techniques
targeting expiratory muscles.

Resistance Muscle Strength Training
The goal of any muscle strength training (MST) is to enhance the
ability of the neuromuscular system to respond to a demand of

FIGURE 3 | Publication history of respiratory training post-SCI. A PubMed
search was made using the terms “respiratory training” and “spinal cord
injury” to assess the relative number of research papers on this topic over the
last 60 years. As the image shows, interest on this topic is increasing
exponentially with each decade.

gradually increasing intensity. This intensity is defined in terms
of load amount and duration of the exercise task (e.g., minutes
per day × days per week × total weeks) (Sapienza and Wheeler,
2006). The total stimulus should increase the activity of the
neuromuscular system beyond the normal level (Mueller et al.,
2006) and drive it to adapt to increased demand (Sapienza and
Wheeler, 2006). Typical MST paradigms in the clinic consist of
three sessions (with 25–30 repetitions), 3–5 days per week, 4–
8 weeks (Carpinelli and Otto, 1998; Schlumberger et al., 2001;
Rhea et al., 2002; Sapienza et al., 2011). The intensity of MST
can directly affect improvement in respiratory muscle strength
(Raab et al., 2019).

There are two main MST strategies: resistance and threshold
training. Resistance MST consists of breathing through a small
diameter hole, making the participant breathe harder due to
the limited airflow (Sapienza and Wheeler, 2006; Berlowitz and
Tamplin, 2013; Raab et al., 2019). It can be targeted toward either
inspiratory or expiratory muscles (Roth et al., 2010) or combined
(Kim et al., 2017). Combined training resulted in increased forced
vital capacity and expiratory volume, demonstrating improved
pulmonary function compared to the respiratory muscle training
alone and control group (Kim et al., 2017). Threshold MST
forces the individual to modulate their breathing to overcome
a spring-loaded valve controlling the airflow (Sapienza and
Wheeler, 2006; Galeiras Vazquez et al., 2013; Raab et al., 2019).
Resistance and threshold MST result in improved breathing,
facilitates weaning from mechanical ventilation (Aldrich et al.,
1989; Martin et al., 2011; Smith et al., 2014), and has beneficial
effects in secondary respiratory behaviors [e.g., sneezing, sniffing,
or coughing (Postma et al., 2015; Aslan et al., 2016; Legg
Ditterline et al., 2018; Shin et al., 2019)].

Altering Inhaled Air for Respiratory
Training
An alternative to direct electrical stimulation or resistance
training of respiratory muscles is non-invasive peripheral
and central chemoreceptor activation. For example, hypoxia
(decreased oxygen) and hypercapnia (increased carbon dioxide)
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have been used to elicit activity within the phrenic network
(Millhorn et al., 1980; Nielsen et al., 1986). These types of
chemical activation have been used to stimulate respiratory drive
and elicit neuroplasticity non-invasively. For example, Millhorn
et al. (1980) discovered that stimulation of the peripheral and
central chemoreceptors resulted in a lasting increase of phrenic
activity (Millhorn et al., 1980). Building on this Bach and Mitchell
(1996) used three, 5-min bursts of hypoxia (intermittent with
room air) to stimulate this chemoreceptor activity and elicit
a lasting (hours) increase in phrenic nerve activity (Bach and
Mitchell, 1996), termed long-term phrenic facilitation (LTF). LTF
is an example of respiratory neuroplasticity characterized by a
period of enhanced neural output following a single stimulation
paradigm (Fuller et al., 2000; Mitchell et al., 2001). When
the same paradigm was applied to hypercapnia (10% CO2)
stimulation paradigm resulted in long-term depression (LTD),
effectively decreasing phrenic nerve output (Bach and Mitchell,
1996, 1998). Important to note is lowering CO2 levels (to 5%)
or limiting exposure to 3–5 min does not elicit this LTD (Baker
and Mitchell, 2000; Baker et al., 2001). These episodic exposures
also elicit LTF for hypoxia and hypercapnia, but not continuous
exposure paradigms (Baker and Mitchell, 2000; Baker et al.,
2001).

Increased phrenic plasticity from intermittent hypoxia or
hypercapnia led to using these strategies as an alternative
method of “respiratory training.” This form of respiratory
training is modeled after other rehabilitative ABTs [reviewed
in Dale-Nagle et al. (2010b); Dale et al. (2014), Gonzalez-
Rothi et al. (2015, 2021)]. Most importantly, this training
activates chemoreceptors to drive respiration and provides a
non-invasive means of attracting axonal growth, enhancing
respiratory functional connectivity to improve breathing (Baker-
Herman et al., 2004; Lu et al., 2005; Sieck and Mantilla, 2009;
Bonner et al., 2010, 2011; Weishaupt et al., 2012, 2013; Mantilla
et al., 2013; Hernandez-Torres et al., 2017).

Intermittent Hypoxia
Intermittent hypoxia (IH) has been studied both experimentally
and clinically as a non-invasive means of stimulating respiratory
output. This “activity-based” respiratory training has been used to
enhance neuroplasticity, particularly with a focus on the phrenic
network, and, improved respiration (Fuller et al., 2003; Mitchell
and Johnson, 2003; Vinit et al., 2009; Wilkerson and Mitchell,
2009). While a vast range of paradigms have been developed to
test IH, the three most commonly reported strategies used in
rodent models are:

• Acute intermittent hypoxia (AIH); short exposures (e.g.,
3 × 5 min each, or 5 × 3 min each), given in a single day.

• Daily acute intermittent hypoxia (dAIH; short, daily
exposures over several days (e.g., 10 hypoxia episodes per
day for 5–7 days.

• Chronic intermittent hypoxia (CIH); e.g., 72 episodes of
hypoxia for 1–2 weeks or more.

Examples of these studies are reviewed in Dale-Nagle et al.
(2010b). All paradigms effectively improve respiratory outcomes
at multiple time points, including 2–10 weeks post spinal cord

injury in rodents (Ling et al., 2001; Dale-Nagle et al., 2010b).
While chronic intermittent hypoxia was able to enhance plasticity
at the level of the phrenic motor pool and enhance crossed
phrenic pathways (Fuller et al., 2003), it also led to significant
cognitive (Row, 2007), metabolic (Tasali and Ip, 2008), and
hypertensive (Fletcher et al., 1992) deficits, and decreased levels
of BDNF within the hippocampus (Vinit et al., 2009; Xie et al.,
2010; Navarrete-Opazo and Mitchell, 2014). Therefore, almost all
IH training paradigms are now done daily with acute intermittent
timing (Dale-Nagle et al., 2010b; Gonzalez-Rothi et al., 2015).

The mechanisms by which hypoxia induces LTF and phrenic
plasticity are both complex and multifaceted. IH respiratory
training has demonstrated the ability to elicit serotonin
dependent plasticity (Ling et al., 2001; Mitchell et al., 2001;
Baker-Herman and Mitchell, 2002; Golder and Mitchell, 2005;
Dale-Nagle et al., 2010b; Devinney et al., 2013), and enhance
bulbospinal axon sprouting into phrenic circuitry (Baker-
Herman et al., 2004; Dale-Nagle et al., 2010b; Gonzalez-Rothi
et al., 2015). There are two main pathways described as the “Q”
and “S” pathways of promoting neuroplasticity [reviewed in Dale
et al. (2014); Hassan et al. (2018); Figure 4]. These pathways get
their name from the primary type of G protein-coupled receptor
(Gs or Gq) activated.

In addition to upregulating molecular markers for plasticity,
hypoxia has also been shown to enhance interneuronal plasticity
and connectivity, and alter motor output. Studies have identified
that spinal interneurons (SpINs) can respond to hypoxia (Lane
et al., 2009; Sandhu et al., 2015) and can be recruited following
IH training (Streeter et al., 2017).

IH training has also been shown to increase plasticity in non-
respiratory networks (Supplementary Table 1 and Figure 5).
Pre-clinical studies reported 7 days of IH in rats with cervical
SCI improved performance on the horizontal ladder test (Lovett-
Barr et al., 2012; Prosser-Loose et al., 2015; Hassan et al.,
2018). IH has also been used in conjunction with specific
tasks resulting in synergistic improvements in locomotion
(Lovett-Barr et al., 2012), reaching and grasping techniques
(Prosser-Loose et al., 2015).

Building on the pre-clinical data, clinical studies first focused
on ankle flexion in chronic incomplete SCI individuals
(see Supplementary Table 2). IH training significantly
improved maximal plantarflexion torque and gastrocnemius
electromyographic activity that lasted up to 4 h after the initial
IH administration (Trumbower et al., 2012). This not only
demonstrated a persistent neuroplastic effect of IH training,
but provided evidence of enhanced motor function in people
living with SCI. IH training was subsequently shown to improve
both walking speed 10-Meter Walk Test (10MWT), distance and
endurance 6-Minute Walk Test (6MWT) at 1 day and 1 week
during training, and the 1 week follow up (Hayes et al., 2014).
Combined IH training with 30 min of overground walking,
showed even greater improvement in locomotion speed and
distance (Hayes et al., 2014). This improvement may demonstrate
that combinatorial therapies may promote greater synergistic
functional benefits in injured individuals (Hayes et al., 2014).
More recent use of IH training has shown that there is a persistent
effect in locomotor facilitation over time and that this can be
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FIGURE 4 | The current model of the “Q” and “S” Pathways. The past several decades has seen significant advances in our understanding of intermittent hypoxia
and its effects on the spinal phrenic network. Particular focus has been given to changes on the phrenic motoneuron itself. From these ongoing studies we are
gaining an appreciation of the cellular receptors and intracellular pathways that contribute to plasticity and altered motor function under different respiratory
conditions. The current pre-clinical and clinical goal is to employ therapeutic strategies that can harness these mechanisms and enhance motor output after spinal
cord injury or disease. Adapted from Dale-Nagle et al. (2010b); Gonzalez-Rothi et al. (2015).

further maintained with three IH treatments per week after the
initial combinatorial walk/IH training (Navarrete-Opazo et al.,
2017a). Similarly, combined IH training with hand exercises
revealed improved hand dexterity function and maximum hand
opening in all participants (Trumbower et al., 2017).

Compromised bladder and bowel function has profound
impacts on quality of life for those living with SCI, including
a loss of independence, increased risk of infection from
catheter use or from incomplete bladder voiding, and autonomic
dysreflexia. While there are no clinical studies looking at IH
and bladder and bowel function, some animal models are
investigating IH and lower urinary tract plasticity. In brief,
Collins et al. (2017) revealed that IH-induced neuroplasticity
can improve lower urinary tract function in rats with chronic
incomplete SCI and may provide a non-invasive method of
improving bladder function within the SCI patient population
(Collins et al., 2017).

Another respiratory deficit that arises following cervical SCI is
sleep-disordered breathing. A consequence of this is obstructive
sleep apnea that can result in chronic episodes of hypoxia
and hypercapnia, contributing to cardiovascular morbidity, high
blood pressure, increased sympathetic nerve activity, cardiac
arrhythmia and myocardial infarction (Prabhakar et al., 2005).
However, IH consisting of 3–4 rounds of 5–7 min exposures at
12–10% O2 for 2–3 weeks can benefit cardiovascular diseases
such as decreased hypertension, coronary heart disease, and heart
failure (Serebrovskaya and Xi, 2016). While these initial studies

were conducted on spinally intact individuals, future work can
begin to assess the potential in people living with SCI.

In summary, IH has demonstrated the ability to improve
respiratory function, elicit serotonin and neurotrophic factor
dependent plasticity, enhance bulbospinal axonal sprouting into
active phrenic circuitry, and recruit populations of SpINs.
Clinically, IH training has also been investigated for its ability to
promote recovery of both respiratory (Vinit et al., 2009; Tester
et al., 2014) and non-respiratory (Trumbower et al., 2012, 2017;
Dale et al., 2014; Hayes et al., 2014) motor functions.

Intermittent Hypercapnia
Like hypoxia, exposure to hypercapnia (elevated CO2) has
also been used to increase respiratory drive via central and
peripheral chemoreceptor activation. There is evidence that
hypercapnia and hypoxia activate chemoreceptors differently
(Long et al., 1994) and that hypercapnia can act as a stronger
respiratory stimulant than hypoxia (Somers et al., 1989; Nattie
and Li, 2012). This chemoreceptor activity is also enhanced
in individuals with chronic SCI compared to non-injured
individuals (Bascom et al., 2016).

Hypercapnia as a respiratory stimulus has been shown to
increase activity within several brainstem nuclei, including the
retrotrapezoid nucleus (RTN) and those within the ventral
respiratory column (VRC) (Millhorn and Eldridge, 1986;
Guyenet et al., 2012, 2019; Molkov et al., 2014; Wakai et al.,
2015). Following hypercapnia exposure, there is an increased
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FIGURE 5 | The effect of respiratory training on neural networks. The studies
described in this review use respiratory training, such as intermittent hypoxia
and hypercapnia in a pre-clinical model (A), to improve respiratory function
after spinal cord injury. However, numerous studies have reported beneficial
effects on other motor networks such as bladder, grasping and locomotion,
and cardiac systems (B). Modified from Zholudeva and Lane (2019).

drive from the RTN to the VRC resulting in increased amplitude
and frequency of phrenic output (Molkov et al., 2014). Within
the nucleus tractus solitarius, the principal visceral sensory
nucleus, PHOX2B-expressing neurons exhibit CO2 sensitivity
and increase activity after exposure to hypercapnia (Fu et al.,
2019). Another crucial effect of hypercapnia on brainstem nuclei
is the activation of the dorsal raphe (containing serotonergic
neurons) (Smith et al., 2018; Kaur et al., 2020). Because carotid
chemoafferents also activate raphe, there is also reason to believe
that exposure to hypercapnia and hypoxia may further enhance
serotonin-dependent mechanisms of plasticity beyond hypoxia
alone (Welch, 2021).

While plasticity pathways are well studied following IH,
the molecular changes post hypercapnia are not well defined.
Overall, hypercapnia is known to upregulate many transcription
factors responsible for respiration, motor, and immune function
[reviewed in Shigemura et al. (2020)]. In light of the documented
“S” and “Q” Pathways (Figure 4), hypercapnia is believed to
activate the A2a receptors (Bach and Mitchell, 1998; Kinkead
et al., 2001) as part of the initial “S” pathway. Consistent with this,
exposure to severe hypercapnia (10% CO2) inhibits plasticity,
resulting in long-term phrenic depression (LTD), which is
attenuated with the delivery of an A2a receptor antagonist
(Bach and Mitchell, 1998). However, it is important to note
that lower hypercapnia concentrations (3–5% CO2) does not
elicit LTD (Bach and Mitchell, 1998), and thus may drive other
molecular pathways.

While hypoxia has been shown to have has a greater effect
on respiratory timing, hypercapnia has a more significant effect
on peak phrenic nerve activity (Ledlie et al., 1981). Together
hypoxia and hypercapnia exposure demonstrate excitation to
increase muscle sympathetic nerve activity (Jouett et al., 2015).
Also, combined hypoxia and hypercapnia exposure leads to an

increase in ipsilateral diaphragm activity but not intercostal
activity after a mid-cervical contusion (Wen and Lee, 2018).
Furthermore, intermittent hypoxia-hypercapnia following mid-
cervical contusion induces an increase in tidal volume, whereas
inactivation of the 5-HT7 receptor (Gs coupled protein)
combined with this treatment further transiently improved this
recovery (Wu et al., 2020). However, more studies need to be
done to further understand the implication of the Gs or Gq
pathway in this recovery.

A potential therapeutic advantage of hypercapnia training is
that unlike IH it maintains normoxia. It has also been shown
that hypercapnia can act as a more potent respiratory stimulus
than hypoxia (Somers et al., 1989; Nattie and Li, 2012). Increased
respiratory neural drive (brainstem) results in increased phrenic
output (phrenic nerve and diaphragm) which contributes to
entrainment of spared circuits after SCI, activation of latent
pathways (Zhou et al., 2001b; Zimmer et al., 2007), as well as
anatomical plasticity (e.g., the formation of novel neural circuits)
(Baker et al., 2001; Feldman et al., 2003). Apart from anatomical
plasticity, intermittent hypercapnia elicits functional changes in
respiratory circuits after SCI (Baker et al., 2001). A summary of
studies using hypercapnia to enhance anatomical and functional
neural plasticity is provided in Supplementary Table 3.

CLOSING REMARKS

With the mounting clinical and experimental evidence for
plasticity after spinal cord injury, tremendous effort is being
made to develop treatments that can reduce maladaptive
changes, and act synergistically with ongoing adaptive changes,
to further optimize the benefits of neuroplasticity. These neural
interfacing and activity-based therapies are being extensively
clinically tested, which also speaks to their translational relevance.
Combining neural interfacing with activity-based therapies has
already shown to be effective for promoting recovery of non-
respiratory functions (van den Brand et al., 2012), so it is
tempting to predict that similar benefits may be achievable
for respiratory functions. Even greater benefit may come from
combining these approaches with other therapies, such as
cellular or biomaterial transplantation, or administration of pro-
regenerative compounds, that can promote greater anatomical
growth and repair. The future of therapeutic development
for respiratory function and plasticity after spinal cord injury
holds great promise.
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