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Abstract 

Man y adv ances in biomedicine can be attributed to identifying unusual proteins and genes. Many of these proteins’ unique properties were 
disco v ered b y manual inspection, which is becoming infeasible at the scale of modern protein datasets. Here, we propose to tac kle this c hallenge 
using anomaly detection methods that automatically identify unexpected properties. We adopt a state-of-the-art anomaly detection paradigm 

from computer vision, to highlight unusual proteins. We generate meaningful representations without labeled inputs, using pretrained deep 
neural network models. We apply these protein language models (pLM) to detect anomalies in function, phylogenetic families, and segmentation 
tasks. We compute protein anomaly scores to highlight human prion-like proteins, distinguish viral proteins from their host proteome, and mark 
non-classical ion / metal binding proteins and enzymes. Other tasks concern segmentation of protein sequences into folded and unstr uct ured 
regions. We provide candidates for rare functionalit y (e.g . prion proteins). Additionally, we show the anomaly score is useful in 3D folding-related 
segmentation. Our no v el method sho ws impro v ed perf ormance o v er strong baselines and has objectiv ely high perf ormance across a v ariety of 
tasks. We conclude that the combination of pLM and anomaly detection techniques is a valid method for discovering a range of global and local 
protein characteristics. 
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he unprecedented growth in quality and quantity of molec-
lar data (e.g. genomes, transcriptomes) in recent years raises
he need for a systematic approach for functional annota-
ion of new protein sequences ( 1 ). The consistent increase in
he success of automatic functional prediction was mostly at-
ributed to the expansion in the number and variety of solved
tructures and the overall increase in databases ( 2 ). The Gene
ntology (GO) framework is used as a gold standard for

he assignment of biochemical function, biological process,
nd cellular localization terms to ( 3 ). Protein function is in-
rinsically complex and poorly defined. It is mostly indirectly
tudied through evolutionary conservation (e.g. protein ho-
ologous families and 3D structure ( 4 ). However, proteins

arry numerous cellular functions that are context depen-
ent. Examples are protein-protein interactions, cell signaling,
nd the regulatory network. For the genomic-based collection
f UniProtKB / TrEMBL (230 M sequences, Release 4 / 2022),
 1% have experimental evidence, and the majority of the
atabase includes predicted proteins with no supporting ev-

dence ( 5 ) With such constraints, direct experiments are the
est way to determine high accuracy in functional prediction.
The assignment of functions to sequences is a challenging

ask. Even with known homologs, inheritance transitivity is a
ource of inaccuracy and ambiguity in multi-domain protein
unctions ( 6 ). Annotation efforts usually fail when function
s rare and represented by orphan sequences ( 7 ). Occasion-
lly, protein functions that were not previously observed are
eported, which suggests that unique and unexpected func-
ions exist and that methodologies for their systematic find-
ngs are needed. Examples are short peptides in humans that
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resemble snail cone toxins ( 8 ), heat resistant hero proteins ( 9 )
prion proteins that drive pathological aggregations ( 10 ), in-
trinsically disordered proteins that involve phase separation
( 11 ) and more. Distinguishing alterations in protein function
due to mistakes in translation ( 12 ), and developing effective
screening methods to identify novel functions is of ultimate
importance to the field of protein design and engineering ( 13 ).

Deep learning approaches have led to protein fold pre-
diction with extremely high accuracy, as implemented in Al-
phaFold. It also allowed populating the unstructured space of
protein sequences with high confidence structures ( 14 ), with
36% of all amino acids in the human proteome predicted with
high confidence ( 15 ). However, in instances where only a few
homologs exist, or there is low divergence, AlphaFold predic-
tions are of lower quality . Importantly , mapping a fold to its
function is not always evident, as the same fold may account
for a large number of unrelated functions ( 16 ). In addition,
training models from sequence ( 17 ) using NLP methodolo-
gies ( 18 ,19 ), led to breakthroughs in protein function infer-
ence (e.g. ProteinBERT, ProtTrans, ESM) and more ( 20–23 ). 

Most deep learning approaches, both for proteins and other
data modalities, heavily rely on manually annotated samples.
However, often the most exciting research tasks require dis-
covering new phenomena rather than distinguishing between
known data classes. Breaking from previous research, we ex-
plore a new setting for identifying novel, previously unknown
protein types. As such protein types are unknown and unex-
pected, we do not assume that any annotated examples of
such proteins are provided to us. To detect such novel sam-
ples automatically, we must rely on the ability to distinguish
between samples similar to the training data ( ‘normal data’ )
ary 29, 2024. Accepted: February 23, 2024 
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and novel data types ( ‘anomalies’ ). We refer to this setting here
as anomaly detection, but the terms ‘novelty‘ and ‘outlier‘ are
often used interchangeably in the literature ( 24 ). In the case
of anomaly detection in tabular data, it was shown that den-
sity estimation of samples as vectors is a strong approach ( 25 ).
Namely, a sample is deemed anomalous if its features are far
away from any normal samples, so it is likely not to have come
from the same distribution. With other data modalities, a key
step for anomaly detection is to map sparse samples to a rel-
atively dense embedding space ( 24 ). After mapping each sam-
ple to a descriptive vector, a density estimation approach can
be applied to various data modalities, including images ( 26 ),
time-series ( 27 ), tabular healthcare data ( 28 ,29 ). 

In this study, we aim to establish a computational method
for anomaly detection in proteins at a genomic scale. The
methods we adapt were originally developed and successfully
applied in the domain of computer vision. We adapt the pre-
trained approach of SPADE, by extracting residue level fea-
tures from a protein embedding network and using them to
detect residue level anomalies with density estimation. For the
whole sequence anomaly detection case, we borrow an image-
level approach (similar to the approaches presented in DN2
and PANDA). However, in order to detect full-length protein
anomalies (i.e. whether the whole protein is an enzyme or not)
with such approaches we have to summarize the residue level
embeddings to representations of entire proteins. We describe
our technical approach for this summarization in Methods, in
section ‘ Whole sequence anomaly detection’ . 

We tune the method to seek novelty within different sub-
groups of the protein sequence space. For this goal, we intro-
duce protein function annotation terms from Gene Ontology
(GO) and UniProtKB keywords as ground truth. We also dis-
cuss functions that describe structural segments within protein
sequences. We rely on the notion that proteins with the same
3D fold might share only minimal sequence similarity ( 30 ,31 ).
We present a method that highlights novel functions and dis-
cuss the predictive power needed to identify novel functions
within the protein sequence database. 

Materials and methods 

We present a method for detecting anomalous proteins. Cru-
cially, our method does not assume that we are able to charac-
terize the anomalous proteins, as unusual and interesting pro-
teins are often unexpected. We adapted recent breakthroughs
in image anomaly detection (e.g. DN2 ( 32 ), SPADE ( 33 ),
PANDA ( 26 )) and applied them to the amino acid sequence
of proteins. Our method tackles different categories in protein
function detection: full-length proteins (i.e. whether the whole
protein is an enzyme or not) and at the local residue level,
denoted as protein anomaly segmentation . Our approach for
anomaly detection consists of two stages: deep protein feature
extraction and anomaly scoring. In section ‘Whole sequence
anomaly detection’, we describe our embedding method for
full-length protein sequences. 

Feature extraction 

Anomaly detection methods require powerful representations
of the data. We desire representations that reflect the bio-
logical semantic similarity between proteins. While proteins
are encoded as amino acid sequences, which are simply rep-
resented as a sequence of characters, this does not explicitly
hold information about their structure, roles and interactions 
within the protein. Many approaches have been developed for 
protein representation in the field of protein structure, protein- 
protein interactions (PPI) and function in general ( 23 ,34 ). 

In this work, we choose to represent protein sequences 
by deep neural network (NN) encoders. The encoders are 
first pretrained on huge protein datasets, to solve a bidirec- 
tional language modeling task ( 20 ,35 ). Specifically, the model 
is trained on a subsequence of amino acids in the protein,
where some have been replaced with masked out tokens and 

its task are to predict these ‘hidden’ tokens. This paradigm 

has two main advantages: (i) it can exploit a massive, un- 
labeled protein dataset; (ii) a success on this task implicitly 
requires a high-level understanding of the protein, its func- 
tion and structure. We assume that such powerful encoders 
have already been trained and provided to us. This assump- 
tion is realistic and based on the use of protein language mod- 
els (pLM) that are readily available and were found highly 
effective for different downstream tasks. For example, ESM,
ProtTrans, ProteinBERT ( 20 , 21 , 23 ). Following common prac- 
tice, we use the penultimate layer of the pretrained encoders as 
our representation. We denote the activation map for protein 

P as ψ ( P ) .The model provides a vector representation for each 

amino acid. We denote the representation of the i-th amino 

acid as F i = ψ (P) i . 

Anomaly scoring 

We use a density-based anomaly scoring rule. The motivation 

is that normal proteins are common, and we often find mul- 
tiple examples for each normal protein pattern. Conversely,
anomalous proteins are anticipated to be rare, especially in 

model organisms that have been extensively studied. We will 
not expect to find many examples of each anomalous protein 

pattern. We therefore use k nearest neighbors ( k NN) to mea- 
sure the anomaly score of a particular protein or residue. Con- 
sider, for example, the representation of residue i in protein 

P,�(P) i . We compute its distance from each residue embed- 
ding in all proteins in the training set. The anomaly score of 
our target protein residue s ( P,i ) is computed as the average of 
the distance to the k nearest residues. Let us denote the k near- 
est residues from the normal train data of our target residue 
�(P) i as N k ( �( P) i ) : 

s ( P, i ) = 

1 

k 

�ψ∈ N k ( �( P ) i ) 
∣
∣
∣
∣ψ − �( P ) i 

∣
∣
∣
∣
2 

Whole sequence anomaly detection 

Proteins can be anomalous either due to an anomalous local 
region, or due to a protein-wide anomalous property. To de- 
tect anomalies in entire proteins, one might consider using the 
anomaly score of the most anomalous residue within the en- 
tire protein. Although this method sometimes achieves strong 
results, it often fails. The reason is that residue embeddings are 
relatively local, while anomalous properties might be global.
We propose whole-protein anomaly scoring, which considers 
both local and global patterns. One simple way to account for 
all the protein positions is to represent an entire protein as the 
mean of each of its residue embeddings. The mean embedding 
is similar to average pooling, a standard way of summarizing 
a sequence of features. To detect anomalies using the mean 

embedding, we look for proteins whose mean embedding is 
far from the mean embedding of any protein in the normal 
train set. This is computed using the Euclidean distance to its 
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teins we considered as anomalous and the rest as normal. The 
 nearest neighbors. Such proteins found in low density areas
re likely to come from a different distribution than normal
nes. 
Using a single mean embedding for the entire protein may

ot provide a sufficient description of the local variations
ithin the protein. An alternative way to summarize features,
hich can work better, is to use set features to represent the
rotein as a set of its segments. We adapt the method of Tza-
hor and Hoshen ( 36 ) in using set features to represent an en-
ire sequence ( Supplementary Text S1 ). Differently from their
ork, we operate on deep representations rather than on the

aw data, as they are far more informative for proteins. We
core a protein as normal or anomalous using nearest neigh-
ors, with the Euclidean distance between the set features. We
enote our whole-protein score (by either method) for pro-
ein Pas s (P) . 

mplementation details 

e include here the key implementation details. Further de-
ails on the implementation our methodology and robustness
o impurities in the training sets are in Supplementary Text S1 .

The code is available in https:// github.com/ Tomer-Michael/
rada . 
The databased used: https:// github.com/ Tomer-Michael/

rada/ tree/ main/ compressed _ datasets . 
Training set subsampling and cleaning. To improve effi-

iency and mitigate the potential presence of anomalies in the
raining set, we subsample the training set. In order to select
he samples that best represent the normal data, our method
icks the most typical samples. Concretely, we randomly se-

ected n (we used n = 50 000) samples to be used as evaluators.
or each of the remaining examples, we retrieve the K evalu-
tors that are nearest to it and average the distance to them.
inally, we select the m samples (we used m = 50 000) that
ave the smallest K evaluator distance. For residue-level sam-
les, nearby regions in the same protein are often embedded
ith very similar features. We ensure that evaluators are se-

ected for a diverse set of proteins and locations. When fewer
han n + m training samples are provided, we use random sub-
ampling. 

Preprocessing. Following ESM, all sequences were trimmed
o the first 1022 amino acids. 

Architecture. We used the ESM-1b
esm1b_t33_650M_UR50S) network, with weights
rovided by the authors of ESM. We used the

esm1b_t33_650M_UR50S’ model from https://github.
om/ facebookresearch/ esm u. 

Set features for protein sequences. We follow the method by
 37 ). We use a window duration of 49 residues, 30 temporal
ilations, 200 projections and 100-bin histograms. We did not
se whitening. 
The exact dataset used in this study can be found under our

roject repository: https:// github.com/ Tomer-Michael/ prada/
ree/ main/ compressed _ datasets . 

esults 

etecting contaminating viral proteins in human 

roteome 

e evaluate the effectiveness of anomaly detection methods
or discovering unknown protein types. In our experimen-
al protocol, we provide training and test sets. The training
set consists of normal proteins only, and the test set con-
sists of normal and anomalous proteins. We train our method
based only on the normal training data, and use it to com-
pute anomaly scores for each test set protein. Our evalua-
tion includes multiple anomaly types according to the differ-
ent datasets used. 

We tested the ability of the anomaly detection method to
identify viral sequence contamination, specifically by human-
infecting viruses. The task of identifying pathogenic viral se-
quences with respect to their hosts is of clinical relevance.
We tested the ability of the method to detect viral proteins
with respect to the host human proteome. A dataset was
compiled from the curated SwissProt database ( 38 ). For this
task, we further filtered the viruses to keep only those that
are associated with humans as hosts. Out of 35K proteins,
27K remained following filtering by the host. See details in
Supplementary Text S1 and Supplementary Table S1 . 

The accuracy of an anomaly detector is dependent on the
desired tradeoff between false positive (FP) and false nega-
tive (FN) detections. In order to specify the desired trade-
off, one often chooses a threshold such that all samples with
higher anomaly scores are considered anomalous. However,
methods can have inconsistent ranking depending on the
choice of threshold. For threshold-independent evaluation,
most anomaly detection papers use the ROC–AUC metric
which averages the true-positive rate for all possible false-
negative rates (determined by different choices of threshold).
An interpretation of this metric is that given a random nor-
mal sample x norm 

and an anomalous sample x anom 

(both from
the test set) the ROC-AUC is equal to the probability that
s (x anom 

) > s (x norm 

) . 
Figure 1 . ROC-AUC performance in identifying contami-

nated viral proteins for the task of separating viral proteins
from the host proteome. We only considered humans as viral
hosts (and removed cases of broader virus-host tropism). Set
and mean embedding methods achieved the best results. 

As further evidence for the efficacy of our approach, we
computed the proportion of true anomalies out of the top
M% proteins with the highest anomaly scores. Our anomaly
score allowed us to prioritize candidate proteins with a far
higher probability of being anomalous than randomly sam-
pling the test set. Table 1 summarizes the performance across
multiple tasks. It is apparent that highly scored proteins have a
far higher likelihood of being anomalous than randomly sam-
pled ones. 

Detecting unknown protein types 

We evaluate different datasets that cover diverse attributes
of proteins, including biochemical functions, cellular localiza-
tion and protein interactions. We attempt to identify anoma-
lies among these different datasets, considering one protein
type as our normal class (seen during training), and any
protein not in that class as the anomalous class. In each
case, we aim to detect anomalous samples among the nor-
mal test data: enzymes (by their E.C. numbering system)—we
consider enzymes as anomalies and non-enzymes as normal;
extracellular / intracellular—we considered secreted (i.e. extra-
cellular) proteins as anomalous and non-secreted as normal;
ion / metal binding—proteins that bind ion / metal are consid-
ered anomalous and any other considered normal multiple
interactions—proteins that interact with multiple other pro-

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae021#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae021#supplementary-data
https://github.com/Tomer-Michael/prada
https://github.com/Tomer-Michael/prada/tree/main/compressed_datasets
https://github.com/facebookresearch/esm
https://github.com/Tomer-Michael/prada/tree/main/compressed_datasets
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae021#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae021#supplementary-data
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Figure 1. Anomaly detection accuracy for identifying human-specific viral proteins (% ROC–AUC). 

Table 1. Frequency of anomalous samples for samples with high anomaly scores (% of the entire set) 

Set features Human / virus Enzyme Extr acellular / intr acellular Ion / metal binding Multiple interactions 

Full dataset 75.00 21.55 17.33 20.34 45.81 
Test set 85.76 35.46 29.54 33.80 62.83 
Top 20% 99.85 78.01 50.67 68.23 82.07 
Top 10% 99.70 80.10 56.00 76.64 81.85 
Top 5% 99.57 80.21 60.68 83.60 79.75 
Top 1% 99.57 82.20 69.62 91.35 72.44 

Table 2. Evaluation of anomaly detection methodologies 

Dataset Source N-Gram Max of segmentation Mean embedding Set features 

Human / virus SwissProt 78.15 87.91 98.68 98.52 
Enzyme (E.C.) SwissProt 67.78 74.33 84.54 85.32 
Extracellular / intracellular SwissProt 60.87 57.61 74.91 70.59 
Ion / metal binding SwissProt 66.37 66.58 78.69 79.93 
Multiple interactions SwissProt 65.63 69.88 75.71 76.26 
Prions UniRef90 78.05 29.23 80.59 85.76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Anomaly detection accuracy for different impurity levels in the 
training set of the enzyme dataset (see details in Supplemental Text S1 ). 
While very large impurity rates naturally reduce performance, our 
representative subsampling method improves performance over random 

subsampling. 
fraction of the minority group in the database varies dras-
tically from 0.01%for prion proteins to 36.8% for task of
extracellular / intracellular. For full details on the prediction
model and the database used, see Supplementary Text S1 . Re-
call that a property such as being an ion binding protein is
based on the spatial arrangement of a small cluster of amino
acids (i.e. local), while being involved in protein–protein in-
teraction has a more global context. 

We compare our method against two baseline anomaly de-
tection approaches. Table 2 shows the results on these tasks.
The ground truth for all the listed tasks is derived from Swis-
sProt (unless stated otherwise). The N-Gram approach ( 39 )
relies on the raw amino-acid (encoded as one-hot vectors)
counts rather than on deep representations of protein seg-
ments. As anticipated, it performs significantly worse, em-
phasizing the benefit of including contextualized embeddings
from the pLMs ( 18 ). While the Max of Segmentation ap-
proach utilizes deep features, it underperforms the other ap-
proaches. The mean embedding method, which averages the
features of protein segments, and the set embedding method,
which uses set features, are the top performers on all datasets.

Robustness to training set impurity 

As anomalies are hard to detect, the training set may include
anomalous samples. We test the robustness of our method
against the existence of (unknown) anomalies in the training
set (‘impurity’). Figure 2 summarizes the impact of different
levels of impurity in the training by examining the enzyme 
dataset. First, we find that with a relatively small amount of 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae021#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae021#supplementary-data
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ata in the training dataset (up to 1% contamination), our
esults are not significantly degraded. When there is a larger
egree of impurity in the training dataset (on the order of
0%), the degradation is more severe, but we are able to mit-
gate it using the selection of a representative subset described
n Methods. 

dentifying novel prion-like proteins 

o test the ability of our method to detect anomalies due to
 global functional property, we tested our method on dis-
overing prion-like characteristics and achieved 85.76% ac-
uracy (ROC–AUC, set embedding ). The prion-anomaly de-
ection dataset includes all non-fragment proteins from the
niRef90 database. We used UniRef90 proteins (i.e. repre-

entatives with < 90% identity) in two manually annotated
lasses: known prion proteins that are labeled with the Swis-
Prot molecular function keyword of Prion (KW-0640) versus
ll other (remaining) proteins. We focus on prions as these are
are with poorly defined biochemical properties. Prions un-
ergo anomalous shifts in their 3D structure, which eventu-
lly leads to irreversible aggregation and physiopathology in
ivo ( 40 ). 

Our unsupervised model was used to create a scored,
anked list of 60 000 prion predictions on a diverse sample
f UniRef90 proteins. The top 100 most likely predictions
re listed in Supplementary Table S2 ). We observed that the
roteins with the highest anomaly scores are relatively short
mean 205 amino acids; length is < 80 amino acids for 50% of
he top list). The proteins are signified as having non-standard
axonomy sampling with over-representation of proteins from
ungi and slime mold (14% each), bacteria and viruses (12%
ach). These are poorly studied proteins, with over a third of
hem being named ‘uncharacterized’. Many of these top scor-
ng proteins have compositional bias (28%). 

Our results support the notion that prion-like proteins have
ow sequence similarity to other proteins, low sequence com-
lexity, and low confidence structure (Figure 3 ). Most of the
tructures predicted as anomalous proteins are of low con-
dence (pLDDT orange / yellow color), and only very small
ragments reach high confidence (dark blue). In many of these
roteins, over-representation of specific amino acids is evident.
or example, Q54VH6 and Q54QL5 from the Dictyostelium
iscoideum (Social amoeba) are composed of over 70% as-
aragine (N). Similarly, in Q54KT2, histidine (H) and proline
P) dominate the sequence. Extreme bias in the occurrence of
mino acids signifies many of the identified prion-like proteins
 41 ). 

orrespondences between the anomaly score and 

tructural-based segmentation 

e further tested the ability of anomaly detection methods
o assign local function and protein segmentation. To this
nd, we focused on 8035 proteins and extracted residue-level
nomaly scores for them. We analyzed a number of such cases
nd illustrate our findings for two representative proteins with
espect to structural predictions by AlphaFold2 ( 14 ). Both
roteins are characterized by long, unstructured segments.
he UniProt Q96DN6 protein (1033 amino acids) is encoded
y the gene MBD6 (Methyl-CpG-binding domain protein 6;
igure 4 A). It binds to heterochromatin indirectly (without in-
eracting with methylated or unmethylated DNA). In addition,
t is recruited to sites of induced DNA damage and potentially
acts in chromatin organization. While a detailed knowledge
of its 3D is unavailable, AlphaFold2 predicts that the mini-
mal positional error (dark green, Figure 4 A, middle) is limited
to < 100 amino acids at its N’-terminal domain. This region
serves as an anchor site, with the rest of the 3D structure being
of low confidence and a very large alignment positional error
(Figure 4 A, bottom). 

The second example of protein Q5VUJ9 (Dynein regula-
tory complex protein 8) has a similar trend. This protein (269
amino acids) regulates ciliary motility and the microtubule
sliding in motile axonemes. The second half of the protein also
acts as an anchor site for the extended low-confidence unstruc-
tured region (Figure 4 B). As shown in Figure 4 B, the unfolded
segment that includes the first 200 amino-acids is poorly deter-
mined by AlphaFold2. Note that these unstructured long seg-
ments match the very low anomaly score. We conclude that the
anomaly score detects non-classical proteins with large seg-
ments of unstructured regions, where high score highlights an-
chor regions (Figure 4 A and B, bottom). The anomaly score is
seemingly less sensitive to domain boundaries. Although there
is no direct information on the 3D structure or evolutionary
conservation for many of the proteins marked as anomalous,
the notion of folded region and non-structural regions is redis-
covered by our methodology. Additional examples of the local
anomaly score profiles are shown in Supplementary Figure S1 .

Discussion 

Studying the source of anomalous proteins is relevant for un-
derstanding the source of functional novelty ( 42 ). Identifying
novel functions among the curated UniProtKB / SwissProt is a
challenging task. Often it is restricted to proteins characterized
by an accelerated evolutionary rate (i.e. under positive selec-
tion), enriched with mutations (i.e. polymorphic hotspot re-
gions), or originating from a rapidly evolving phylogenetic lin-
eage. Function annotations often rely on having homologues
in model organisms. However, genuine anomalous proteins in-
clude orphan proteins, which are poorly annotated and over-
represented in less studied organisms ( 43 ). While the function
of most proteins is uniquely defined, moonlighting proteins
have multiple (often unrelated) functions. For example, the
SMN’s (survival motor neuron) main role is in the biogene-
sis of small nuclear ribonucleoproteins (snRNPs). However,
when expressed in axonal projections, it acts to control local
translation ( 44 ). Proteins may also alter their function accord-
ing to their oligomerization state. The beta amyloid, which
is the hallmark of Alzheimer’s disease, exhibits neurotoxicity
when oligomerized. However, as a monomer, it actually acts
to quench metal-inducible oxygen radicals, thereby inhibiting
neurotoxicity ( 45 ). Many of these unexpected examples were
identified sporadically. We present a systematic method that
can be used for identifying new candidates that are anoma-
lous on a genomic scale. 

We frame this setting as anomaly detection and modify
existing methods developed in the image anomaly detection
community to detect anomalies in proteins. We note, that the
term anomaly detection is often used interchangeably with
novelty, outlier, or out-of-distribution detection. There are
sometimes semantic variations between these terms, but the
literature is typically inconsistent about them. In study we use
‘anomaly detection’ to highlight its relation to the one-class-
classification setting in images. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae021#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae021#supplementary-data
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Figure 3. The 3D str uct ures of the 10 proteins having the highest anomaly scores for the prion-like task. The AlphaFold2 str uct ure predictions are shown 
and colored by the pLDDT confidence score. The organism / taxonomical groups are indicated by the font color of the protein ID. Note that only small 
portions within these representative sequences are colored by high confidence (dark blue, pLDDT > 90). Short proteins from the Dictyostelium 

discoideum dominate the anomalous prion-like sequences. N, indicates the N’-terminal of the protein. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although our technical approach follows the leading
paradigm for anomaly detection with deep features, future
research may provide further improvements to our anomaly
detection results. First, further improvement on deep protein
embedding methods will directly improve the quality of our
results. This is especially true, if we have some prior knowl-
edge regarding some biological properties that may indicate
anomalies. In this study, we applied a single approach to many
different tasks (Table 2 ). However, it is possible that differ-
ent embeddings may highlight different aspects of the pro-
teins that will be useful for particular tasks. For example,
proteins associated with functions that involve RNA or DNA
must be quite long, often unstructured, and have abundant
basic residues that are common in nucleic acid interactions
from bacteria to humans. Incorporating such domain-specific
knowledge can significantly improve performance. 

There are other promising areas for improvement, partic-
ularly: (i) summarizing the residue representation to a whole
sequence representation (ii) using the final representation for
scoring. For example, other technical approaches for whole
protein representation may include graph-based representa-
tions, i.e. building a graph for each protein based on the inter-
nal similarities of the protein residues. Having such a graph for
each of the seen (normal) proteins, one could compare them
to the graphs of test proteins; to detect protein abnormali-
ties. To distinguish between the graphs of normal and anoma-
lous test proteins, we may use anomaly detection methods for 
graphs ( 46 ). The scoring function we use for our representa- 
tion may leave room for further exploration as well. We use 
the kNN density estimation as a strong and robust baseline,
but other approaches, including density-estimation-based and 

others, could be explored as well ( 24 ,47 ). 
Another possible direction for future improvements is us- 

ing additional knowledge to adapt the used pre-trained rep- 
resentation to better describe normal variation in the data 
and avoid false positive (FP) detection. Such knowledge may 
consist of statistical assumptions regarding the distribution of 
the normal data that can be used to adapt the representation.
This was done in the cases of previous methods: DeepSVDD 

( 48 ), PANDA ( 49 ), Mahalanobis ( 50 ) and OOD-no-labels 
( 29 ). Prior knowledge may also come in the form of addi- 
tional auxiliary features ( 18 ) or labels. While still not assum- 
ing labeled anomalies, the normal samples may have semantic 
labels. For example, class labels for protein function in the 
normal data may allow us to better adapt the representation 

to detect novel, unlabeled protein functions ( 51 ,52 ). Another 
option is that the user may label some attributes they wish 

to ignore. E.g., wishing not to detect known protein types in 

unseen organisms as anomalies. In such cases, we may pro- 
vide organism labels for the data in order to make our repre- 
sentation agnostic to the source organism ( 53 ). A limitation 

in our search for anomalies stems from the generic protocol 
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Figure 4. Residue-based anomaly detection protocol on represented proteins. ( A ) UniProtKB Q96DN6 (methyl-CpG-binding domain protein 6, gene 
symbol MDB6), and ( B ) Q5VUJ9 (Dynein regulatory complex protein 8; gene symbol EFCAB2). Top: The plots show the anomaly score along the 
position of the sequence (x-axis). Note that the y-axis for the anomaly score is not identical in A and B. Pfam domains are colored pink. Middle: Predicted 
Aligned Error (PAE) plots . Specifically, the green color indicates expected distance error in Å. The color corresponds to the expected distance error in 
residue x’s position when the prediction and true structure are aligned on residue y. Bottom: AlphaFold2 predictions colored by the region with minimal 
PAE. Note that the protein regions with maximal values of residue-based anomaly overlap the regions with minimal PAE values. 
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or protein annotations. For example, the automatic pipeline
f genome annotation often overlooks short proteins ( 54 ,55 ).
evisiting these short sequences revealed toxin-like function,
ovel antibiotics and unexpected immunological cell recogni-
ion proteins ( 8 ,54 ). 

We tested the ability of the anomaly detection method to
dentify viral sequence contamination (Figure 1 ). From the re-
ults of this task, we were able to draw the following conclu-
ions: (i) human–host viruses were more likely to be detected
as anomalies than viruses with a more general tropism. Vi-
ral proteins that were mistakenly classified as human proteins
overlap with cases of mimicry ( 56 ). (ii) Latent viruses such
as the herpes virus were misclassified as anomalies. Notably,
latent viruses provide a real difficulty to the immune recog-
nition system, where the separation between self to non-self
is blurred. (iii) Retrovirus sequences are of viral origin, which
along evolution became endogenous to the human genome.
These are often misclassified as anomalies. Retroviral-like pro-
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teins are evolutionary remnants, and once integrated, their du-
plication is identical to any other human gene ( 57 ). 

In this study, we cover a wide range of protein functional-
ities, some of which are extremely rare (prions), while other
functions are far more common (enzymes). Prion identifica-
tion reached a high success rate. It may reflect the lack of con-
tamination in the training, due to prion proteins’ rarity. Pri-
ons are of great interest from structural and medical perspec-
tives. They act as infectious agents with devastating outcomes.
From a biochemical point of view, the pathogenic protein may
form non-reversible aggregates that lead to a chain reaction
that infects benign prion proteins. Prion propagation is a com-
mon concept shared between mammals and fungi but has been
poorly studied in other organisms ( 58 ). Prion proteins may
tilt the balance to accelerate the ‘infectious’ potential ( 59 ).
It was debated whether the infectivity capacity of prions is a
true anomaly to our biological understanding ( 60 ). Consider-
ing the unprecedented speed of determining protein sequences
from poorly studied genomes, the unsupervised anomaly de-
tection is an attractive approach for identifying functional
novelty within the protein sequence database. 
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