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A series of novel 1,3,4-thiadiazole derivatives of glucosides were synthesized by the
starting materials D-glucose and 5-amino-1,3,4-thiadiazole-2-thiol in good yields with
employing a convergent synthetic route. The results of bioactivities showed that some of
the target compounds exhibited good antifungal activities. Especially, compounds 4i
showed higher bioactivities against Phytophthora infestans (P. infestans), with the EC50

values of 3.43, than that of Dimethomorph (5.52 μg/ml). In addition, the target compounds
exhibited moderate to poor antibacterial activities against Xanthomonas oryzae pv. oryzae
(Xoo), Xanthomonas campestris pv. citri (Xcc).
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INTRODUCTION

Crop disease, caused by fungi, bacteria, viruses, and nematodes and parasitic seed plants, can effect
on the biological or non-biological factors of plants causing the phenomenon of a series of
morphological, physiological and biochemical pathologic changes, further blocking the normal
growth and the development process and the human economic benefits (Zhan et al., 2015).
Nowadays, some of the traditional fungicides and bactericides, such as Carbendazim, Kresoxim-
methyl, Streptomycin sulfate, Bismerthiazol, etc., have been widely used to prevent and control plant
fungal and bacterial diseases. However, long-term using these pesticides could lead to drug
resistance, serious ecological, and environmental problem (Aktar et al., 2009). Therefore,
development of novel and promising fungicides and bactericides is still an urgent task.

1,3,4-Thiadiazole derivatives have shown extensive biological activities, such as anti-
inflammatory (Maddila et al., 2016), anticancer (Yang et al., 2012; Sridhar et al., 2020),
antifungal (Alwan et al., 2015; Bhinge et al., 2015; Chudzik et al., 2019), antibacterial (Aggarwal
et al., 2012; Taflan et al., 2019; Zhang et al., 2019), and plant growth regulator (Knyazyan et al., 2012)
activities. Since 1,3,4-thiadiazole compounds with antibacterial activity was synthesized byMasaki in
the 1950s, 1,3,4-thiadiazole pesticides, such as Bismerthiazol and Thiodiazole-copper, have been
developed and widely used in agriculture. Recent years, a variety of studies found that amide
derivatives containing 1,3,4-thiadiazole thioether moiety showed good antifungal activities against
Fusarium oxysporum (F. oxysporum), Cytospora mandshurica (C. mandshurica), and Gibberella zeae
(G. zeae) at 50 mg/L (Xie et al., 2016) and exhibited exciting antibacterial activities against
Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas campestris pv. citri (Xcc), and Ralstonia
solanacearum (Rs) (Chen J. et al., 2019).
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Glycosides are secondary metabolites that widely exist in all
organs of plants, such as flowers, fruits, leaves, skins, and roots, etc
(Gruner et al., 2002), and previous studies found that glycosides
had a wide range of pharmacological activities, such as antiviral
(ChenW. et al., 2019; Khodair et al., 2019), antibacterial (Mohammed
et al., 2019), anticancer (Gurung et al., 2018; Rahim et al., 2020),
antioxidant (Jiang et al., 2018; Hawas et al., 2019), and anti-HIV (He
et al., 2019) activities. Meanwhile, studies also found that glycoside
derivatives showed exceeding inhibitory activities against plant
pathogens. For example, Ningnanmycin, an important glycoside
biological pesticide, is mainly used in rice seedling blight, soybean
root rot, rice stripe disease, apple spot deciduous leaf disease and
cucumber powdery mildew (Hu et al., 1997). In addition, it was also
found that glycosylation is one of the effective ways to improve the
functional activity of active lead compounds and develop new drugs.
(Gurung et al., 2018; Wu et al., 2014).

In order to develop new lead compounds with highly
bioactivity, in this study, we aimed to introduce a 1,3,4-
thiadiazole group into glucosides moiety to design a series of
novel 1,3,4-thiadiazole derivatives of glucosides and then
evaluate for their antifungal and antibacterial activities. Results
indicated that some of the target compounds exhibited good
antifungal activities. Especially, the compounds 4i showed
higher bioactivities against Phytophthora infestans (P. infestans),
with the EC50 values of 3.43 μg/ml, respectively, than that of
Dimethomorph (5.52 μg/ml). In addition, the target compounds
showed moderate to poor antibacterial activities against Xoo and
Xcc. As far as we know, this is the first report on the antifungal and
antibacterial activities of 1,3,4-thiadiazole derivatives of glucosides.

MATERIALS AND METHODS

Materials and Instruments
Melting points were determined on an XT-4 melting apparatus
(Beijing Tech Instrument Co., China). 1H NMR and 13C NMR

spectra were measured on a Bruker AVANCE III TM 400 and HD
600 MHzDigital NMR Spectrometer (Bruker Company, Billerica,
MA, US.) in CDCl3 as solvent and recorded in relative to internal
standard tetramethylsilane. High-resolution mass spectrometry
(HRMS) was carried out on an Agilent Technologies 6540 UHD
Accurate-Mass Q-TOF LC/MS (Agilent Technologies, Palo Alto,
CA, United States). The course of the reactions was monitored by
thin-layer chromatography (TLC) analysis on silica gel GF254.
All reagents and solvents meet the standards of analytical reagent
before use.

Chemistry
Preparation of 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl
bromide (1). As shown in Figure 1, acetic anhydride (88 ml,
0.9 mol) was added to a solution of D-glucose (29.75 g, 0.15 mol)
in glacial acetic acid (300 ml) and stirred at room temperature for
20 min. Then, perchloric acid (0.3 ml) was added to the above
reaction mixture at room temperature. After TLC analysis
showed complete disappearance of D-glucose, a solution of
acetyl bromide (34 ml, 0.45 mol) in 50 ml CH2Cl2 was added
to the resultant reactionmixture and stirred at room temperature.
After the completion of the reaction, the reaction mixture was
poured into water and extracted with CH2Cl2. The organic layer
was dried, filtered, and evaporated in vacuo to remove CH2Cl2.
The crude product was recrystallized by a mixture of petroleum
ether and diethyl ether (volume ratio 1:2) to afford intermediate
1. (Scattolin et al., 2020). 1HNMR spectral data for intermediate 1
are listed in the Supplementary Material.

Preparation of (2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-((5-
amino-1,3,4-thiadiazol-2-yl)thio)tetra hydro-2H-pyran-3,4,5-
triyltriacetate (2). A mixture of 2-amino-5-mercapto-1,3,4-
thiadiazole (1.33 g, 10.0 mmol), acetone (50 ml), NaOH (0.4 g,
10.0 mmol), and water (10 ml) was stirred for 30 min at room
temperature. Then, a solution of intermediate 1 (0.98 g,
10.0 mmol) in 5 ml acetone was added dropwise and
continuously stirred at room temperature. After the reaction

FIGURE 1 | Synthetic route of the target compounds 4a–4q.
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completed (monitored by TLC), acetone was evaporated in vacuo,
the residues were diluted with water, extracted with CH2Cl2. The
combined CH2Cl2 extract was dried over anhydrous sodium
sulfate, evaporated in vacuo and separated by silica gel column
chromatography to afford intermediate 2 (Kamat et al., 2007). 1H
NMR spectral data for intermediate 2 are listed in the
Supplementary Material.

General procedure for preparation of the target compounds
4a–4q. Substituted benzoic acid (1.2 mmol) was added in 2 ml
SOCl2 and refluxed for about 2 h SOCl2 was distilled off in vacuo
to obtain intermediates 3. And then, a solution of intermediate 3
in 2 ml CH2Cl2 was added dropwise to a mixture of the
intermediate 2 (1.0 mmol) and triethylamine (TEA, 1.2 mmol)
in 10 ml CH2Cl2. After the reaction was completed (monitored by
TLC), the mixture was diluted with water, the organic layer was
dried over anhydrous sodium sulfate, filtered and distilled off in
vacuo, and the crude products were recrystallized with
isopropanol to afford title compounds 4a–4q.

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-((5-(2-methylbenzamido)-
1,3,4-thiadiazol-2-yl)thio)tetrahy dro-2H-pyran-3,4,5-triyltriacetate
(4a). White solid; yield 67.1%; m. p. 160–162°C; Rf � 0.67 (ethyl
acetate: petroleum ether, 1:2); IR (KBr, cm−1) ]: 3,433 (NH), 1747
(COO), 1,678 (CON); 1H NMR (400MHz, CDCl3, ppm) δ: 7.66 (d,
J � 8.3 Hz, 1H, Ar-H), 7.49 (d, J � 7.6 Hz, 1H, Ar-H), 7.42–7.30 (m,
2H, Ar-H), 5.29 (t, J � 10.0 Hz, 1H, H-3´), 5.21–5.06 (m, 3H, H-1´,
H-2´, H-4´), 4.34–4.16 (m, 2H, H-5´, H-6´), 3.84–3.80 (m, 1H, H-
6´´), 2.55 (s, 3H, CH3), 2.15 (s, 3H, CH3), 2.10 (s, 3H, CH3), 2.04 (s,
3H, CH3), 2.02 (s, 3H, CH3);

13C NMR (150MHz, CDCl3, ppm) δ:
170.66 (COCH3), 170.17 (COCH3), 169.45 (COCH3), 169.34
(CONH), 169.28 (thiadiazole-C), 158.58 (thiadiazole-C), 157.90
(Ar-C), 137.27 (Ar-C), 132.05 (Ar-C), 131.56 (Ar-C), 130.75
(Ar-C), 129.18 (Ar-C), 82.52 (C-1´), 75.97 (C-5´), 73.89 (C-3´),
69.28 (C-2´), 67.87 (C-4´), 61.62 (C-6´), 20.74 (CH3), 20.61 (CH3),
20.59 (CH3), 20.02 (CH3); HRMS [M + H]+ calculated for
C24H27N3O10S2: m/z 582.1230, found 582.1209.

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-((5-(3-methylbenzamido)-
1,3,4-thiadiazol-2-yl)thio)tetra hydro-2H-pyran-3,4,5-triyltriacetate
(4b). White solid; yield 65.3%; m. p. 163–165°C; Rf � 0.45 (ethyl
acetate: petroleum ether, 1:2); IR (KBr, cm−1) ]: 3,468 (NH), 1749
(COO), 1,666 (CON); 1H NMR (400MHz, CDCl3, ppm) δ: 7.99 (s,
1H, Ar-H), 7.94 (d, J � 7.5 Hz, 1H, Ar-H), 7.51–7.43 (m, 2H, Ar-H),
5.28 (t, J � 9.0 Hz, 1H, H-3´), 5.21–4.98 (m, 3H, H-1´, H-2´, H-3´),
4.40–4.05 (m, 2H, H-5´, H-6´), 3.74–3.70 (m, 1H, H-6´´), 2.48 (s, 3H,
CH3), 2.14 (s, 3H, CH3), 2.09 (s, 3H, CH3), 2.05 (s, 3H, CH3), 2.02 (s,
3H, CH3);

13C NMR (150MHz, CDCl3, ppm) δ: 171.01 (COCH3),
170.16 (COCH3), 169.41 (COCH3), 165.24 (CONH), 162.64
(thiadiazole-C), 155.20 (thiadiazole-C), 139.01 (Ar-C), 134.34 (Ar-
C), 130.86 (Ar-C), 128.75 (Ar-C), 125.40 (Ar-C), 84.07 (C-1´), 76.31
(C-5´), 73.58 (C-3´), 69.67 (C-2´), 67.79 (C-4´), 61.77 (C-6´), 21.35
(CH3), 20.72 (CH3), 20.64 (CH3), 20.58 (CH3); HRMS [M + H]+

calculated for C24H27N3O10S2: m/z 582.1230, found 582.1208.
(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-((5-(4-methylbenzamido)-

1,3,4-thiadiazol-2-yl)thio)tetra hydro-2H-pyran-3,4,5-triyltriacetate
(4c). White solid; yield 75.1%; m. p. 159–161°C; Rf � 0.63 (ethyl
acetate: petroleum ether, 1:2); IR (KBr, cm−1) ]: 3,433 (NH), 1747
(COO), 1,666 (CON); 1H NMR (400MHz, CDCl3, ppm) δ: 11.76 (s,
1 H, NH), 8.05 (d, J � 8.1 Hz, 2 H, Ar-H), 7.36 (d, J � 8.0 Hz, 2H, Ar-

H), 5.49 (d, J � 3.2 Hz, 1H, H-1´), 5.38 (t, J � 10.0 Hz, 1H, H-3´), 5.11
(dd, J � 9.9, 3.3 Hz, 1H, H-2´), 5.05 (d, J � 10.1 Hz, 1H, H-4´), 4.21 (d,
J � 6.1 Hz, 2H, H-5´, H-6´´), 4.05–4.01 (m, 1H, H-6´), 2.47 (s, 3H,
CH3), 2.19 (s, 3H, CH3), 2.12 (s, 3H, CH3), 2.09 (s, 3H, CH3), 2.00 (s,
3H, CH3);

13C NMR (150MHz, CDCl3, ppm) δ: 170.93 (COCH3),
170.10 (COCH3), 169.35 (COCH3), 164.84 (CONH), 162.72
(thiadiazole-C), 155.32 (thiadiazole-C), 144.59 (Ar-C), 129.77 (Ar-
C), 128.41 (Ar-C), 84.08 (C-1´), 76.36 (C-5´), 73.60 (C-3´), 69.71 (C-
2´), 67.79 (C-4´), 61.76 (C-6´), 21.77 (CH3), 20.72 (CH3), 20.68 (CH3),
20.60 (CH3); HRMS [M + H]+ calculated for C24H27N3O10S2: m/z
582.1230, found 582.1209.

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-((5-(2-methoxybenzamido)-
1,3,4-thiadiazol-2yL)thio)tetra hydro-2H-pyran-3,4,5-triyltriacetate
(4d). White solid; yield 68.7%; m. p. 168–170°C; Rf � 0.33 (ethyl
acetate: petroleum ether, 1:2); IR (KBr, cm−1) ]: 3,433 (NH), 1749
(COO), 1,687 (CON); 1HNMR (400MHz, CDCl3, ppm) δ: 12.13 (s,
1H, NH), 8.25 (d, J � 9.6 Hz, 1H, Ar-H), 7.61 (t, J � 8.8 Hz, 1H, Ar-
H), 7.19 (t, J� 7.6 Hz, 1H, Ar-H), 7.10 (d, J� 8.4 Hz, 1H, Ar-H), 5.30
(t, J � 9.2 Hz, 1H, H-3´), 5.18–5.08 (m, 3H, H-1´, H-2´, H-4´),
4.32–4.22 (m, 2H, H-5´, H-6´), 4.12 (s, 3H, OCH3), 3.86–3.82 (m,
1H, H-6´´), 2.16 (s, 3H, CH3), 2.10 (s, 3H, CH3), 2.04 (s, 3H, CH3),
2.01 (s, 3H, CH3);

13C NMR (150MHz, CDCl3, ppm) δ: 171.01
(COCH3), 170.13 (COCH3), 169.40 (COCH3), 169.38 (COCH3),
162.61 (CONH), 161.06 (thiadiazole-C), 158.08 (thiadiazole-C),
155.19 (Ar-C), 135.32 (Ar-C), 132.83 (Ar-C), 121.94 (Ar-C),
118.07 (Ar-C), 111.82 (Ar-C), 84.17 (C-1´), 76.32 (C-5´), 73.63
(C-3´), 69.67 (C-2´), 67.85 (C-4´), 61.83 (C-6´), 56.48 (OCH3),
21.77 (CH3), 20.72 (CH3), 20.68(CH3), 20.60 (CH3); HRMS [M +
H]+ calculated for C24H27N3O11S2: m/z 598.1142, found 598.1161.

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-((5-(3-methoxybenzamido)-
1,3,4-thiadiazol-2-yl)thio)tetra hydro-2H-pyran-3,4,5-triyltriacetate
(4e). White solid; yield 73.2%; m. p. 169–171°C; Rf � 0.41 (ethyl
acetate: petroleum ether, 1:2); IR (KBr, cm−1) ]: 3,450 (NH), 1749
(COO), 1,666 (CON); 1HNMR (400MHz, CDCl3, ppm) δ: 11.40 (s,
1H, NH), 7.67 (d, J � 7.7 Hz, 1H, Ar-H), 7.58 (s, 1H, Ar-H), 7.48 (t,
J � 8.0 Hz, 1H, Ar-H), 7.23 (d, J � 10.7 Hz, 1H, Ar-H), 5.29 (t, J � 9.2
Hz, 1H, H-3´), 5.21–5.04 (m, 3H, H-1´, H-2´, H-4´), 4.34–4.11 (m,
2H, H-5´, H-6´), 3.90 (s, 3H, OCH3), 3.75–3.71 (m, 1H, H-6´´), 2.13
(s, 3H, CH3), 2.10 (s, 3H, CH3), 2.05 (s, 3H, CH3), 2.02 (s, 3H, CH3);
13C NMR (150MHz, CDCl3, ppm) δ: 170.54 (COCH3), 170.23
(COCH3), 169.95 (COCH3), 169.50 (CONH), 165.04 (thiadiazole-
C), 160.01(thiadiazole-C), 132.19 (Ar-C), 130.08 (Ar-C), 120.61 (Ar-
C), 120.05 (Ar-C), 113.18 (Ar-C), 84.44 (C-1´), 75.17 (C-5´),
71.62 (C-3´), 67.16 (C-2´), 66.98 (C-4´), 61.56 (C-6´), 55.60
(OCH3), 20.74 (CH3), 20.66 (CH3), 20.65 (CH3), 20.56 (CH3);
HRMS [M + H]+ calculated for C24H27N3O11S2: m/z 598.1142,
found 598.1162.

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-((5-(4-methoxybenzamido)-
1,3,4-thiadiazol-2-yl)thio)tetra hydro-2H-pyran-3,4,5-triyltriacetate
(4f). White solid; yield 75.0%; m. p. 166–168°C; Rf � 0.52 (ethyl
acetate: petroleum ether, 1:2); IR (KBr, cm−1) ]: 3,462 (NH), 1747
(COO), 1,664 (CON); 1H NMR (400MHz, CDCl3, ppm) δ: 8.04 (d,
J � 8.9 Hz, 2H, Ar-H), 7.04 (d, J � 8.9 Hz, 2H, Ar-H), 5.28 (t, J �
9.2 Hz, 1H, H-3´), 5.20–5.04 (m, 3H, H-1´, H-2´, H-4´), 4.32–4.17
(m, 2H, H-5´, H-6´), 3.92 (s, 3H, OCH3), 3.83–3.77 (m, 1H, H-6´´),
2.15 (s, 3H, CH3), 2.10 (s, 3H, CH3), 2.04 (s, 3H, CH3), 2.01 (s, 3H,
CH3);

13C NMR (150MHz, CDCl3, ppm) δ: 170.58 (COCH3),
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170.44 (COCH3), 169.87(CONH), 169.79(thiadiazole-C), 163.63
(thiadiazole-C), 155.45 (Ar-C), 131.02 (Ar-C), 123.57 (Ar-C),
114.53 (Ar-C), 83.14 (C-1´), 74.69 (C-5´), 71.15 (C-3´), 68.07 (C-
2´), 67.31 (C-4´), 62.42 (C-6´), 56.07 (OCH3), 20.91 (CH3), 20.88
(CH3), 20.79 (CH3), 20.76 (CH3); HRMS [M + H]+ calculated for
C24H27N3O11S2: m/z 598.1142, found 598.1162.

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-((5-(2-fluorobenzamido)-
1,3,4-thiadiazol-2-yl)thio)tetrahy dro-2H-pyran-3,4,5-triyltriacetate
(4g). White solid; yield 55.4%; m. p. 173–175°C; Rf � 0.61 (ethyl
acetate: petroleum ether, 1:2); IR (KBr, cm−1) ]: 3,421 (NH), 1749
(COO), 1,676 (CON); 1HNMR (400MHz, CDCl3, ppm) δ: 10.29 (s,
1H, NH), 8.17 (t, J � 7.8 Hz, 1H, Ar-H), 7.66 (d, J � 7.4 Hz, 1H, Ar-
H), 7.38 (t, J � 8.0 Hz, 1H, Ar-H), 7.31–7.23 (m, 1H, Ar-H),
5.35–5.23 (m, 1H, H-3´), 5.19–5.08 (m, 3H, H-1´, H-2´, H-4´),
4.31 (dd, J � 12.5, 5.0 Hz, 1H, H-5´), 4.21 (dd, J � 12.5, 2.0 Hz,
1H, H-6´), 3.85–3.83 (m, 1H, H-6´´), 2.16 (s, 3H, CH3), 2.10 (s, 3H,
CH3), 2.04 (s, 3H, CH3), 2.01 (s, 3H, CH3);

13C NMR (150MHz,
CDCl3, ppm) δ: 170.93 (COCH3), 170.07 (COCH3), 169.34
(COCH3), 169.29 (COCH3), 164.45 (CONH), 163.34 (thiadiazole-
C), 155.18 (thiadiazole-C), 132.36 (Ar-C), 130.21 (Ar-C), 129.51
(Ar-C), 128.78 (Ar-C), 83.81 (C-1´), 76.48 (C-5´), 73.57 (C-3´), 69.68
(C-2´), 67.69 (C-4´), 61.69 (C-6´), 20.73 (CH3), 20.60 (CH3); HRMS
[M + H]+ calculated for C23H24FN3O10S2: m/z 586.0932, found
586.0964.

(2R,3R,4S,5R, 6R)-2-(acetoxymethyl)-6-((5-(3-fluorobenzamido)-
1,3,4-thiadiazol-2-yl)thio)tetra hydro-2H-pyran-3,4,5-triyltriacetate
(4h). White solid; yield 70.2%; m. p. 174–176°C; Rf � 0.63 (ethyl
acetate: petroleum ether, 1:2); IR (KBr, cm−1) ]: 3,435 (NH), 1749
(COO), 1,670 (CON); 1H NMR (400MHz, CDCl3, ppm) δ: 12.30 (s,
1H, NH), 8.29 (s, 1H, Ar-H), 17–8.02 (M, 1H, Ar-H), 7.81 (d, J �
8.7 Hz, 1H, Ar-H), 7.46 (t, J � 7.9 Hz, 1H, Ar-H), 5.32–5.28 (m, 1H,
H-3´), 5.20–5.05 (m, 3H, H-1´, H-2´, H-4´), 4.28 (dd, J � 12.5, 5.0 Hz,
1H, H-5´), 4.24–4.11 (m, 1H, H-6´), 3.78–3.73 (m, 1H, H-6´´), 2.14 (s,
3H, CH3), 2.09 (s, 3H, CH3), 2.05 (s, 3H, CH3), 2.02 (s, 3H, CH3);

13C
NMR (150MHz, CDCl3, ppm) δ: 170.93 (COCH3), 170.07
(COCH3), 169.34 (COCH3), 169.29 (COCH3), 164.45 (CONH),
163.34 (thiadiazole-C), 155.18 (thiadiazole-C), 132.36 (Ar-C),
130.21 (Ar-C), 129.51 (Ar-C), 128.78 (Ar-C), 83.81(C-1´), 76.48
(C-5´), 73.57 (C-3´), 69.68 (C-2´), 67.69 (C-4´), 61.69 (C-6´), 20.73
(CH3), 20.60 (CH3); HRMS [M + H]+ calculated for
C23H24FN3O10S2: m/z 586.0932, found 586.0963.

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-((5-(4-fluorobenzamido)-
1,3,4-thiadiazol-2-yl)thio)tetra hydro-2H-pyran-3,4,5-triyltriacetate
(4i). White solid; yield 65.8%; m. p. 170–172°C; Rf � 0.64 (ethyl
acetate: petroleum ether, 1:2); IR (KBr, cm−1) ]: 3,475 (NH), 1751
(COO), 1,676 (CON); 1HNMR (400MHz, CDCl3, ppm) δ: 12.54 (s,
1H, NH), 8.36 (d, J � 8.2 Hz, 2H, Ar-H), 7.85 (d, J � 8.3 Hz, 2H, Ar-
H), 5.28 (t, J � 9.3 Hz, 1H, H-3´), 5.18–5.09 (m, 2H H-1´, H-2´), 5.00
(d, J � 10.0 Hz, 1H, H-4´), 4.33 (dd, J � 12.5, 4.8 Hz, 1H, H-5´), 4.23
(dd, J� 12.5, 2.0 Hz, 1H, H-6´), 3.86–3.82 (m, 1H,H-6´´), 2.17 (s, 3H,
CH3), 2.09 (s, 3H, CH3), 2.04 (s, 3H, CH3), 2.01 (s, 3H, CH3);

13C
NMR (150MHz, CDCl3, ppm) δ: 170.31 (COCH3), 170.21
(COCH3), 170.00 (COCH3), 169.58 (COCH3), 166.22 (CONH),
159.08 (thiadiazole-C), 158.51 (thiadiazole-C), 134.35 (Ar-C),
134.29 (Ar-C), 115.52 (Ar-C), 115.38 (Ar-C), 83.14 (C-1´),

74.72(C-5´), 71.83(C-3´), 67.12(C-2´), 66.83(C-4´), 61.34 (C-6´),
20.73 (CH3), 20.67 (CH3), 20.65 (CH3), 20.59 (CH3); HRMS [M
+ H]+ calculated for C23H24FN3O10S2: m/z 586.0932, found
586.0962.

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-((5-(2-chlorobenzamido)-
1,3,4-thiadiazol-2-yl)thio)tetra hydro-2H-pyran-3,4,5-triyltriacetate
(4j). White solid; yield 70.1%; m. p. 178–180°C; Rf � 0.55 (ethyl
acetate: petroleum ether, 1:2); IR (KBr, cm−1) ]: 3,441 (NH), 1747
(COO), 1,668 (CON); 1H NMR (400MHz, CDCl3, ppm) δ: 10.48 (s,
1H, NH), 7.90 (d, J � 8.4 Hz, 1H, Ar-H), 7.57–7.41 (m, 3H, Ar-
H), 5.31–5.11 (m, 4H, H-3´, H-1´, H-2´, H-4´), 4.32–4.19 (m,
2H, H-5´, H-6´), 3.86–3.81 (m, 1H, H-6´´), 2.15 (s, 3H, CH3),
2.10 (s, 3H, CH3), 2.04 (s, 3H, CH3), 2.01 (s, 3H, CH3);

13C
NMR (150 MHz, CDCl3, ppm) δ: 170.93 (COCH3), 170.12
(COCH3), 169.37 (COCH3), 169.33 (COCH3), 163.64
(CONH), 160.98 (thiadiazole-C), 155.66 (thiadiazole-C),
133.34 (Ar-C), 131.70 (Ar-C), 131.24 (Ar-C), 131.19 (Ar-
C), 131.02 (Ar-C), 127.60 (Ar-C), 84.00 (C-1´), 76.39 (C-5´),
73.57 (C-3´), 69.65 (C-2´), 67.80 (C-4´), 61.75 (C-6´), 20.78
(CH3), 20.68 (CH3), 20.60 (CH3); HRMS [M + H]+ calculated
for C23H24ClN3O10S2: m/z 602.0641, found 602.0663.

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-((5-(3-chlorobenzamido)-
1,3,4-thiadiazol-2-yl)thio)tetra hydro-2H-pyran-3,4,5-triyltriacetate
(4k). White solid; yield 65.3%; m. p. 179–180°C; Rf � 0.66 (ethyl
acetate: petroleum ether, 1:2); IR (KBr, cm−1) ]: 3,442 (NH), 1749
(COO), 1,674 (CON); 1H NMR (400MHz, CDCl3, ppm) δ: 12.34 (s,
1H, NH), 8.16 (s, 1H, Ar-H), 8.08 (d, J � 7.8 Hz, 1H, Ar-H), 7.66 (d,
J � 8.0 Hz, 1H, Ar-H), 7.52 (t, J � 7.9 Hz, 1H, Ar-H), 5.29 (t, J �
9.2 Hz, 1H, H-3´), 5.22–5.06 (m, 3H, H-1´, H-2´, H-4´),
4.37–4.10 (m, 2H, H-5´, H-6´), 3.84–3.81 (m, 1H, H-6´´),
2.14 (s, 3H, CH3), 2.09 (s, 3H, CH3), 2.05 (s, 3H, CH3),
2.02 (s, 3H, CH3);

13C NMR (150 MHz, CDCl3, ppm) δ:
170.89 (COCH3), 170.12 (COCH3), 169.35 (COCH3),
169.33 (COCH3), 164.26 (CONH), 163.15 (thiadiazole-C),
155.75 (thiadiazole-C), 135.22 (Ar-C), 133.60 (Ar-C),
132.57 (Ar-C), 130.32 (Ar-C), 128.74 (Ar-C), 126.94 (Ar-
C), 83.98 (C-1´), 76.37 (C-5´), 73.52 (C-3´), 69.64 (C-2´),
67.79 (C-4´), 61.75 (C-6´), 20.74 (CH3), 20.66 (CH3), 20.60
(CH3); HRMS [M + H]+ calculated for C23H24ClN3O10S2: m/z
602.0641, found 602.0661.

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-((5-(4-chlorobenzamido)-
1,3,4-thiadiazol-2-yl)thio)tetra hydro-2H-pyran-3,4,5-triyltriacetate
(4l). White solid; yield 78.5%; m. p. 178–180°C; Rf � 0.48 (ethyl
acetate: petroleum ether, 1:2); IR (KBr, cm−1) ]: 3,450 (NH), 1751
(COO), 1,672 (CON); 1H NMR (400MHz, CDCl3, ppm) δ: 11.88 (s,
1H, NH), 8.13 (d, J � 8.6 Hz, 2H, Ar-H), 7.55 (d, J � 8.6 Hz, 2H, Ar-
H), 5.29 (t, J� 9.2 Hz, 1H,H-3´), 5.21–5.00 (m, 3H,H-1´, H-2´, H-4´),
4.36–4.25 (m, 1H, H-5´), 4.20 (dd, J � 12.5, 2.0 Hz, 1H, H-6´),
3.84–3.81 (m, 1H,H-6´´), 2.15 (s, 3H, CH3), 2.11 (s, 3H, CH3), 2.04 (s,
3H, CH3), 2.01 (s, 3H, CH3);

13C NMR (150MHz, CDCl3, ppm) δ:
170.59 (COCH3), 170.26 (COCH3), 169.92 (COCH3), 169.48
(COCH3), 164.45 (CONH), 163.56 (thiadiazole-C), 155.49
(thiadiazole-C), 139.98 (Ar-C), 130.24 (Ar-C), 129.32 (Ar-C),
129.06 (Ar-C), 84.26 (C-1´), 75.32 (C-5´), 71.62 (C-3´), 67.09 (C-
2´), 66.90 (C-4´), 61.66 (C-6´), 20.79 (CH3), 20.70 (CH3), 20.68 (CH3),
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20.58 (CH3); HRMS [M +H]+ calculated for C23H24ClN3O10S2: m/z
602.0641, found 602.0664.

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-((5-(2-bromobenzamido)-
1,3,4-thiadiazol-2-yl)thio)tetra hydro-2H-pyran-3,4,5-triyltriacetate
(4m). White solid; yield 69.4%; m. p. 190–192°C; Rf � 0.65 (ethyl
acetate: petroleum ether, 1:2); IR (KBr, cm−1) ]: 3,473 (NH), 1745
(COO), 1,689 (CON); 1H NMR (400MHz, CDCl3, ppm) δ: 11.35 (s,
1H, NH), 7.76 (d, J � 7.2 Hz, 1H, Ar-H), 7.72 (d, J � 7.4 Hz, 1H, Ar-
H), 7.51–7.44 (m, 2H, Ar-H), 5.29 (t, J� 9.2, 1H, H-3´), 5.16–5.08 (m,
3H, H-1´, H-2´, H-4´), 4.29 (dd, J � 12.5, 5.0 Hz, 1H, H-5´), 4.18 (dd,
J � 12.5, 2.0 Hz, 1H, H-6´), 3.82–3.78 (m, 1H, H-6´´), 2.14 (s, 3H,
CH3), 2.10 (s, 3H, CH3), 2.05 (s, 3H, CH3), 2.02 (s, 3H, CH3);

13C
NMR (150MHz, CDCl3, ppm) δ: 170.62 (COCH3), 170.25
(COCH3), 169.99 (COCH3), 169.49 (COCH3), 164.27 (CONH),
163.20 (thiadiazole-C), 155.98 (thiadiazole-C), 135.18 (Ar-C),
133.49 (Ar-C), 132.58 (Ar-C), 130.28 (Ar-C), 128.69 (Ar-C),
126.99 (Ar-C), 84.45 (C-1´), 75.22 (C-5´), 71.60 (C-3´), 67.17 (C-
2´), 66.96 (C-4´), 61.64 (C-6´), 20.73 (CH3), 20.67 (CH3), 20.57 (CH3);
HRMS [M + H]+ calculated for C23H24BrN3O10S2: m/z 646.0171,
found 646.0161.

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-((5-(3-bromobenzamido)-
1,3,4-thiadiazol-2-yl)thio)tetrahy dro-2H-pyran-3,4,5-triyltriacetate
(4n). White solid; yield 60.2%; m. p. 191–193°C; Rf � 0.70 (ethyl
acetate: petroleum ether, 1:2); IR (KBr, cm−1) ]: 3,475 (NH), 1753
(COO), 1,676 (CON); 1H NMR (400MHz, CDCl3, ppm) δ: 12.30 (s,
1H, NH), 8.29 (s, 1H, Ar-H), 8.11 (d, J � 9.2 Hz, Ar-H), 7.81 (d, J �
8.7 Hz, 1H, Ar-H), 7.46 (t, J � 7.9 Hz, 1H, Ar-H), 5.29 (t, J � 9.3 Hz,
1H, H-3´), 5.17–5.12 (m, 3H, H-1´, H-2´, H-4´), 4.28 (dd, J � 12.5,
5.0 Hz, 1H, H-5´), 4.19–4.16 (m, 1H, H-6´), 3.78–3.73 (m, 1H, H-6´´),
2.14 (s, 3H, CH3), 2.09 (s, 3H, CH3), 2.05 (s, 3H, CH3), 2.02 (s, 3H,
CH3);

13CNMR (150MHz, CDCl3, ppm) δ: 170.87 (COCH3), 170.11
(COCH3), 169.34 (COCH3), 169.32 (COCH3), 164.09 (CONH),
163.06 (thiadiazole-C), 155.82 (thiadiazole-C), 136.53 (Ar-C),
132.78 (Ar-C), 131.53 (Ar-C), 130.56 (Ar-C), 127.36 (Ar-C),
123.19 (Ar-C), 84.00 (C-1´), 76.39 (C-5´), 73.52 (C-3´), 69.67 (C-
2´), 67.80 (C-4´), 61.76 (C-6´), 20.74 (CH3), 20.68 (CH3),
20.60(CH3); HRMS [M + H]+ calculated for C23H24BrN3O10S2:
m/z 646.0171, found 646.0162.

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-((5-(4-bromobenzamido)-
1,3,4-thiadiazol-2-yl)thio)tetrahy dro-2H-pyran-3,4,5-triyltriacetate
(4o). White solid; yield 70.3%; m. p. 188–190°C; Rf � 0.75
(ethyl acetate: petroleum ether, 1:2); IR (KBr, cm−1) ]: 3,435
(NH), 1751 (COO), 1,674 (CON); 1H NMR (400 MHz, CDCl3,
ppm) δ: 12.45 (s, 1H, NH), 8.11 (d, J � 8.5 Hz, 2H, Ar-H), 7.72
(d, J � 8.5 Hz, 2H, Ar-H), 5.30 (t, J � 9.2 Hz, 1H, H-3´),
5.18–5.02 (m, 3H, H-1´, H-2´, H-4´), 4.32 (dd, J � 12.6,
4.8 Hz, 1H, H-5´), 4.20 (d, J � 12.3 Hz, 1H, H-6´), 3.82–3.79
(m, 1H, H-6´´), 2.16 (s, 3H, CH3), 2.13 (s, 3H, CH3), 2.04 (s, 3H,
CH3), 2.01 (s, 3H, CH3);

13C NMR (150 MHz, CDCl3, ppm) δ:
170.93 (COCH3), 170.07 (COCH3), 169.34 (COCH3), 169.29
(COCH3), 164.45 (CONH), 163.34 (thiadiazole-C), 155.18
(thiadiazole-C), 132.36 (Ar-C), 130.21 (Ar-C), 129.51 (Ar-C),
128.78 (Ar-C), 83.81 (C-1´), 76.48(C-5´), 73.57 (C-3´), 69.68 (C-
2´), 67.69 (C-4´), 61.69 (C-6´), 20.73 (CH3), 20.60 (CH3); HRMS
[M +H]+ calculated for C23H24BrN3O10S2: m/z 646.0171, found
646.0161.

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-((5-(2-nitrobenzamido)-
1,3,4-thiadiazol-2-yl)thio)tetrahy dro-2H-pyran-3,4,5-triyltriacetate
(4p). Yellow solid; yield 53.4%; m. p. 188–190°C; Rf � 0.42 (ethyl
acetate: petroleum ether, 1:2); IR (KBr, cm−1) ]: 3,458 (NH),
1751 (COO), 1,689 (CON); 1H NMR (400 MHz, CDCl3, ppm)
δ: 13.02 (s, 1H, NH), 8.22 (d, J � 7.9 Hz, 1H, Ar-H), 7.85–7.75
(m, 3H, Ar-H), 5.32 (t, J � 9.0 Hz, 1H, H-3´), 5.15–5.03 (m, 3H,
H-1´, H-2´, H-4´), 4.28 (dd, J � 12.5, 5.1 Hz, 1H, H-5´), 4.18 (dd,
J � 12.5, 2.0 Hz, 1H, H-6´), 3.86–3.81 (m, 1H, H-6´´), 2.29 (s,
3H, CH3), 2.12 (s, 3H, CH3), 2.05 (s, 3H, CH3), 2.04 (s, 3H,
CH3);

13C NMR (150 MHz, CDCl, ppm) δ: 170.97 (COCH3),
170.14 (COCH3), 169.38 (COCH3), 169.27 (COCH3), 164.63
(CONH), 162.12 (thiadiazole-C), 134.30 (thiadiazole-C),
131.80 (Ar-C), 129.81 (Ar-C), 129.50 (Ar-C), 124.88 (Ar-C),
84.14 (C-1´), 76.38 (C-5´), 73.47 (C-3´), 69.76 (C-2´), 67.73 (C-
4´), 61.71 (C-6´), 20.72 (CH3), 20.67 (CH3), 20.60 (CH3); HRMS
[M + H]+ calculated for C23H24N4O12S2: m/z 613.0915, found
613.0908.

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-((5-(4-nitrobenzamido)-
1,3,4-thiadiazol-2-yl)thio)tetrahy dro-2H-pyran-3,4,5-triyltriacetate
(4q). Yellow solid; yield 55.8%; m. p. 189–191°C; Rf � 0.67 (ethyl
acetate: petroleum ether, 1:2); IR (KBr, cm−1) ]: 3,437 (NH), 1751
(COO), 1,678 (CON); 1HNMR (400MHz, CDCl3, ppm) δ: 13.02 (s,
1H, NH), 8.48–8.42 (m, 4H, Ar-H), 5.29 (t, J � 9.3 Hz, 1H, H-
3´), 5.19–5.12 (m, 2H, H-1´, H-2´), 4.97 (d, J � 10.0 Hz, 1H, H-
4´), 4.35 (dd, J � 12.6, 4.6 Hz, 1H, H-5´), 4.26–4.22 (m, 1H, H-
6´), 3.88–3.84 (m, 1H, H-6´´), 2.19 (s, 3H, CH3), 2.15 (s, 3H,
CH3), 2.05 (s, 3H, CH3), 2.01 (s, 3H, CH3);

13C NMR
(150 MHz, CDCl3, ppm) δ: 170.93 (COCH3), 170.03
(COCH3), 169.34 (COCH3), 169.31 (COCH3), 163.85
(CONH), 163.78 (thiadiazole-C), 155.13 (thiadiazole-C),
150.75 (Ar-C), 135.98 (Ar-C), 130.16 (Ar-C), 124.19 (Ar-
C), 83.33 (C-1´), 76.66 (C-5´), 73.49 (C-3´),69.98 (C-2´), 67.59
(C-4´), 61.62 (C-6´), 20.72 (CH3), 20.69 (CH3), 20.60 (CH3),
20.58 (CH3), 20.57 (CH3); HRMS [M + H]+ calculated for
C23H24N4O12S2: m/z 613.0915, found 613.0906.

Antifungal Activity In Vitro
The in vitro antifungal activities of the target compounds against
G. zeae, Botryosphaeria dothidea (B. dothidea), Phomopsis sp., P.
infestans, and Thanatephorus cucumeris (T. cucumeris) are
evaluated by using the poison plate technique. All of the target
compounds 4a–4q were dissolved in 1 ml DMSO before mixing
with 90 ml potato dextrose agar (PDA) to prepare concentration
of 50 μg/ml. Then, mycelia dishes of approximately 4 mm
diameter were cut from the culture medium. A mycelium is
obtained using a germ-free inoculation needle and inoculated in
the middle of the PDA plate aseptically. The inoculated plates are
incubated at 27 ± 1°C for 5 days. DMSO in sterile distilled water
served as the negative control and Dimethomorph served as the
positive control. Each treatment condition consisted of three
replicates (Maddila et al., 2016). The relative inhibition rates I
(%) were calculated as follows equation, whereCwas the diameter
of fungal growth on untreated PDA, T was the diameter of fungi
on treated PDA.
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I (%) � [(C − T)/(C − 0.4)] × 100%

Antibacterial Activity In Vitro
The in vitro antibacterial activities of the target compounds
4a–4q against Xoo and Xcc were evaluated by using the
turbidimeter test, the commercial agricultural antibacterial
Thiodiazole-copper used as control. The test compounds
were dissolved in 150 μL of dimethylformamide (DMF) and
diluted with 0.1% (v/v) Tween-20 to prepare two
concentrations of 200 and 100 μg/ml. One milliliter of the
liquid sample was added to the 40 ml non-toxic nutrient
broth medium (NB: 1.5 g of beef extract, 2.5 g of peptone,
0.5 g of yeast powder, 5.0 g of glucose, and 500 ml of
distilled water, pH 7.0–7.2). Then, 40 μL of NB medium
containing Xoo or Xcc was added to 5 ml of solvent NB
containing the test compounds or Thiodiazole–copper. The
inoculated test tubes were incubated at 30 ± 1°C under
continuous shaking at 180 rpm for 48 h. The culture growth
was monitored spectrophotometrically by measuring the
optical density at 600 nm (OD600) and expressed as corrected
turbidity (Dalgaard et al., 1994). The relative inhibition rates I
(%) were calculated as follows equation, where Ctur was the
corrected turbidity value of bacterial growth on untreated NB,
Ttur was the corrected turbidity value of bacterial growth on
treated NB.

I (%) � (Ctur − Ttur)/Ctur × 100%

RESULTS AND DISCUSSION

In this study, the target compounds 4a−4q were synthesized
in five steps, including acetylation, bromination,
thioetherification, chlorination, and condensation. Among
of them, it was found that 2,3,4,6-tetra-O-acetyl-α-D-gluco-
pyranosyl bromide 1) reacted with 2-amino-5-mercapto-1,3,4-
thiadiazole to obtain (2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-
((5-amino-1,3,4-thiadiazol-2-yl)thio)-tetrahydro-2H-pyran-
3,4,5-triyltriacetate 2) of β-configuration with high stereo
selectivity in acetone solution of NaOH at room temperature,
which indicated that the reaction process was SN2 and
configuration transformation occurred in the reaction
process.

All the synthesized compounds were characterized by 1H
NMR, 13C NMR, and HRMS. In the 1H NMR spectra of the
obtained amide, pyran and acetyl proton signals should be
distinguished. For example, for compound 4i, the proton
signals of NH group was observed as a singlet at 12.54 ppm,
signals of benzene ring protons were registered at 8.36 and
7.85 ppm, respectively, and the proton signal of pyran was
registered in the range of 5.18–3.82 ppm. Moreover, four
singlets at 2.17, 2.09, 2.04, and 2.01 ppm indicated to CH3

protons of acetyl.
The in vitro antifungal activities of the target compounds were

evaluated against five different fungus including P. infestans, G.

zeae, B. dothidea, Phomopsis sp., and T. cucumeris. Bioassay
results, as shown in Table 1, revealed that the target
compounds exhibited moderate to good antifungal activities
against P. infestans, G. zeae, B. dothidea, Phomopsis sp., and T.
cucumeris, with the inhibitory rates range of 19.8–83.5%,
35.6–73.1%, 22.1–62.0%, 21.0–64.0%, and 17.1–65.1%,
respectively. Meanwhile, it was found that the inhibitory rates of
the target compounds againstG. zeae in the range of 35.6–73.1% at
the 50 μg/ml, which was higher than the previously reported

TABLE 1 | The in vitro antifungal activities of the target compounds 4a–4q at
50 μg/ml.

Compounds Inhibition rate (%)

G.
zeae

B.
dothidea

P.
infestans

Phomopsis
sp

T.
cucumeris

4a 58.6 ±
2.2

58.1 ±
1.6

44.4 ± 1.5 21.0 ± 2.4 17.1 ± 1.2

4b 62.2 ±
1.4

54.8 ±
0.7

28.5 ± 2.0 38.7 ± 1.3 29.0 ± 1.2

4c 65.7 ±
1.3

60.1 ±
1.1

19.8 ± 0.6 43.0 ± 2.9 56.9 ± 2.4

4days 58.9 ±
1.1

52.0 ±
1.2

40.9 ± 1.4 50.0 ± 1.3 44.5 ± 1.5

4e 53.6 ±
0.7

40.7 ±
1.1

29.4 ± 0.7 26.7 ± 0.4 32.0 ± 1.4

4f 51.7 ±
1.1

43.3 ±
0.1

35.0 ± 1.9 30.8 ± 2.3 42.2 ± 2.0

4g 58.4 ±
1.2

60.7 ±
1.2

77.3 ± 2.1 56.7 ± 2.1 62.0 ± 1.0

4h 35.6 ±
0.6

33.5 ±
0.8

73.0 ± 1.0 30.8 ± 1.0 22.2 ± 2.2

4i 48.9 ±
1.7

58.1 ±
1.5

83.5 ± 0.6 55.2 ± 2.1 64.3 ± 1.5

4j 58.3 ±
1.6

51.1 ±
0.9

30.1 ± 2.6 58.4 ± 1.7 44.7 ± 1.6

4k 55.2 ±
2.2

55.2 ±
1.2

61.9 ± 2.0 43.7 ± 2.0 37.0 ± 1.8

4L 58.0 ±
2.3

49.2 ±
1.3

70.0 ± 1.2 31.5 ± 0.9 59.8 ± 0.9

4m 73.1 ±
1.0

41.0 ±
1.6

63.6 ± 1.3 48.4 ± 1.1 44.3 ± 1.6

4n 70.3 ±
1.1

45.6 ±
1.1

73.1 ± 1.8 33.7 ± 0.8 58.5 ± 1.8

4o 45.0 ±
2.2

22.1 ±
0.9

75.9 ± 1.2 40.0 ± 2.3 54.3 ± 1.7

4p 53.4 ±
1.9

61.3 ±
1.1

79.0 ± 1.1 64.0 ± 1.3 62.8 ± 0.7

4q 56.8 ±
1.5

62.0 ±
2.0

81.1 ± 0.3 63.1 ± 1.2 65.1 ± 1.3

Dimethomorph 74.3 ±
2.0

72.3 ±
1.6

78.2 ± 1.1 69.3 ± 1.6 68.3 ± 1.6

TABLE 2 | The EC50 values of compounds 4i, 4p, and 4q against P. infestans.

Compds Toxic regression equation r EC50 (μg/ml)

4i y � 0.85x + 4.53 0.98 3.43 ± 1.5
4p y � 0.98x + 4.22 0.98 6.15 ± 2.1
4q y � 1.13x + 4.20 0.97 5.02 ± 1.8
Dimethomorph y � 0.94x + 4.30 0.99 5.52 ± 1.2
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inhibitory activity of N-(2-chloro-4-phenyl-5-(trifluoromethyl)
cyclopenta-1,4-dien-1-yl)-5-((4-nitrobenzyl)thio)-1,3,4-thiadiazol-
2-amine against G. zeae (23.9%) at the 50 μg/ml (Xie et al., 2016).
Especially, compound 4i and 4q showed higher antifungal activity
against P. infestans, with the inhibition rates of 83.5%, 81.1%,
respectively, than that of Dimethomorph (78.2%). Based on
the preliminary antifungal bioassays, the EC50 values of
partial compounds against P. infestans were also tested and
presented in Table 2. Table 2 showed that compounds 4i
exhibited good bioactivities against P. infestans, with EC50

values of 3.43 μg/ml, which were higher than that of
Dimethomorph (5.52 μg/ml). While, the target compounds
showed lower antibacterial activities (Table 3) against Xoo
and Xcc at 200 and 100 μg/ml than those of Thiodiazole-
copper as well as the amide derivatives containing 1,3,4-
thiadiazole of the previously reported by Chen (Chen J. et
al., 2019).

From the structure-activity relationships (SAR) analysis, it was
found that there was clear SAR against P. infestans. Inspection of
the chemical structures of the target compounds suggests that the
group R in the target compounds significantly influence the
antifungal activity against P. infestans. With a fluorinated or
nitrificated substituent (4-F and 4-NO2) on the phenyl ring, the
compounds exhibited enhanced bioactivity against P. infestans
(4i and 4q). Further, the position of substituent groups in the
phenyl ring also plays an important role in the antifungal activity
against P. infestans, with a four substituent (4-F or 4-NO2) in the

phenyl ring exhibited higher antifungal activity than other
positions.

CONCLUSION

A series of novel 1,3,4-thiadiazole derivatives of glucosides were
prepared via acetylation, bromination, thioetherification,
chlorination, and condensation. Bioassay results showed that
some of the target compounds revealed better inhibitory
activity against P. infestans. In addition, SAR analysis found
that the type and position of substituent groups in the phenyl
ring of the target compounds plays an important role in
increasing the antifungal activity against P. infestans.
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