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In this study published in EClinicalMedicine, Du et al. [1] use a
novel approach to estimate unseen COVID-19 cases early in the pan-
demic, when neither awareness of the disease nor suitable testing
was available. By retrospectively testing samples from patients seek-
ing treatment for seasonal flu, then calculating the ‘COVID-19-to-
influenza positives ratio’ (CIPR) of SARS-CoV-2 positives to flu posi-
tives, and applying the CIPR to observed flu cases, they extrapolate
the likely unseen COVID-19 cases.

This method requires many strong assumptions, and generates
imprecise estimates given few observed infective events, and is subject
to several different selection biases. Such estimates are needed, since
for a new virus, accurate assessment of onset date and early transmis-
sion dynamics are difficult. These early data are needed to understand
pandemic development, and for predicting onset and containing new
infective waves in space and time, with localised outbreaks probable.
Therefore, we must understand the influence of both strong assump-
tions and sparse data on model outputs and interpretation.

The authors consider two locations — the original epicentre,
Wuhan, China and more recently Seattle, USA. The influence of these
strong assumptions and sparse data is most readily seen in Wuhan
[2], where 26 adults presenting with influenza-like-illness (ILI) had 4
SARS-CoV-2 and 7 flu positives. This estimated 1386 (95% credible
interval (Crl) 420-3793) symptomatic COVID-19 cases (adults >30)
in 2-weeks from 30/12/2019. For Seattle [3], 25 SARS-CoV-2 and 442
flu positives from 2353 (299 children, 2054 adults) reporting acute
respiratory illnesses (ARI) gives corresponding estimates 2268
(95%Crl 498—-6069; children) and 4367 (95%Crl 2776—6526; adults)
in 2-weeks from 24/02/2020.

These estimates extrapolate from small numbers (in Wuhan, single
figures), generating very wide 95% credible intervals. The Bayesian
approach used is appropriate for rare events, allowing incorporation of
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external information, assuming the ‘priors’ can be elicited convincingly
[4]. The strong assumption is that undetected SARS-CoV-2 to flu posi-
tives ratio is constant over the estimation period. However, flu is sea-
sonal [5], whereas COVID-19 seasonality is unknown. Since estimated
COVID-19 cases are a scalar multiple of observed flu infections, this
assumption is critical. The 2-week estimation period selected should
reduce bias from discordant seasonality in the two infections. How-
ever, even short estimation periods show high variability. In Wuhan
[3] the week following the 2-weeks used showed five SARS-CoV-2 and
zero flu infections. So, including this 3rd week, the non-Bayes ratio
increases from 4/7 (0.57) to 9/7 (1.29), over double. Along with possi-
ble flu reduction from pandemic containment measures [6], this all
underlines the fragility of these reported estimates.

In addition, in Wuhan [3], from 54 samples aged < 30, there were
zero SARS-CoV-2 and 30 flu positives. The authors chose not to use
these data, only estimating symptomatic COVID-19 cases in over 30’s
in Wuhan; in Seattle they could estimate for children and adults.
Additional to temporal concerns, assumptions are necessary around
spatial applicability of the CIPR. Across 13 Wuhan districts, with just
4 SARS-CoV-2 positives, at least 9 districts must have had 0 positives
detected. We would be sceptical applying estimates from these data
to the whole of China; so, what is reasonable spatial extrapolation?
The authors have assumed the ratio applies to all 13 Wuhan districts.
The observed district zeros could be within-sampling variability
given the estimated ratio, or could indicate no COVID-19 infection in
those districts. Both are consistent with these sparse data [7].

A further interpretational challenge is diagnostic test misclassifi-
cation for both SARS-CoV-2 and flu. Both numerator and denomina-
tor of the ratio could have false positives & negatives. Early SARS-
CoV-2 RT-PCR tests [8] had modest sensitivity (~75%) with better
specificity, with throat swabs having lower sensitivity than nasal
samples. Likewise, rapid influenza diagnostic tests (RIDTs) [9] have
low to moderate sensitivity (50—70%) with better specificity
(90-95%). So false negatives will be more common than false posi-
tives in both, but it is the ratio of these misclassifications that matters.
Interestingly, in Seattle it was ARI rather than ILI (Wuhan) that was
the treatment seeking behaviour, raising the additional complexity of
needing to test for multiple respiratory conditions.

The estimation of the date of first COVID-19 infection used a
model incorporating the epidemic doubling rate, taken from a sepa-
rate study [10], and author’s estimated COVID-19 infections across
the districts, with uncertainty expressed as 95% credible intervals
generated by Monte Carlo resampling. We again see the influence of
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small numbers, with the 95% credible interval for this date of first
onset stretching to 7 weeks for Wuhan (from late October to mid-
December 2019), while for Seattle, with more data, around 3 weeks
(from late December 2019 to mid-January 2020).

Nonetheless, despite all these challenges, the authors have devel-
oped a novel and useful approach to estimate important unknowns,
including the onset date of local outbreaks. Such estimates inform
transmission models, debated by governments and their critics, when
assessing the rapidity and adequacy of public health response to out-
break control. It is important to understand model limitations, appreci-
ating the 95% credible intervals only reflect the estimated precision
under these strong assumptions. Further validation is important in
subsequent COVID-19 waves, with larger samples, better tests, and
more accurate flu statistics available, and model extension to include
co-infections in winter surges. In the meantime, these innovative
methods are welcome, but should be used cautiously, understanding
the fragility of estimates to sparse data and strong assumptions.
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