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Abstract

Background: Semantic interoperability is essential for improving data quality and sharing. The ISO/IEC 11179
Metadata Registry (MDR) standard has been highlighted as a solution for standardizing and registering clinical data
elements (DEs). However, the standard model has both structural and semantic limitations, and the number of DEs
continues to increase due to poor term reusability. Semantic types and constraints are lacking for comprehensively
describing and evaluating DEs on real-world clinical documents.

Methods: We addressed these limitations by defining three new types of semantic relationship (dependency,
composite, and variable) in our previous studies. The present study created new and further extended existing
semantic types (hybrid atomic and repeated and dictionary composite common data elements [CDEs]) with four
constraints: ordered, operated, required, and dependent. For evaluation, we extracted all atomic and composite CDEs
from five major clinical documents from five teaching hospitals in Korea, 14 Fast Healthcare Interoperability
Resources (FHIR) resources from FHIR bulk sample data, and MIMIC-III (Medical Information Mart for Intensive Care)
demo dataset. Metadata reusability and semantic interoperability in real clinical settings were comprehensively
evaluated by applying the CDEs with our extended semantic types and constraints.

Results: All of the CDEs (n = 1142) extracted from the 25 clinical documents were successfully integrated with a
very high CDE reuse ratio (46.9%) into 586 CDEs (259 atomic and 20 unique composite CDEs), and all of CDEs (n =
238) extracted from the 14 FHIR resources of FHIR bulk sample data were successfully integrated with high CDE
reuse ration (59.7%) into 96 CDEs (21 atomic and 28 unique composite CDEs), which improved the semantic
integrity and interoperability without any semantic loss. Moreover, the most complex data structures from two CDE
projects were successfully encoded with rich semantics and semantic integrity.

Conclusion: MDR-based extended semantic types and constraints can facilitate comprehensive representation of
clinical documents with rich semantics, and improved semantic interoperability without semantic loss.

Keywords: Common data elements, Semantic interoperability, Semantic relationship, Metadata registry

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: juhan@snu.ac.kr
1Seoul National University Biomedical Informatics (SNUBI), Division of
Biomedical Informatics, Seoul National University College of Medicine, Seoul
03080, Republic of Korea
Full list of author information is available at the end of the article

Kim et al. BMC Medical Informatics and Decision Making          (2020) 20:147 
https://doi.org/10.1186/s12911-020-01168-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-020-01168-0&domain=pdf
http://orcid.org/0000-0003-1522-9038
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:juhan@snu.ac.kr


Background
Data harmonization and interoperability are essential for
advancing biomedical research. These features can be
achieved by representing clinical data in a standard for-
mat, and they are crucial for facilitating understanding
and sharing data across diverse translational studies [1, 2].
A data element (DE) is defined as the fundamental unit of
data which contains information with a clear conceptual-
ized meaning, together with its representation, and is con-
sidered as the correct approach for standardizing data and
improving data quality (DQ) and efficiency.
The ISO/IEC 11179 Metadata Registry (MDR) standard

describes a method of standardizing and registering DEs
to make them understandable and shareable between
studies and institutions. MDR-based DE provide data uni-
formly and interoperability between clinical studies and
institutions since they are specified based on a standard
metadata model that consists of a sets of attributes, which
are delineating the definition, identification, representa-
tion, classification, and permissible values [3–5].
The terms DE and common data element (CDE) have

been used interchangeably in many ways. However, it
can be clearly explained by defining these two terms as
the following. The term DE is an atomic unit of data
that has precise meaning and precise semantics in meta-
data. CDE is a data element that is common to multiple
data sets across different studies [6]. In this paper, we
used the term DE to specifically describe the concept of
metadata, but for all other cases we used the term CDE.
CDEs are increasingly being used by clinical researchers

in trials for harmonizing data collected across diverse
studies. The use of standardized CDEs provides various
benefits to investigators including (1) rapid and efficient
study start-up by enabling access to defined CDEs and
case report forms (CRFs) and (2) enriched data sharing
and aggregation using standard definitions and forms [7].
The use of CDEs has been extended to clinical practice

by using standardized CDEs for representing the clinical
information in electronic health records (EHRs). For ex-
ample, Newton et al. included phenotype data in EHRs
using CDEs to facilitate EHR-driven genomic studies [8].
The National Institutes of Health have developed ISO/
IEC 11179 MDR-based CDEs providing a controlled ter-
minology for data descriptors. They also encouraged
clinical researchers to use CDEs to facilitate data
harmonization [5]. CDEs have been adopted in numer-
ous clinical domains including cancer, stroke, epilepsy,
rare disease, emergency medicine, and radiology for pa-
tient care and research. Utilizing CDEs will facilitate sec-
ondary data use (i.e., ‘collect once and use many times’),
which is an approach to data standardization for span-
ning silos in primary and secondary data use [9].
However, ISO/IEC 11179 MDR focuses only on the rep-

resentation of individual and independent CDEs without

providing the ability to describe constraints for a CDE nor
relationships among different CDEs, which are essential
for fully describe, semantically compose, and correctly in-
terpret CDEs of clinical documents [10–13]. Although
ISO/IEC 11179 MDR standard describes Derived Data
Element (DDE) [14] detailing the relationship between a
CDE and another CDE from which it is derived with the
rule controlling its derivation, this approach is inherently
limited by requiring one or more input CDEs and the
DDE becoming output DE. For example, while CDEs for
describing systolic blood pressure (SBP) and diastolic
blood pressure (DBP) can be easily defined as two separate
ones annotated with standardized metadata conforming to
the ISO/IEC 11179 MDR standard, these two CDEs be-
come mere input CDEs and a separate output CDE should
be created as the DDE. Also, a constraint between the two
CDEs such as ‘the SBP must be greater than the DBP’ is
usually described outside of the CDEs for there is no des-
ignated reason for the CDEs to carry constraint
information.
To address these challenges in our previous study [10],

we proposed three types of semantic relationships (i.e,
variable, dependency, and composite relationships) repre-
senting semantic constraints or rules among multiple
CDEs. These relationships can be described as follows:
First, CDEs are in a variable relationship when they can
be systematically derived from a base CDE by applying a
standardized concept from a controlled vocabulary as
the variable. For example, the meanings of two CDEs for
‘normal value range of laboratory test, Albumin’ and
‘normal value range of laboratory test, Homocysteine’
are closely related, differing only in the laboratory test
names of ‘Albumin’ and ‘Homocysteine.’ It means many
lab tests related CDEs can be assigned to one variable
CDE. The variable relationship can systematically repre-
sent all these variations as a single CDE, ‘DE: Normal
value range of lab test x,’ by specifying a controlled vo-
cabulary such as LOINC. The variable relationship can
therefore systematically reduce the number of required
CDEs. Second, a CDE is in a dependency relationship
may influence the possible determinations of the value
space of the CDE(s) base on the value of another
CDE(s). For example, the value of a certain CDE may be
defined as the sum of the values of a set of CDEs in a
questionnaire. Third, the composite relationship can be
conveniently applied to integrate several interrelated
CDEs into a composite CDE. For example, the medical
history of a patient is likely to be more informative when
body parts are correctly assigned, which can be achieved
by grouping ‘DE: Body System for Medical History’ and
‘DE: Medical History Specify’ into the composite CDE of
‘DE: Medical History.’ However, we realized that our
previous work, supports relatively simple semantic rela-
tionships among CDEs and is not robust enough to
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cover many other specific challenges associated with
CDEs used in real-world clinical forms.
The present study further proposes extended semantic

types (hybrid atomic CED (aCDE) and repeated and diction-
ary composite CDEs (cCDEs)) and four semantic constraints
(ordered, operated, required, and dependent) for correctly
representing even more complex but essential semantic rela-
tionships between CDEs that are found in real-world clinical
documents (Fig. 1). We found useful patterns characterizing
challenging cases, that required further semantic definitions
and descriptions as the following four cases;

Data entries with multiple data types
A data type determines the type of data that can be en-
tered and stored in a CDE and each CDE contains only
one data type [15]. However, we found that free-text-
based data entry in many clinical documents stored in
EHRs often allows multiple data types to be entered and
stored in the same attribute. For example, a laboratory
result for syphilis normally has a numeric data type that
allows numeric values (e.g., ‘0.8’) as input. However, it
often also requires the entry of string or logical data
such as ‘negative’ or ‘false’ as input. Sometimes creating
two strictly separate CDEs for the same laboratory result
for syphilis (i.e., numeric and string) may cause more
confusion than not. We found that sometimes it is better
to allow either numeric or string data types for the same
value domain. We created a value property (hybrid) to
make it possible to ensure that conventional multiple
data types are available in the same CDE by explicitly
defining hybrid data type for a CDE.

Dictionary data entries
Data may refer to a controlled biomedical vocabulary for
several reasons such as adherence to standards, semantic

enrichment for better understanding, and input valid-
ation for improving semantic integrity. A CDE referring
to a controlled biomedical vocabulary was defined as be-
ing in a variable relationship in our previous study [10].
We extended the concept of the variable relationship to
dictionary data entries in order to tightly link a set of
CDEs via a ‘foreign key’ between a real-world dictionary
database and a controlled biomedical vocabulary. This
also ensures that a set of CDEs and tuples with rich at-
tributes provided by the dictionary are linked with their
proper data type definitions and value domains.

Tabular data entries with repeated data entry
Clinical data are frequently described in tabular formats.
A tabular data entry is an enclosed structure in which a
composed set of CDEs is repetitively listed for repeated
observations. For example, body weight and height may
be measured for each patient when she/he visits for
treatment. The set of data items such as body weight,
height, and date of measurement should both be col-
lected together and repeatedly. We created a value prop-
erty (repeat) to ensure that the values that belong to the
same set of CDEs are identified as such.

Data constraints
Highly interrelated CDEs in a clinical document need to
be defined by semantic constraints for better interchange
of semantics and context. By specifying constraints on
an aCDE, users can further narrow down the definition
of what a valid value really means. For example, a de-
rived value such as BMI (body mass index) can be auto-
matically calculated from the values of the two aCDEs
for body weight and height. Because the values of body-
weight and height aCDEs should not be null, a required
constraint should be applied to each of the two aCDEs

Fig. 1 Overview of the formal relationship between aCDE and cCDEs with extended semantic types and CDE-type specific constraints
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to make the BMI aCDE to be valid. The calculation for-
mula to obtain BMI is described by an operated con-
straint of BMI aCDE.
For another example, for an aCDE related to the ques-

tion of whether any drug side effect has happened with
permissible answers of ‘Yes’ and ‘No’, the following aCDE,
“Specify the drug side effect”, holds only when the value
was ‘Yes’. These two aCDEs are in a dependent relation-
ship with each other and the sequence of the two has an
order. The dependent and sequence relationships can be
defined by dependent and ordered constraints.

Methods
Data sources: 2 CDE projects
The National Institute of Neurological Disorders and
Stroke (NINDS) CDE Project [16] is an ongoing effort to
develop data standards for use in clinical research in neuro-
science. It was initiated in 2006 to standardize data collec-
tion across neurological-disorder-related clinical studies
funded by the NINDS. As of October 2016, the NINDS
CDE project included 20 studies with 11,296 distinct CDEs.
The NINDS CDEs are not fully compliant with ISO/IEC
11179. Instead they are provided with only simple CDE de-
scriptions and definitions. However, a part of NIND CDEs
that are registered in National Cancer Institute (NCI) can-
cer Data Standards Registry (caDSR) and reviewed by the
NCI cancer Biomedical Informatics Grid project manager,
conforms fully with the ISO/IEC 11179 MDR standard. In
the present study, we used part of the NINDS CDEs, which
are 308 (3.1%) stroke and general CDEs of the NINDS in
57 CRFs (Supplementary Tables S1) that are registered in
the caDSR. Selected CDEs within the context of their CRFs
were explored for challenging cases requiring new semantic
relationships that we have defined.
The DialysisNet and Avatar Beans Project is a tablet-

and phone-based mobile application developed by the
Health Avatar Initiative [17]. The project started in
2013, and it has established clinical data standards for
managing and harmonizing hemodialysis data across
multiple medical institutions in Korea [18, 19]. This pro-
ject aims to improve the management of chronic kidney
disease and end-stage renal disease by using an inte-
grated mobile application for data collection and docu-
mentation. The DialysisNet application was initially built
upon 122 distinct hemodialysis-associated CDEs based
on CRFs from major four hemodialysis centers (Supple-
mentary Tables S2). We used 11,428 CDEs from the
above two projects for comprehensively defining and
evaluating new CDE relationships and constraints.

Designating key concepts
The CRFs and clinical documents from the two CDE
projects incorporate all the data collection items with
CDEs. We first examined the CDEs to formalize the

above mentioned four challenging cases. Figure 1 depics
the formal relationships between atomic (aCDE) and
composite (cCDE) CDEs with type-specific constraints.
Since the core structure of a CDE is a name–value pair
augmented by DE concept-domain and value-domain
details, an aCDE is a single unambiguously described
data item [19]. Our previous and simple-minded defin-
ition of cCDE as a set of interrelated aCDEs [9] was ex-
tended to include two new semantic relationships:
dictionary and repeated cCDEs.
For example, a drug side effect is regarded as an un-

desirable secondary effect that occurs in addition to the
desired therapeutic effect of a medication. To correctly
represent ‘a drugs side effect’, at least three types of in-
formation needs to be presented: ‘drug name’, ‘drug dos-
age’, ‘drug side effect’. One can define the three types of
information as aCDEs and then combine them to com-
pose a cCDE.
We extracted aCDEs and cCDEs from the above men-

tioned two DE projects (NINDS and DialysisNet CDE
Projects) and applied the extended semantic types and
constraints. We then mapped and integrated the CDEs
in order to comprehensively evaluate the metadata reus-
ability and semantic interoperability in the clinical-
practice setting.

Evaluation scheme
For the purpose of evaluating the utility of the newly
proposed semantic types and constraints, we used three
different data sources: (1) deriving CDEs from clinical
documents, (2) Fast Healthcare Interoperability Re-
sources (FHIR) based structured data, and (3) practical
clinical dataset from MIMIC-III (Medical Information
Mart for Intensive Care).
For deriving CDEs from clinical docments, we collected

25 clinical documents in real-world clinical practice, com-
prising five documents including Admission Note, Initial
Medical Examination Note, Discharge Summary, Emer-
gency Note, and Operation Note from five major teaching
hospitals in Korea: Seoul National University Hospital,
Ajou University Medical Center, Pusan National Univer-
sity Hospital, Gachon University Gil Hospital, and Chon-
nam National University Hospital. It contains Patient,
PastHistory, AdmissionInformation, Operation, Family-
History, SocialHistory, LabResult, Medication, VitalSign,
Treatments, and PhysicalExam [18]. We chose these 25
clinical documents since these documents are used in
common by all five hospitals and are essential in the
process of patient admission to discharge, for representing
the specificity of the data. The limits of these 25 clinical
documents are their insufficiency in providing a richness
of depth and detail concerning the levels of clinical data.
Thus, we added two different structured data from the
FHIR bulk sample data and the MIMIC-III demo dataset.
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FHIR is propagated as an open standard describing data
formats and elements, known as ‘resources’ and an appli-
cation programming interface (API) for exchanging EHR.
FHIR’s clinical resource definitions are concrete, intuitive
concepts such as MedicationPrescription, AdverseReac-
tion, Procedure, and Condition. The standard was created
by the Health Level Seven International (HL7) healthcare
standards organization. We downloaded FHIR bulk sam-
ple data, which is exported from a FHIR server to a pre-
authorized client by using FHIR bulk Downloader sample
app [20–22]. Among 145 resources of FHIR version 4
[23], the FHIR bulk sample data contains 14 resources;
AllergyIntolerance, CarePlan, Claim, Condition, Goal, En-
counter, Observation, DiagnosticReport, Immunization,
MedicationRequest, ImagingStudy, Organization, Patient,
and Procedure. Although we could analyze metadata of all
FHIR resources through the structural information pro-
vided by HL7, it was necessary to review the actual sample
data with metadata to confirm the relationships and con-
straints among the data. Thus, we chose 14 out of the 145
FHIR resources.
The MIMIC-III clinical database contains comprehen-

sive clinical data relating to tens of thousands of Inten-
sive Care Unit patients. MIMIC-III is a large, freely-
available database comprising of deidentified health-
related data associated with over 40,000 patients who
stayed in critical care units of the Beth Israel Deaconess
Medical Center between 2001 and 2012. The Dataset
has 26 tables which includes vital signs, medications, la-
boratory measurements, observations and notes charted
by care providers, fluid balance, procedure codes, diag-
nostic codes, imaging reports, hospital length of stay,
survival data, and more. We downloaded the MIMIC-III
demo dataset that is limited to 100 patients. While the
number of patients were limited, the metadata and data-
schema were identical [24, 25].
The evaluation process consisted of the following three

steps: CDE extraction, CDE integration, and construc-
tion of semantic relationships among the CDEs. We
counted the numbers of CDEs generated in each step as
an evaluation measure of the structural efficiency for the
25 clinical documents and FHIR bulk sample data. How-
ever, the MIMIC-III demo dataset is provided as a rela-
tional database, containing tables of data relating to
patients. A table is a data storage structure which is
similar to a spreadsheet: each column contains consist-
ent information (e.g., patient identifiers), and each row
contains an instantiation of that information (e.g. a row
could contain the integer 340 in the patient identifier
column which would imply that the row’s patient identi-
fier is 340) [25]. We manually reviewed the relationships
among the columns of each table, whether there were
cases which were covered by our proposed CDE rela-
tionships and constraints.

Results
Overview of all types of semantic relationships
To address the semantic challenges described above, we
defined atomic and composite CDEs using newly pro-
posed three semantic types, i.e., hybrid, dictionary, and
repeated, and three constraints, i.e., ordered, operated,
and required, in addition to the existing two semantic
relationship constraints, i.e., dependent and variable re-
lationships, defined in our previous study. The newly de-
fined composite semantic type replaced the old
composite relationship constraint that we defined previ-
ously [10].
Figure 1 depicts atomic and composite CDEs along

with their specific relationships and constraints. An
aCDE can be constrained using variable and hybrid rela-
tionships by classifying them as variable and hybrid
aCDEs, respectively. The definition of cCDE as a set of
interrelated aCDEs in our previous study [10] was ex-
tended to include a clear definition, a separate identifier
for reuse, and constraints among aCDEs included in a
cCDE. A cCDEs can be classified into dictionary and re-
peated cCDEs. The dependent relationship was the only
relationship constraint in our previous study. We ex-
tended it to four constraints: ordered, operated, required,
and dependent. As shown in the left lower panel in Fig.
1, the ordered constraint does not apply to an aCDE.

Data entries with multiple data types: Hybrid aCDE
A hybrid aCDE is a particular type of aCDE that allows
a value domain with multiple (or hybrid) data types.
Technically it includes several aCDEs having the same
CDE concept but different value domains. Figure 2a
shows a part of a hemodialysis CRF from the DialysisNet
and Avatar Beans Project. A time-tagged hybrid aCDE
was applied to the Time attribute in a tabular data-entry
format (Fig. 2a). Time is defined as a hybrid aCDE,
Hemodialysis_Time_Hybrid_DE (DE:47616). Time is de-
rived from two aCDEs, i.e., Hemodialysis_Time_DE (DE:
43239) and Hemodialysis_Time_String_DE (DE:47614)
allowing a ‘time’ such as ‘08:00’ and an ‘enumerated-
string’ such as ‘Finish’ and ‘Start’, data types, respectively
(Fig. 2b). The hybrid aCDE Time (or Hemodialysis_
Time_Hybrid_DE (DE:47616)) can capture either a time
or an enumerated string value as input.

Tabular data entries: Repeated cCDE
A repeated cCDE is a cCDE that captures data input
multiple times in a tabular format. The definition of the
repeated cCDE prevents the unnecessary creation of re-
dundant CDEs and capture input data in a tabular for-
mat. A repeated cCDE efficiently captures and displays
changes in input values over a certain time span, as
shown in Fig. 2a. We first grouped eight aCDEs (i.e., DE:
47616, DE:43340, DE:43197, DE:43195, DE:43155, DE:
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43092, DE:43372, and DE:43166) to create a cCDE and
then assigned repeated relationship to create a repeated
cCDE, Hemodialysis_Repeated_Componsite _DE (DE:
47575) (Fig. 3). As shown in Fig. 2, DE:47616 is a hybrid
aCDE contained in a repeated cCDE (DE:47575).

Dictionary data entries: Dictionary cCDE
Our previous study [10] defined a variable CDE as a
CDE that contains a controlled biomedical vocabulary
variable. Similarly, a cCDE containing a variable aCDE
as the primary key of a dictionary table can be defined
as a dictionary cCDE. This approach provides a way to
encode an entire dictionary table as well as a controlled
vocabulary into a single dictionary cCDE, and thereby
capture comprehensive biomedical knowledge from a
database. A dictionary cCDE provides a useful means to
apply relevant attributes of a dictionary database to con-
strain and validate input values to the dictionary cCDE.
Figure 4a displays a typical data-entry document for

laboratory test results in a tabular format. The ‘Electro-
lyte Laboratory Tests’ form from ‘Recommended Labs

for Stroke’ of the NINDS CDE project [26] consists of six
attributes including the laboratory test name, laboratory
test result, unit of the laboratory test result, an indicator
for whether the laboratory test result was abnormal, and
another indicator for whether the laboratory test result
was clinically significant when the laboratory test result
was abnormal. Figure 4b shows a part of the structured
NINDS ‘Electrolyte Laboratory Tests Dictionary’ reference
table. The Unit of Result attribute supports multiple units
that are delimited by ‘^’. The Normal Range attribute is
also separated according to the Unit of Result and is repre-
sented in JSON (Javascript object notation)-type encoding.
A dictionary cCDE can systematically capture the entire

‘Electrolyte Laboratory Tests’ data-entry document as ‘DE:
47571 Laboratory_Test_NINDS_Composite_DE,’ which is
composed of six aCDEs (Fig. 4c, Relation) that in-
clude a variable aCDE, ‘DE:43938 Laboratory_Find-
ing_Test_Name_DE,’ which functions as the foreign
key to refer to the primary key for the ‘Lab Test
Name’ of the ‘Electrolyte Laboratory Tests Dictionary’
table of Fig. 4b.

Fig. 2 An example hybrid aCDE from a hemodialysis report. a The hemodialysis table of the DialysisNet Project has a tabular data-entry format,
where Time (DE:47616) allows two different data types: time and an enumerated string. b The hybrid aCDE (DE:47616) contains two aCDEs
(DE:43239 and DE:47614) in a hybrid relationship (http://chmr2.snubi.org:8083/chmr/data_element_view.jsp?id=28476)
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Now that the dictionary cCDE, DE:47571, is successfully
related to the NINDS ‘Electrolyte Laboratory Tests’ table
via the variable aCDE (DE:43938), it provides a method to
evaluate the validity of input value of 138mEq/L to Result
and Units for Result for a Test [‘Sodium (Na+)’], with re-
spect to the Normal Range (i.e., 135 ~ 145mEq/L) pro-
vided by the dictionary table connected via the primary
key. The input value to Was test result abnormal? can also
be automatically evaluated using the biomedical know-
ledge provided by the dictionary table. Moreover, when
the value of Was test result abnormal? (DE:47566) is ‘Ab-
normal,’ the value of If abnormal, Clinically Significant?
(DE:44135) can automatically be constrained to contain a
value other than null. This constraint can be encoded by a
Dependent Rule, as shown Relation Rule in Fig. 4c.
Figure 4c Relation Rule shows how a dictionary cCDE

accompanied by its constraint rules are defined. For the

two evaluation cases listed in Fig. 4b, both a Dictionary
Rule and a Dependent Rule are defined by symbolic logic
(or pseudocode) with the accompanying Descriptions.
Dictionary Rule defines how to use biomedical know-
ledge contained in a dictionary table and Dependent Rule
defines the interrelatedness of aCDEs in a cCDE by
using dependent constraint relationship

Semantic restriction: Constraints
We defined four constraints that support the creation of a
robust clinical document by specifying the interrelation-
ship among many aCDEs. We defined four classes of op-
erators: assignment, arithmetic, logical, and relational.
Order can only be applied to aCDEs contained in a cCDE.
However, the other three constraints (operated, required,
and dependent) can be applied to both independent
aCDEs and those contained in cCDEs (Fig. 1). We created

Fig. 3 Example of the composition of a repeated cCDE from a hemodialysis report form. A repeated cCDE, ‘DE:47575
Hemodialysis_Repeated_Componsite _DE,’ composed of eight aCDEs from a tabular data-entry format (Fig. 2a) for the DialysisNet hemodialysis
project (http://chmr2.snubi.org:8083/chmr/data_element_view.jsp?id=28449)
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symbolic logic with prefix notation [27] (Table 1) to de-
scribe the order of operations and to formulate con-
straints. More practical examples are shown in Fig. 5 to
demonstrate how constraints are applied to a repeated
cCDE as well. The four constraints are described as
follows:

1) Operated. Table 1A presents the standard BMI
formula [BMI (in kg/m2) = weight / (height ×

height)] in a prefix notation as (/ CDE30 CDE31
CDE31 100,100), where CDE30 and CDE31
represent Body Weight Value in kg and Body Height
Value in cm, respectively. Both ‘cm’ and ‘m’ units of
height measurements are supported by IF
conditional statement to manage different units:
(IF (= CDE31.unit_of_measure ‘m’) (/
CDE30 CDE31 CDE31) (/ CDE30 CDE31 CDE31
100,100)).

Fig. 4 Creation of a dictionary cCDE for a CRF. a The ‘Electrolyte Laboratory Tests’ table on a clinical document is provided as an example tabular data-
entry document to capture laboratory test results for sodium (Na+) and potassium (K+) along with two clinical evaluation attributes. b We constructed the
‘Electrolyte Laboratory Tests Dictionary’ table by extracting the relevant attributes from the CDEs defined in the ‘Recommended Labs for Stroke’ from the
NINDS CDE project. c The dictionary cCDE (DE:47571) consists of six aCDEs that include a variable aCDE (DE:43938) that relates the dictionary cCDE to the
dictionary table in Fig. 4b. Two rules for clinical evaluation are presented (http://chmr2.snubi.org:8083/chmr/data_element_view.jsp?id=28445)
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2) Required. A Required constraint applied to an aCDE
means that the aCDE must have a value other than
null. Table 1B lists the demographic information of a
clinical document, constraining ‘*Patient Age
(CDE40)’ and ‘*Gender (CDE41)’ as required by the
statement (Required CDE40 CDE41).

3) Dependent. It might be necessary to dynamically
enable or disable a certain aCDE according to the
value(s) of other aCDE(s). For example, a gender-
specific CDE might only be applied to subjects of
the applicable gender. Table 1C presents an ex-
ample for checking whether a patient is a current
(CDE20) or past (CDE21) smoker in order to obtain
the age when tobacco use was started (CDE22). A
nonsmoker can conveniently skip CDE22 if (=
CDE20 CDE21 ‘No’) by setting the value of
CDE22 as null. In other words, a rule such as (IF
(or (! = CDE20 ‘Yes’) (! = CDE21 ‘Yes’))
CDE22 NULL) can be imposed. Another constraint
can be imposed to check illogical input values such
as (= CDE20 CDE21 ‘Yes’) if necessary.

4) Ordered. The ordering of aCDEs (especially in a
cCDE) is important for certain conditions and
contexts. CDEs in Table 1C can be ordered by a
constraint statement such as (Ordered CDE20
CDE21 CDE22).

Evaluation study
To evaluate the usefulness of our newly extended composite
semantic relationships, we applied them to CDEs which
were systematically extracted from the 25 clinical docu-
ments of five teaching hospitals in Korea and from FHIR
bulk sample data. At first, we focused on deriving CDEs
from clinical documents, which provided many explicit
cases that clearly demonstrated the relationships between
CDEs. We then wanted to prove that our proposed relation-
ships and constraints were valid in structured clinical data-
set as well. It was why we chose two difference types of
source data: unstructured and structured data. The evalu-
ation process consisted of the following steps: CDE extrac-
tion, CDE integration by using the newly proposed atomic
and composite CDEs with semantic enrichments. We exam-
ined how the number of CDEs had been reduced from CDE
extraction to CDE integration, measuring the structural and
semantic efficiency of CDEs for clinical data elements.
Although HL7 FHIR supports mainly structured data,

it also provides a document related resource, FHIR
Questionnaire. To see whether our proposed semantic
types can cover FHIR Questionnaire, we matched ele-
ments of the FHIR Questionnaire resource to our devel-
oped relationships and constraints for further evaluation.
For evaluating derived CDEs from clinical documents,

we first extracted 84, 48, 70, 83, and 37 CDEs from the

Table 1 Encoding operated, required, dependent, and ordered constraints for CDEs with prefix notation. Examples of (A) an operated
constraint for calculating BMI, (B) a required constraint for demography information, (C) a dependent constraint for smoking history,
and (D) an ordered constraint

Constraints Example of Clinical Documents Set of CDE IDs and Names

Prefix Notation for Formulating Constraints

A) Operated Weight (kg):
Height (cm):
BMI (kg/m2):

CDE30 Body Weight Value in kg
CDE31 Body Height Value in cm
CDE32 Body Mass Index Value

(IF (= CDE31.unit_of_measure ‘m’)
(/ CDE30 CDE31 CDE31) (/ CDE30 CDE31
CDE31 100,100));
(/ CDE30 CDE31 CDE31 100,100)

B) Required 1) *Patient Age:
2) *Gender

Female Male Unknown
Unspecified Not reported

3) Ethnicity:
Hispanic or Latino Unknown
Not Hispanic or Latino Not reported

CDE40 Patient Age
CDE41 Patient Gender
CDE42 Patient Ethnicity

(Required CDE40 CDE41)

C) Dependent Smoking History
1) *Current tobacco use?

Yes No Unknown
2) *Past tobacco use?

Yes No Unknown
3) Age when tobacco use started (years)?
(Skip if Q1 and Q2 are both No)

CDE20 Current Smoking Indicator
CDE21 Past Smoking Indicator
CDE22 Age When Tobacco Use Started

(IF (or (!= CDE20 ‘Yes’) (!= CDE21
‘Yes’)) CDE22 NULL)

D) Ordered (Ordered CDE20 CDE21 CDE22)
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five clinical documents, Admission Note, Initial Medical
Examination, Discharge Summary, Emergency Note, and
Operation Note, respectively, of Hospital A. We found
that 95 (29.5%) of the 322 aCDEs were reused in at least
two of the five clinical documents, resulting in 227 unique
aCDEs. We then created clinically relevant cCDEs and ap-
plied semantic relationships to them. Of the 84 aCDEs ex-
tracted from the Admission Note of Hospital A, 55 were
successfully captured by 10 cCDEs. Finally, 16 cCDEs suc-
cessfully captured 110 (48.5%) of the 227 unique CDEs
such that 133 (=16 + 117) CDEs (41.3%) were sufficient to
represent the initial 322 CDEs extracted from the five clin-
ical documents of Hospital A (Table 2).
In the CDE extraction step, we found that applying CDE

is an effective way to reduce redundant CDEs (22.2 ~
37.9%) at each hospital. This means that there were many

CDEs shared across the five different clinical documents
at each hospital. We found that an even higher CDE re-
duction rate of 48.7% was achieved by integrating the in-
formation for all five hospitals, which indicated that
various CDEs were commonly used across five different
teaching hospitals.
The CDE integration step involved integrating aCDEs

into clinically relevant cCDEs to further structure the
clinical documents and then integrating the cCDEs
across different clinical documents. For example, when a
vital sign-related cCDE contained three aCDEs (‘body
weight,’ ‘body temperature,’ and ‘blood pressure’) and
another vital sign-related cCDE contained an additional
aCDE (‘description the reason of unstable vital sign’), we
integrated them into a vital-sign cCDE comprising four
aCDEs. The application of these three steps constantly

Fig. 5 Encoding Operated, Ordered, Required, and Dependent constraints for a repeated cCDE. a A ‘Medical History’ clinical document presented
in a tabular format containing six attributes. b A repeated cCDE is created with the corresponding six aCDEs along with four constraint rules: (1)
the start date (DE:47618) should be earlier than the end date (DE:47619): (< DE:47618 DE:47619); (2) all attributes are required to have values
other than null, except for the end date (DE:47619): (Required DE:37059 DE:47621 DE:31106 DE:47618 DE:44078, 3) when a certain
medical history is not ongoing (DE:44078), the end date (DE:47619) cannot be obtained, and vice versa: (IF (! = DE:44078 ‘Yes’)
DE:47619 NULL); and (4) aCDEs can be ordered according to a constraint statement such as (Ordered DE:37059 DE:47621 DE:31106
DE:47618 DE:44078 DE:47619) (http://chmr2.snubi.org:8083/chmr/data_element_view.jsp?id=28477)
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decreased the number of CDEs. Supplementary Tables
S3–S5 list the cCDEs and how they were distributed in
each document at each hospital. These tables also pro-
vide a detailed view of how the 20 unique cCDEs com-
prised 327 sub-aCDEs. The integrated CDEs not only
reduced the number of CDEs with a reuse ratio of up to

46.9% [=(1142–20 – 586)/1142] (Table 2) but also
showed greatly improved semantic accuracy and inter-
operability, which was also supported by the review of
the documents by the authors.
We found that the compositions of the clinical docu-

ments differed quite markedly across the five hospitals.

Table 2 Numbers of aCDEs and cCDEs extracted from five clinical documents used at five teaching hospitals in Korea

Hospital Admission
Note

Initial Medical
Examination
Note

Discharge
Summary

Emergency
Not

Operation
Note

Total No. of
CDEs

f No. of Unique
CDEs

g CDE Reuse
Rate

A a CDE 84 48 70 83 37 322 227 29.5%
bcCDE c

(aCDE)
10 (55) 9 (40) 6 (34) 6 (45) 2 (10) 33 (184) 16 (110)

d aCDE 29 8 36 38 27 138 117
e cCDE +
aCDE

39 17 42 44 29 171 133 24.5%

C CDE 30 35 20 27 26 138 87 37.0%

cCDE
(aCDE)

2 (14) 3 (20) 2 (11) 3 (15) 1 (5) 11 (65) 5 (35)

aCDE 16 15 9 12 21 73 52

cCDE +
aCDE

18 18 11 15 22 84 57 33.3%

G CDE 70 28 44 54 11 207 161 22.2%

cCDE
(aCDE)

4 (23) 3 (17) 2 (11) 2 (17) 1 (5) 12 (73) 7 (50)

aCDE 47 11 33 37 6 134 111

cCDE +
aCDE

51 14 35 39 7 146 118 18.8%

P CDE 204 123 46 43 12 428 266 37.9%

cCDE
(aCDE)

7 (177) 4 (99) 3 (34) 3 (39) 0 (0) 15 (349) 7 (177)

aCDE 27 24 12 4 12 79 89

cCDE +
aCDE

34 28 15 7 12 94 96 36.2%

S CDE 12 6 9 10 10 47 31 34.0%

cCDE
(aCDE)

1 (3) 0 0 1 (4) 0 2 (7) 1 (4)

aCDE 9 6 9 6 10 40 27

cCDE +
aCDE

10 6 9 7 10 42 28 31.9%

Total CDE 400 240 189 217 96 1142 606 53.1%

Unique CDE 297 162 142 178 57 836 586 29.9%

cCDE
(aCDE)

15 (224) 14 (152) 9 (71) 9 (90) 2 (10) 49 (547) 20 (327)

aCDE 73 10 71 88 47 289 259

cCDE +
aCDE

88 24 80 97 49 338 279 46.9%

a No. of CDEs extracted from each clinical document from each hospital
b No. of cCDEs created for each clinical document
c No. of aCDEs contained in bcCDEs
d No. of remaining aCDEs that are not contained in any of the cCDEs in each clinical document
e Total no. of CDEs consisting of bcCDEs and daCDEs that are not contained in any of the cCDEs in each clinical document
f No. of unique CDEs across the five clinical documents
g Reuse ratio of CDEs across the five clinical documents
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The clinical documents at Hospitals P and S contained
the largest (n = 266) and smallest (n = 31) numbers of in-
dependent CDEs, respectively. We also found that even
the same clinical documents showed huge variations in
CDE numbers. The number of CDEs in Admission Notes
varied from 12 at Hospital S to 204 at Hospital P. Hos-
pital P also had the largest number of aCDEs for Initial
Medical Examination Note (n = 123) while Hospital A
had the largest number of aCDEs for Emergency Note
(n = 83) and Operation Note (n = 37).
We also applied constraint rules for the five clinical docu-

ments of the five hospitals (Table 3). We could not deter-
mine if a CDE was a hybrid aCDE partly due to the lack of
sufficient input values and partly due to poor descriptions
of the response values for the clinical documents. We des-
ignated the cCDEs as basic cCDEs to distinguish them from
repeated and dictionary cCDEs. A cCDE was on average
reused twice among the five documents by the hospitals.
We also found that the clinical documents at Hospital A
were the best structured and contained the greatest detail
with more cCDEs and constraint rules compared to the
documents of the other hospitals.
We evaluated the DE relationships and constraints

with the same method applied to different data sources,
which were 14 FHIR resources from FHIR bulk sample
data. We first extracted 238 CDEs and found 142 CDEs
(59.7%) were reused in at least 2 of 14 FHIR resources,
resulting in 96 unique aCDEs. We then created clinically
relevant cCDEs and applied semantic relationships to
them. 48 cCDEs successfully captured 194 (81.5%) of
238 CDEs. Finally, 28 cCDEs successfully captured 75 of
the 96 unique CDEs such that 49 (=28 + 21) CDEs were
enough to represent the initial 238 CDEs extracted from
14 FHIR resources (Table 4). Supplementary Tables S6–
S7 list the cCDEs and how they were distributed in each
FHIR resources. The fact that more than half of the
CDEs has been reused shows that the FHIR data are
relatively well standardized and structured. Half of the

FHIR resources, i.e., AllergyIntolerance, Condition, En-
counter, Goal, MedicationRequest, Organization, and
Procedure, were represented by repeated cCDEs, which
means all extracted CDEs of each FHIR resource became
a component aCDEs of the repeated cCDEs. These
structured data have been reused frequently among dif-
ferent FHIR resources.
While we were mapping our proposed semantic types

and constraints to FHIR resources, we found that hybrid
aCDE and operated, and dependent constraints were not
applicable in FHIR resources. For the case of hybrid
aCDE, although only one datatype is allowed for each
data in FHIR specification, we foun no restriction on the
datatype in the FHIR bulk sample data since the data
was represented by JSON, and XML. While the required
and ordered constraints were explicitly indicated, oper-
ated, and dependent constraints were not valid in FHIR
resources because the rule by which two or more data
values were related could not be applied (Table 5).
Another evaluation was the mapping between our se-

mantic types and constraints to document-associated
FHIR resource, Questionnaire. Figure 6 represents the
mapping of the FHIR structure in extracts on the left side,
linked via arrows to the corresponding developed CDE re-
lationships and constraints. The relevant elements in the
FHIR Questionnaire resource were group and question,
which represents composite and atomic CDEs (the data
model of a single question). Among our three CDE rela-
tionships and four constraints, the repeated cCDE rela-
tionship and the required and operated constraints were
straightforwardly mapped. The FHIR Questionnaire re-
source is to define both collection forms, surveys and
other structures that can be filled out with their context. It
had a certain structure to represent relationships among
CDEs but value related constraints could not be modelled.
For instance, it could not be represented whether the
value allows for multiple data types (Hybrid aCDE) or
whether one value can be changed depending upon an-
other element’s value (Constraint: Dependent).
For evaluations with a real dataset, we analyzed 26 ta-

bles of the MIMIC-III demo database. These tables were
divided into three categories which were classified by
different data characteristics: (1) 14 tables for hospital
data, (2) three tables for online definitions, and (3) 19 ta-
bles for care-value and meta-version ICU related data
(Supplementary Tables S8). We first manually reviewed
the relationships among the columns of each table. The
evaluation process was conducted only for cases in
which a relationship was found through the following
steps: CDE extraction, CDE integration by using atomic
and composite CDEs and then the construction of se-
mantic relationships among the CDEs.
We found four hybrid aCDEs that allows numeric data

and text data. For example, VALUE in LABEVENTS

Table 3 Numbers of aCDEs, cCDEs, and constraints at five
teaching hospitals in Korea

Hospital: CDE Semantic Type A C G P S

aCDE Hybrid 0 0 0 0 0

Variable 5 2 2 3 0

cCDE Basic 9 (20) 2 (6) 3 (8) 2 (2) 0

Repeated 2 (5) 1 (2) 2 (2) 2 (6) 1 (2)

Dictionary 5 (10) 2 (3) 2 (2) 3 (8) 0

Constraints Operated 4 (9) 1 (5) 2 (5) 1 (1) 0

Required 10 (25) 3 (8) 5 (11) 3 (11) 0

Dependent 15 (26) 0 3 (8) 3 (10) 1 (2)

Ordered 11 (29) 4 (10) 5 (11) 3 (12) 1 (2)

The numbers before the parentheses represent unique counts
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allows for string data and numeric data. If this value is
numeric, then VALUENUM represents the same data in
a numeric format with an appropriate unit from
VALUEUOM for its usability in calculations. The four
general cCDEs in Table 5 list cCDEs that includes the
hybrid aCDE. We also found three variable aCDEs asso-
ciated with its particular dictionary cCDE. For example,
ICD9_CODE in DIAGNOSES_ICD is matched to the
same value as ICD9_CODE in D_ICD_DIAGNOSES.
And each table became a repeated cCDE because it is
composed of a set of related items. All tables have a re-
quired constraint, and two tables have an operated

constraint. As MIMIC data is provided as a relational
database, dependent and/or ordered constraints are
not applicable. Relational table treats the value of
each column independently without ordering based
on set inclusion theory (Table 5). Supplementary Ta-
bles S8–S9 lists specific results which the MIMIC-III
metadata matched to our proposed relationships and
constraints.

Discussion
Comparison with related studies
Standardization of clinical data using CDEs based on
ISO/IEC 11179 metadata standard is clearly one of most
effective ways to harmonize data collected from various
clinical institutions and studies. The advantages of this
approach are (1) providing a consistent data collection
tool, (2) improving study data quality, and (3) reducing
the cost of data entry and cleansing by having uniform
data. However, the limitation of ISO/IEC 11179 of not
providing a data structure for representing interrelation-
ships among CDEs has resulted in a gap between the de-
velopment of CDEs and their utilization in clinical
forms. Although ISO/IEC 11179 provides DDEs to over-
come the limitation by enhancing interrelated CDEs. A
DDE is a DE whose values are derived through a trans-
formation of the values of one or more source CDEs.
For example, the DDE of the ‘length of stay in a hospital’

Table 4 Numbers of atomic and composite CDEs extracted from 14 FHIR resources of FHIR bulk sample data

# FHIR Resource aCDE bcCDE c (aCDE) d aCDE e cCDE + aCDE

1 AllergyIntolerance 13 2 (13) 0 2

2 CarePlan 18 4 (15) 3 7

3 Claim 21 5 (13) 6 11

4 Condition 13 2 (13) 0 2

5 DiagnosticReport 13 3 (9) 4 7

6 Encounter 15 4 (15) 0 4

7 Goal 4 1 (4) 0 1

8 ImagingStudy 23 3 (14) 11 14

9 Immunization 12 1 (4) 8 9

10 MedicationRequest 14 3 (14) 0 3

11 Observation 22 5 (18) 4 9

12 Organization 15 4 (15) 0 4

13 Patient 42 8 (29) 8 16

14 Procedure 13 3 (13) 0 3
f Total No. of CDEs 238 48 (194) 44 92
g No. of unique CDEs 96 28 (75) 21 49
a No. of CDEs extracted from each FHIR resource sample data
b No. of cCDEs created for each FHIR resource sample data
c No. of aCDEs contained in bcCDEs
d No. of remaining aCDEs that are not contained in any of the cCDEs in each FHIR resource sample data
e Total no. of CDEs consisting of bcCDEs and daCDEs that are not contained in any of the cCDEs in each FHIR resource sample data
f Total no. of CDEs across 14 FHIR resources
g Total no. of unique CDEs across 14 FHIR resources

Table 5 Numbers of atomic and composite CDEs and
constraints in FHIR bulk data and MIMIC-III demo data

Data Source: CDE Semantic Type FHIR MIMIC-III

aCDE Hybrid N/A 4

Variable 3 4

cCDE General 18 (64) 4 (12)

Repeated 7 (87) 26 (180)

Dictionary 3 (17) 4 (17)

Constraints Operated N/A 2

Required 34 52

Dependent N/A N/A

Ordered 2 N/A
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is derived from two independent DEs that counts the
number of days from two input CDEs: ‘Admission date’
and ‘Discharge date.’ However, this strategy is far from
enough to cover all use cases of interrelated CDEs that
we have describe in the Background section.

Table 6 compares the DDE and our CDE semantic rela-
tionships. The value of a DDE is derived from input DE(s).
Our CDE semantic relationship provides rich semantics
for creating atomic and composite CDEs that feature
repeat and dictionary properties, supporting references to

Fig. 6 Mapping result of the FHIR Questionnaire resource mapped to the proposed CDE relationships and constraints

Table 6 Differences between DDE and our CDE semantic relationships

CDE Semantic Type Characteristic Difference from a DDE

aCDE Hybrid Allowing the entry of multiple data types in a hybrid
aCDE requires aCDEs that support different data types
for the same data item

A DDE does not support the entry of multiple types of data

Variable Connecting to an outside dictionary database No dictionary-associated constraint in a DDE

cCDE General Containing a set of aCDEs Do not have output DE(s), but a DDE can be a cCDE

Repeated Allowing sequential data entry into a repeated cCDE No repeated property in a DDE

Dictionary Bringing biomedical knowledge from an outside
dictionary database to a dictionary cCDE containing
a variable aCDE as a foreign key to the dictionary
table with the repeated property

No dictionary connection allowed for a DDE

Constraint Operated Allowing mathematical/algebraic expressions between
related aCDEs

A DDE has this constraint with the a CALCULATION type

Required Forcing aCDE to have a value other than null No required constraint in a DDE

Dependent Dynamic enabling and disabling of an aCDE via a predicate No dependent constraint in a DDE

Ordered Ordering a set of aCDEs A DDE has this constraint by default
a CALCULATION type in DDE only covers arithmetic operators (i.e., +, −, *, /) but, the operated constraints include not only arithmetic operators but also logical
operators (i.e., <, >)
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outside biomedical resources as described in Table 6. The
relatively simple-minded concept of the DDE may be in-
sufficient to cover various CDE semantic relationships
since a DDE covers only two constraints: Operated and
Ordered.
There have also been efforts to address the issues of

interrelated CDE(s) by applying external data models.
The CDISC (clinical data interchange standards consor-
tium) ODM (operational data model), which is an XML-
based standardized data model that supports the acquisi-
tion and exchange of metadata specifically related to clin-
ical studies, can also be used to overcome the limitations
of ISO/IEC 11179. However, it is not sufficiently compre-
hensive to generate CRFs by importing elements directly
[28, 29]. Lin et al. also suggested to use the openEHR ap-
proach for modeling CDEs [30]. Though this approach
provides a comprehensive structure with two-level model-
ing, several limitations when implementing openEHRs
have been identified in various studies such as immaturity
of archetype modification operations, insufficient support
for hierarchical archetypes due to their granularity [31,
32], and the cost burden of development and adoption
due to the complexity of defining openEHRs. Therefore,
instead of utilizing external data models, we propose im-
proving and extending the existing composite relationship
by specifying two subtypes of aCDE, three subtypes of
cCDEs, and four constraints to take advantage of utilizing
CDEs and related technologies.
The newly released version of HL7 FHIR provides the

ElementDefinition type, which is the core of the FHIR
metadata layer and is closely (conceptually) aligned to
ISO/IEC 11179. It has the result of mapping to the other
standards as well to help implementers and clinical re-
searchers understand the content and use it correctly.
However, they found that the principles from both stan-
dards were totally different. FHIR does not differentiate
the difference between a CDE and a CDE value and the
FHIR specification is heavily type dependent. For in-
stance, HL7 FHIR provides the pair of Questionnaire
and QuestionnaireResponse resources and a pair of Ap-
pointment and AppointmentResponse resources at the
same time. Also, the FHIR specification includes con-
straints and other concerns that are outside the scope of
ISO/IEC 11179. Thus, the HL7 admitted that there still
was a shortage of connection between HL7 FHIR and
ISO/IEC 11179. It is said that the FHIR Infrastructure
work group is considering rolling the DataElement re-
source into the StructureDefinition resource. If this is
done, DataElement resource will be treated as a type of
logical model (whether there will be a distinct ‘type’ for
it is unclear) [33].
Since the FHIR specification includes concepts for the

group and constraints, they were matched with our pro-
posed concepts of composite and the part of constraints

(ordered, operated). However, some of the semantic
types and constraints that we have proposed are not
provided by FHIR. We detailed whether our proposed
semantic types and constraints were covered by FHIR.
Since the FHIR Questionnaire is the only resource,
which is related to clinical forms or documents, we dis-
tinguished from the other FHIR resources (Table 7).

Overcoming the challenges of understanding semantic
relationships of form-lEVeL data
This paper has presented an in-depth evaluation of the
ISO/IEC 11179 MDR standard based CDE semantic in-
terrelationships in the context of formalizing clinical
document structures. For converting form-level data into
DE-level data, two cCDEs (repeated and dictionary
cCDEs) and their related constraints were developed,
which provide the following benefits:

1) Repeated cCDEs support clinical data
management in a tabular format in a clinical
document. Since multiple value sets are supported
to be represented in a unified tabular format, a
repeated cCDE is useful for managing sequential
data entry in a tabular format and for analyzing
how the values change over time. A repeated cCDE
enables standard MDR-based CDE-level descrip-
tions and evaluations of clinical data entry in a
tabular format.

2) Dictionary cCDEs enable biomedical knowledge
to be brought from a dictionary database via a
variable aCDE. Data items referencing a certain
standard terminology appear frequently on clinical
forms. A dictionary cCDE can help to include rich
semantics from externally managed biomedical
terminologies and/or dictionaries, with rich
attributes being applied for input data validation.

3) Four different types of constraints enable rich
evaluations of input values. A prefix notation
with functional logic programming can be applied
for evaluating user-defined constraints in order to
ensure contextual correctness and interrelationships
among data items on clinical document.

Advantages of using CDEs and CDE relationships for
building clinical documents
The data element is the atomic unit of data and is associ-
ated with a data element concept (DEC, an abstract unit of
knowledge for representing semantics) and a value domain
(representation of data including the data type and permis-
sible values) according to the ISO/IEC 11179 MDR stand-
ard. The DEC is the combination of an object class (a set of
entities) and a property (a peculiarity common to all mem-
ber of an object class). As these two components of DEC
are matched to the standard medical terminologies, it
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strengthens the semantic part. It is an advantage to use
CDE. Our proposed new semantic types and constraints
comply with this part in the ISO/IEC 11179 standard.
As verified in the evaluation part of this study, build-

ing clinical documents with CDEs can provide three
major advantages. First, it prevents the generation of re-
dundant data by facilitating predefined and registered
CDEs to the MDR. Second, it ensures semantic data in-
tegrity since an MDR-based CDE has comprehensive
and standardized metadata attributes for data descrip-
tion and the proposed cCDE provides a means to encode
rich constraints for inter-CDE relationships. The health
data of a patient that are fragmented, dispersed, and du-
plicated in a variety of clinical documents across differ-
ent medical centers should be integrated, and mapping
data items to CDEs facilitates data integration and se-
mantic interoperability across different clinical docu-
ments. Third, clinical data exchange and sharing can be
greatly facilitated by this approach.

Limitation and future work
The real-life clinical documents provide reasonable ex-
amples of reality, but particular instances of reality do
not necessarily always provide good representative ex-
amples. For instance, we found that the quality of data
in the clinical documents is dependent on whether the
clinicians who wrote these documents were well trained
in terminology representation to be inclusive in writing
correctly and sufficiently valid clinical documents. If the
document provides poor examples, then the outcome of
the evaluation will also be poor. It is not only the prob-
lem of clinical documents but also it can be applied to
when a clinical researcher creates data in the FHIR
model or a physician inputs clinical data in an EHR

system. Thus, we should measure the DQ, which is one
of the aspects of the interoperability that reveals the
process of standardizing EHRs to ensure the selected
clinical documents are a good representation of the
evaluation.
We also found that one essential issue was whether

our proposed semantic types and constraints ensure se-
mantical consistency with the use of standard biomedical
terminologies. For the instance of data transfer and the
purpose of interoperability, it is important to examine
how well our proposed semantic types and constraints
correspond to the standard biomedical terminologies
and how we can address the issue of terminology varia-
tions. Although the DEC part of the ISO/IEC 11179 is
matched to the standard medical terminologies, when
multiple standard biomedical vocabularies are used in
the complicated CDEs the above issue can occur. A
similar issue can occur when we utilize the dictionary
cCDE, since it includes a biomedical vocabulary. For in-
stance, the dictionary cCDE can consider different ‘ver-
sions’ of a particular laboratory test with different time
stamps, which could end with a differing variance of
normal ranges. In other words, even if we reference the
same standard vocabulary for the dictionary cCDE, the
result could be different. We will measure another DQ
for semantical consistency from the two issues men-
tioned above as a future work.
To measure DQ, we will consider the 5 different di-

mensions of DQ such as completeness, correctness, con-
cordance, plausibility, and currency. The strategies used
to assess the dimensions of DQ fell into seven DQ
methods such as gold standard, data element agreement,
element presence, data source agreement, distribution
comparison, and validity check as a future work [34].

Table 7 Comparison of our proposed semantic types and constraints with the FHIR Questionnaire resource and the other FHIR
resources

CDE Semantic Type FHIR Questionnaire FHIR other resources

aCDE Hybrid No, it does not support the entry of multiple types of
data.

Not applicable, there is no restriction on the datatype as it is
represented JSON, XML.

Variable Yes, it is supported by “coding”. Yes, it is supported by “coding”.

cCDE General Yes, it is supported because the FHIR is following a
structured model.

Yes, it is supported because the FHIR is following a structured
model.

Repeated Yes, it is supported by “repeats”. Yes, it is supported because the FHIR is
allowing repeated representation of the group of items.

Dictionary Not applicable, it does not support any value related
rule.

Not applicable, it does not support any value related rule.

Constraint Operated Allowing only logical operations. Only resources that have the “operator” are supported (e.g.,
Observation Resouce).

Required Yes, it is supported by “required”. Yes, it is supported by “required”.

Dependent Not applicable, it does not support any value related
rule.

Not applicable, it does not support any value related rule

Ordered Although not explicit, it is included in the structure. Only resources that have “sequences” are supported (e.g., Claim
Resouce)

Kim et al. BMC Medical Informatics and Decision Making          (2020) 20:147 Page 16 of 18



Conclusion
The sharing and understanding of data from multiple
different domains can be facilitated by standardization.
An MDR-based CDE is considered a type of standard-
ized data with specified concept and value domains.
However, ISO/IEC 11179 MDR-based CDEs do not pro-
vide the ability to describe constraints on a CDE or rela-
tionships among different CDEs, instead merely focusing
on single independent CDEs, which makes it difficult to
either correctly compose or interpret CDEs on clinical
documents. We developed MDR-based extended seman-
tic types and constraints, and it can facilitate compre-
hensive representation of clinical documents with rich
semantics and improved semantic interoperability.
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