
PSEA: Kinase-specific prediction and
analysis of human phosphorylation
substrates
Sheng-Bao Suo1, Jian-Ding Qiu1,2, Shao-Ping Shi1,3, Xiang Chen1 & Ru-Ping Liang1

1Department of Chemistry, Nanchang University, Nanchang, 330031, China, 2Department of Chemical Engineering, Pingxiang
College, Pingxiang, 337055, China, 3Department of Mathematics, Nanchang University, Nanchang, 330031, China.

Protein phosphorylation catalysed by kinases plays crucial regulatory roles in intracellular signal
transduction. With the increasing number of kinase-specific phosphorylation sites and disease-related
phosphorylation substrates that have been identified, the desire to explore the regulatory relationship
between protein kinases and disease-related phosphorylation substrates is motivated. In this work, we
analysed the kinases’ characteristic of all disease-related phosphorylation substrates by using our developed
Phosphorylation Set Enrichment Analysis (PSEA) method. We evaluated the efficiency of our method with
independent test and concluded that our approach is reliable for identifying kinases responsible for
phosphorylated substrates. In addition, we found that Mitogen-activated protein kinase (MAPK) and
Glycogen synthase kinase (GSK) families are more associated with abnormal phosphorylation. It can be
anticipated that our method might be helpful to identify the mechanism of phosphorylation and the
relationship between kinase and phosphorylation related diseases. A user-friendly web interface is now
freely available at http://bioinfo.ncu.edu.cn/PKPred_Home.aspx.

P
rotein phosphorylation is the most widespread and well-studied post-translational modification (PTM) in
eukaryotes and plays a crucial role in the regulation of virtually every cellular behaviour, including DNA
repair1, regulation of transcription2, apoptosis3, immune response4, metabolism5 and cellular differenti-

ation6. In addition, protein phosphorylation catalysed by kinase plays significant regulatory roles in intracellular
signal transduction7. Therefore, annotation of phosphorylation in proteomes is a first-critical step toward decod-
ing protein function and downstream regulatory networks. Historically, primarily though using low-throughout
biological techniques, such as the site-directed mutagenesis, 32P-labeling and degenerate peptide library screen-
ing, many novel and specific phosphorylation sites have been discovered. In recent years, the high-throughput
studies-large scale mass spectrometry-of protein phosphorylation in different organisms have rapidly accelerated
the identification of novel protein phosphorylation data8–10. For example, Wiśniewski et al.11 identified nearly
12,035 unique phosphorylation sites in 4,579 mouse brain proteins using mass spectrometry. Unfortunately, both
low-throughput and high-throughput biological techniques for identifying phosphorylation events are costly,
time-consuming, and biased toward abundant proteins and proteotypic peptides and cannot provide information
regarding the protein kinases that catalyse phosphorylation substrates in detail. Hence, in silico prediction of
phosphorylation sites is potentially a useful alternative strategy for whole proteome annotation.

Until now, more than a dozen phosphorylation site prediction tools have been developed, such as NetworKIN12

and recently developed Musite13, GPS 2.114 and PKIS15. Musite combined three different features to extract the
sequence information, and finally provided general prediction models for six organisms and kinase-specific
prediction models for 13 kinases or kinase families. GPS 2.1 reserved the old version of GPS and integrated a
novel approach of motif length selection. PKIS incorporated the composition of monomer spectrum (CMS)
encoding strategy and support vector machines (SVMs) to identify kinase-specific phosphorylation sites and
obtained good prediction results. In addition, to our knowledge, there are five review articles so far that have
comprehensively and systematically discussed the methods of computational phosphorylation site prediction,
and more information about these tools can be obtained from these five articles16–20. Although there are a number
of computational methods of phosphorylation prediction and they have made great progress in prediction, some
drawbacks of these models in this field still should be noted: (i) Many predictors are based on non-kinase-specific
methods and could not give the predicted kinase information for users, such as PPRED21 and PhosPhAt22. (ii) For
some kinase-specific tools, the number of experimental phosphorylation substrates for certain kinase is too small
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so that lacking of statistical significance, for example, GPS 2.114 and
KinasePhos 2.023 considered the minimum phosphorylation sub-
strates of only three and only one, respectively. (iii) The predicted
coverage of kinase types for some kinase-specific tools is too narrow
to provide comprehensive kinase prediction and the kinase hierarch-
ical classification is not considered, for example, Li et al.24 only con-
sidered eight kinase families for predictor construction. PKIS15 only
involved single kinases prediction but prediction for kinase family
and kinase group were not provided. (iv) The provided stringency for
some predictors is relatively high as they paid more attention to
specificity than to sensitivity, although the prediction accuracy is
promising, the true positive rate is low, such as Scansite25 and
Musite13. Therefore, new methods must be established and used
for more effective and comprehensive identification of kinase-spe-
cific phosphorylation site.

In addition, protein phosphorylation regulates many aspects of
cell life, whereas abnormal phosphorylation is a cause or con-
sequence of disease26. As we all know, protein kinases are one of
the most ubiquitous families of signalling molecules in the human
cell, accounting for approximately 2% of the proteins encoded by
the human genome27. The family of genes most frequently contri-
buting to different diseases such as neurodegenerative disease
and cancer is the protein kinase gene family28 which is implicated
in a huge number of tumorigenic functions including immune
evasion, proliferation, antiapoptotic activity, metastasis and angio-
genesis. It is now well-appreciated that many disease pathways
involve abnormal regulation of phosphorylation events. And
recently, increasingly more experimental observations have sug-
gested that protein kinase could indirectly or directly influence the
abnormal protein phosphorylation and further result in diseases29.
For example, Bose et al.30 have proven that Double-stranded RNA
dependent kinase (PKR) could induce Glycogen Synthase Kinase Ab
(GSK-3b) activation, tau phosphorylation and apoptosis in human
neuroblastoma cells exposed to tunicamycin or Ab peptide 1–42 and
activated PKR is increased in brains with Alzheimer’s disease (AD).
Wong et al.31 have found that Cyclin-dependent kinase 5 (Cdk5)-
mediated phosphorylation of Endophilin B1 is essential for autop-
hagy induction and neuronal loss in models of Parkinson’s disease
(PD). By analysing a unique randomized tamoxifen trial including
breast cancer patients receiving no adjuvant treatment, Busch et al.32

showed for the first time that patients low in ERK phosphorylation
in cancer associated fibroblasts (CAFs) did not respond to tamoxifen
treatment despite having estrogen-receptor alpha. Paccez et al.33 in
his recent review described that the receptor tyrosine kinase Axl
has been implicated in the malignancy of different types of cancer.
Saini et al.34 described that the phosphatidylinositol 3-kinase (PI3K)/
AKT/mammalian target of rapamycin (mTOR) and the Raf/mito-
gen-activated and extracellular signal-regulated kinase (MEK)/extra-
cellular signal-regulated kinase (ERK) signalling pathways are
critical for normal human physiology, and also commonly dysregu-
lated in several human cancers, including breast cancer (BC).
Ariadna et al.35 demonstrated for the first time that the implication
of DYRK1A overexpression in a developmental alteration of the
central nervous system associated with Down syndrome (DS). In this
regard, comprehensive analysis of abnormal phosphorylation assoc-
iated with different types of kinases will be helpful to promote the
understanding of how abnormal actions of the kinase are involved in
regulating biological processes and how they affect susceptibility to
diseases.

As described above that the kinase-specific methods could give the
kinase information for predicted phosphorylation substrates and
further help researches to explore the regulatory mechanism between
kinase and abnormal phosphorylation substrates. So in this paper, we
firstly constructed an efficient kinase-specific phosphorylation pre-
dictor and then used this tool to predict and analyse the types of
kinases for all disease-related phosphorylation substrates.

Results
The ability of PSEA to recognize true phosphorylation sites. We
first checked the ability of PSEA to correctly recognize the
phosphorylation sites. To enlarge the prediction coverage of
different types of kinase and to gain insights into function and
evolution of kinase, we classified all kinases into a hierarchy of
single kinase, kinase family and kinase group (for more
information please see supporting information for data
preparation and Tables S1–S4). A leave-one-out method was used
to test the performance for each positive and negative set. For each
test, a known peptide was picked and the others were treated as the
predefined peptide set. The P-values for positive and negative
peptides were then calculated by the PSEA method. The results are
represented in Tables S5–S13. From these tables we can see that for
all single kinases of phosphoserine, at the high stringency cut-off,
there are 13 terms and 18 terms whose sensitivities and specificities
are larger than 80%, respectively. When decreasing the stringency,
the corresponding specificity reduces, but most of single kinases can
still obtain high performance with both sensitivity and specificity
larger than 80%. From the receiver operating characteristic (ROC)
evaluation, we can find there are 15 kinases with areas under ROC
curves (AUCs) larger than 80% and all kinases’ AUCs are larger than
70% except the CaMK2-a, as shown in Figure 1. For single kinases of
phosphothreonine, most of the predictors also can obtain promising
performance except the PKCA (Table S6, Figure S1). The predictive
sensitivity of single kinases of phosphotyrosine is a little lower com-
pared with that of phosphothreonine and phosphoserine (Table S7
and Figure S2), mainly because the sequence conservation of
phosphotyrosine kinase is lower than that of phosphothreonine
and phosphoserine and the threshold setting for phosphotyrosine,
which is the same as that of phosphothreonine and phosphoserine, is
too stringent. Compared with single kinase method for phosphory-
lation prediction, the prediction performance of kinase family and
kinase group methods is a little depressed, which could express that
although some kinases in the same family or group have the similar
structure and function, the slight substantial difference is still exist.

Test on independent data and comparison with other existing
methods. To evaluate the performance of our method, we made

Figure 1 | The ROC curve and the corresponding AUCs for
phosphoserine prediction of different single kinases.
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comparisons with other existing predictors. Here we put our
independent test set into three recently developed and online
available methods: GPS 2.114, Musite13 and NetworKIN12. GPS 2.1
provides three levels of stringency (High, Medium and Low) with
different choices of threshold values. Musite and NetworKIN
support continuous stringency adjustment to meet different
confidence requirements for users. In order to compare our
method with Musite and NetworKIN conveniently, we chose three
appropriate levels of stringency (also called High, Medium and Low)
for Musite and NetworKIN with specificity (or score) as 85%, 90%
and 95% respectively through testing. All these stringency in GPS 2.1,
Musite and NetworKIN are all relatively high as they all paid more
attention to specificity than to sensitivity. The comparisons of
predictive performance between our method and other prediction
methods are shown in Figure 2. For different levels of stringency,
although the Acc and MCC of the CK2 in GPS 2.1, the CDK and
MAPK in Musite and the CDK in NetworKIN are slightly higher
than those of our method, most of kinase families in our method are
superior to other methods. For example, for the CK1 family, when
the stringency level of these four methods is High, the MCC of our
method reaches to 43.77%, which is about 19.58%, 28.20% and
44.09% higher than that in GPS 2.1, Musite and NetworKIN,
respectively. Also for the Src family, the MCC of our method in
these three levels of stringency is about 50%, which is about 25%
, 50% higher than that of three other methods. The results show that
the above three tools can achieve high specificity, but sacrificing
sensitivity would therefore result in a low MCC. Our method
offers good Sp as well as high Sn, which also illustrates that our
method is superior to the current methods. Note that, when
performing the comparisons, we used a prediction model that was
trained from a dataset excluding the protein sequences in the
independent test dataset. However, for GPS 2.1, Musite and
NetworKIN, some of the test proteins might have been included in
their training processes, and thus, the prediction performances may
be biased favourably toward these tools in the comparisons. This
possibility means that the performance improvement of our

method over these tools might be underestimated. Compared with
these existing methods, it is worth mentioning that the formula of
our method is much more concise or at least comparable with
previous established programs. More importantly, the reasonably
good performance of our method reflects that our method can
effectively evaluate the sequence similarity of phosphorylation
substrates for different types of kinases.

Predicting the types of kinase for disease-related phosphorylation
substrates. Protein kinases are a superfamily of proteins involved in
crucial cellular processes such as cell cycle regulation and signal
transduction. Accordingly, they play an important role in disease
biology. To contribute to the study of the relation between kinases
and diseases, we performed a prediction analysis by predicting
corresponding kinases of all disease-related phosphorylation
substrates which could result in different human diseases. To have
large prediction coverage of protein kinases, we determined to
use the kinase family predictors to predict the kinase families of
all disease-related phosphorylation substrates one by one. The
results are shown as orange bars in Figure 3 (we didn’t consider
the IKK because the prediction performance is not good enough).
We could find that MAPK family could catalyse 63.02% of disease-
related phosphoserine, while PLK family could only catalyse
32.45% of disease-related phosphoserine. We also checked the
effects of these disease-related phosphorylation substrates from
different databases (as described in the Methods), and found there
are 464 substrates that have annotation information of kinases. From
the known information, we found 111 (23.92%) disease-related
phosphorylation substrates can be catalysed by the MAPK. After
processing these substrates by using our predictors with High
stringency, we predicted 103 (92.78%) substrates that can be
catalysed by MAPK (all predicted and known kinase information,
the source and other detailed information of all collected disease-
related phosphorylation substrates can be downloaded from our web
site).

Figure 2 | Comparison of our method with other existing methods on independent set for different kinase families. (A), compared by accuracy (Acc);

(B), compared by sensitivity (Sn); (C), compared by specificity (Sp); (D), compared by Matthews correlation coefficient (MCC).
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Besides, the protein-protein interaction network in STRING data-
base was used to analyse the relationship between the MAPK3 and
PLK1 kinases (considering the limitation of the data of collected
kinase-specific phosphorylation, we only analysed the largest quant-
ity of MAPK3 and PLK1 kinases which contained in MAPK and PLK
families, respectively) and all disease-related phosphorylation sub-
strates, as shown in Figure 4. We could find that MAPK3 contacts
much more disease-related phosphorylation substrates than that of
PLK1 (P 5 4.66 3 10e28). It only displayed the direct contacted
interactions, considering the important roles in the regulation of
phosphorylation, it is reasonable to believe that there must be many
other indirect interactions which MAPK3 kinase reacts with disease-
related phosphorylation substrates. From the above analysis, not

only could we conclude that MAPK kinase family might occupy a
relatively large proportion in abnormal phosphorylation and further
result in different diseases but our method of kinase-specific predic-
tion of phosphorylation can effectively predict the corresponding
kinase type of phosphorylation substrates.

Significance analysis for the predicted kinase families of disease-
related and normal phosphorylation substrates. To compare the
difference of kinase families between disease-related and normal
phosphorylation substrates, we also predicted the same size of
normal phosphorylation substrates randomly selected from all
collected phosphorylation sites. For kinase family of phosphoserine,
the predicted results for disease-related and normal phosphorylation

Figure 3 | The data statistics of predicted phosphoserine kinase family types for disease-related and normal phosphorylation substrates. Significant

differences (P-value) refer to the Two-sided category. Statistical significance was calculated with a Fisher exact test.

Figure 4 | The relationship between specified kinases (MAPK3 and PLK1) and disease-related phosphorylation substrates (only displayed directly
contacted interactions). The nodes with green border line represent the specified kinases and the nodes with blue border line represent the

diseased phosphorylation substrates. Bar plot represents the degrees of MAPK3 and PLK1.
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substrates are shown in Figure 3. By using the Fisher exact test, we
could clearly find that MAPK family (P 5 2.76 3 10e22) and GSK
family (P 5 3.37 3 10e24) have significant difference in catalysing
disease-related and normal phosphorylation substrates, which might
infer that there two kinase families have more direct or indirect
association compared with other kinase families. Although we
cannot conclude that these two kinase families must involve in the
pathological processes, it provided a useful resource and guidance for
further experimental validation. Moreover, the analysis for
phosphothreonine and phosphotyrosine was also carried out in the
same way, but we could not find the significant difference (P . 0.05)
between the disease-related and normal phosphorylation substrates
among different types of phosphothreonine or phosphotyrosine
kinase families, the results are shown in Figures S3–S4.

Function analysis of disease-related phosphorylation substrates.
From the above results, we found the predicted MAPK and GSK
kinase families have significant difference in catalysing disease-
related and normal phosphorylation substrates. The question is
whether our prediction results are reasonable and reliable enough.
So in this part, we carefully analysed the characteristic of all disease-
related phosphorylation proteins, and found whether there are
connection between these proteins and the kinase families of
MAPK and GSK.

To better understand the distribution of the disease-related phos-
phorylation substrates in function protein groups, we analysed our
data to see if there is over- or under- representation (compared to the
normal phosphorylation substrates) of function elements such as
pathways and gene ontology (GO). Firstly, DAVID program36,37

was used to analyse the pathway to further explore functional aspects
of disease-related and normal phosphorylation substrates. Here the
top 10 significant results (P , 1.00 3 10e210) were shown in
Figure 5. We could find that 36.50% of disease-related phosphoryla-
tion substrates are involved in cancer pathways (containing path-
ways in cancer, prostate cancer, non-small cell lung cancer and
pancreatic cancer) and 8.25% are involved in neurotrophin signalling
pathway. After carefully analysing the characteristics of MAPK and
GSK kinase families, we found that MAPK kinase family can regulate
the related actions to induce the human colon, lung and breast can-
cers32,38,39 and the glycogen synthase kinase 3b (GSK3b), one member

of GSK kinase family, can catalyse Tau phosphorylation and plays an
important roles in the genesis and maintenance of neurodegenerative
changes associated with Parkinson’s disease40. In addition, after care-
fully analysing the effects of all disease-related phosphorylation sub-
strates we collected, we found those disease-related substrates could
mainly cause neurodegenerative diseases (Parkinson’s disease,
Alzheimer’s disease and Huntington’s disease) and cancers
(Carcinoma and Cancer), and the total numbers of those which could
result in these two types of disease are 170 (the percentage of the
whole disease-related phosphorylation substrates (806) which this
disease (170) accounts for is 21.09%) and 424 (52.61%), respectively,
which are also consistent with the results of pathway analyses.

As a result of the continuing advances made in previous studies,
protein phosphorylation was found to target broad substrates in
different biological processes. The collection of disease-related and
normal phosphorylation substrates from databases provided an
opportunity to analyse the functional abundance and diversity of
protein phosphorylation. Here, we statistically analysed the enriched
biological processes, molecular functions and cellular components
with the gene ontology (GO) annotations and compared the differ-
entiated GO terms with Fisher exact test (Two-sided category) for the
human disease-related and normal phosphorylation substrates. The
10 most over-represented terms of these three criteria are shown in
Table 1. We could find that chemical stimulus (GO:0070887,
GO:0042221) and other stimulus (GO:0009719, GO:0009725,
GO:0009605) in biologic processes are the most differentiated GO
terms and they are all over-represented in diseased phosphorylation
substrates. The results are consistent with the roles of MAPK kinase
family, as Giuseppe et al.41 have provided the evidence that
p38(MAPK) and ERK1/2 dictate cell death/survival response to dif-
ferent pro-oxidant stimuli via p53 and Nrf2 in neuroblastoma cells
SH-SY5Y, also, Min et al.42 have discovered that NF kappa B and
JNK/MAPK activation mediates the production of major macro-
phage- or dendritic cell-recruiting chemokine in human first trimes-
ter decidual cells in response to proinflammatory stimuli. For
molecular functions, the binding functions such as receptor binding
(GO:0005102), protein complex binding (GO:0032403) and ident-
ical protein binding (GO:0042802) are the most differentiated GO
terms, which are also consistent with previous studies of MAPK and
GSK families43,44. The diseased phosphorylation substrates are

Figure 5 | The data statistics of pathway terms for disease-related and normal phosphorylation substrates. Significant differences (P-value) refer to the

Two-sided category. Statistical significance was calculated with a Fisher exact test.
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Table 1 | Statistical comparison of the GO terms of the disease-related and normal phosphorylation substrates

Description of GO term

Diseased phosphor. Normal phosphor.

FDRc P-Valued Over/UndereNum.a Per.b (%) Num. Per. (%)

The most different biologic processes
Cellular response to chemical

stimulus (GO:0070887)
161 51.27 1094 19.15 1.18e230 7.87e235 Over

Response to chemical stimulus
(GO:0042221)

209 66.56 1852 32.42 3.80e229 5.05e233 Over

Response to organic substance
(GO:0010033)

169 53.82 1306 22.86 1.14e226 2.28e230 Over

Response to endogenous stimulus
(GO:0009719)

125 39.81 750 13.13 2.71e226 7.22e230 Over

Response to inorganic substance
(GO:0010035)

83 26.43 370 6.48 8.58e223 2.85e226 Over

Response to hormone stimulus
(GO:0009725)

107 34.08 622 10.89 1.42e222 6.48e226 Over

Response to external stimulus
(GO:0009605)

134 42.68 951 16.65 2.06e222 1.10e225 Over

Regulation of multicellular
organismal process

(GO:0051239)

161 51.27 1337 23.41 6.90e222 4.13e225 Over

Cellular response to organic
substance (GO:0071310)

129 41.08 908 15.90 1.44e221 9.58e225 Over

Cellular component movement
(GO:0006928)

130 41.40 927 16.23 1.91e221 1.40e224 Over

The most different molecular functions
Receptor binding

(GO:0005102)
93 29.62 711 12.45 9.37e213 8.41e215 Over

Protein complex binding
(GO:0032403)

62 19.75 356 6.23 1.10e212 9.38e215 Over

Identical protein binding
(GO:0042802)

93 29.62 715 12.52 1.08e212 1.02e214 Over

Protein tyrosine kinase activity
(GO:0004713)

32 10.19 105 1.84 2.02e211 2.35e213 Over

Protein kinase activity
(GO:0004672)

63 20.06 407 7.13 5.41e211 6.84e213 Over

Molecular transducer activity
(GO:0060089)

70 22.29 504 8.82 2.42e210 3.33e212 Over

Protein dimerization activity
(GO:0046983)

75 23.89 584 10.22 1.29e209 2.10e211 Over

Phosphotransferase activity
(GO:0016773)

64 20.38 463 8.11 2.61e209 4.41e211 Over

Kinase binding
(GO:0019900)

69 21.97 534 9.35 5.84e209 1.05e210 Over

Protein kinase binding
(GO:0019901)

65 20.70 487 8.53 6.76e20- 1.25e210 Over

The most different molecular components
Cytosol (GO:0005829) 181 57.64 1705 29.85 4.43e220 4.42e223 Over
Cytoplasmic part

(GO:0044444)
265 84.39 3474 60.82 1.65e216 6.41e219 Over

Cell periphery (GO:0071944) 176 56.05 1820 31.86 2.54e215 1.30e217 Over
Plasma membrane

(GO:0005886)
170 54.14 1736 30.39 4.91e215 2.78e217 Over

Cytoplasm (GO:0005737) 294 93.63 4301 75.30 1.08e214 6.77e217 Over
Mitochondrion (GO:0005739) 90 28.66 697 12.20 4.49e212 4.63e214 Over
Cytoskeletal part

(GO:0044430)
115 36.62 1036 18.13 7.61e212 8.40e214 Over

Cytoskeleton (GO:0005856) 134 42.68 1359 23.79 9.78e211 1.27e212 Over
Anchoring junction

(GO:0070161)
46 14.65 237 4.149 1.23e210 1.63e212 Over

Adherens junction
(GO:0005912)

45 14.33 234 4.097 2.79e210 3.88e212 Over

aThe number of diseased phosphorylation substrate in different GO terms.
bThe proportion of diseased phosphorylation substrate in different GO terms.
cThe false discovery rate of Fisher exact test (Two-sided category).
dThe P-value of Fisher exact test (Two-sided category).
eOver- or under- representation of diseased phosphorylation compared with normal phosphorylation in different GO terms.
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mainly localized in cytoplasm and membrane (such as GO:0005829,
GO:0044444 and GO:0005886) according to the cellular component
analysis. The above analysis showed that MAPK and GSK families
might have significant differences in biological processes, molecular
functions and cellular components for diseased and normal phos-
phorylation substrates, which could be helpful to design the protein
kinase inhibitors for abnormal phosphorylation related diseases.
Therefore, from the pathway and GO analysis we could further con-
firm that the MAPK and GSK families might have some really reg-
ulatory effects in disease-related phosphorylation.

Computation programs construction and web server. Our main
aim is to develop an open platform for computational analysis of
phosphorylation of human proteins. We chose the C# programming
language to execute all of calculation for its powerful computing
capability and excellent portability. Besides that, we have
constructed web service platform by using the Asp.net (C#). This
web service of predicting kinase-specific phosphorylation site is
freely accessible for academic researchers at: http://bioinfo.ncu.edu.
cn/PKPred_Home.aspx. In download page, all of data used in this
paper can be downloaded from this web site, such as all phospho-
rylation data, independent data and disease-related phosphorylation
data. Bug fixing and minor changes of phosphorylation prediction
model will be done. The improved phosphorylation prediction
model will be constructed when the new phosphorylation sites
data and kinase data become available.

With the web service of predictor, each query phosphorylation site
(S/T/Y) in sequences can get a score. A higher score indicates a higher
probability of the phosphorylation site by the selected kinase term.
To control the false-positive predictions, we suggest users pay more
attention to the predicted phosphorylation sites with P-values lower
than the top 10%. In this case, the estimated specificity will be higher
than 90%. Specific phosphorylation sites (S/T/Y) passing the sug-
gested cut-off are highlighted by colour in the table of prediction
results on the web site. The background set should contain unrepor-
ted phosphorylation sites; as such, the specificity is very likely under-
estimated. In our opinion, this cut-off should be loosened once
interaction between kinase and query protein occurs. In applications,
users can adjust the cut-off values according to the trade-off between
discovering more putative kinase-specific phosphorylation sites and
making fewer false-positive predictions.

Discussion
Protein phosphorylation regulates most aspects of cell life, whereas
abnormal phosphorylation is a cause or consequence of disease. A
growing interest in developing orally active protein kinase inhibitors
has recently culminated in the approval of the first of these drugs for
clinical use. Protein kinases have now become the second most
important group of drug targets, after G-protein-coupled receptors26.
With increasingly more disease-related phosphorylation substrates
were discovered in the clinic or in clinical trials, it is crucial to explore
the relationship between the protein kinases and these disease-
related phosphorylation substrates, such as whether the specific
kinase has the potential relation to specific disease and which type
of kinase can specifically result in the abnormal phosphorylation and
further cause disease. On the basis of large amount of kinase-specific
phosphorylation data and disease-related phosphorylation data, it
has become both a possibility and a priority to determine what the
functional implication of protein kinases are and how to use the
abnormal regulatory information of phosphorylation to develop
the corresponding protein kinase inhibitors for related diseases.

In this paper, we analysed the kinases’ characteristic of all collected
disease-related phosphorylation substrates for the first time on the
basis of our kinase-specific prediction method and predicted that
MAPK and GSK kinase families are enriched in the environment
of disease-related phosphorylation, which could be helpful to design

the corresponding protein kinase inhibitors to cure the diseases. Our
findings about MAPK and GSK kinase families also have been con-
firmed by some experimental observations. For example, Noble
et al.45 have reported that activation of p38a MAPK can lead to
increased activities of proinflammatory cytokines, such as tumor
necrosis factor-a and interleukin 1b. This observation suggested that
p38 selective inhibition could be a therapeutically useful route to
treatment of a number of inflammatory and autoimmune diseases.
Meijer et al.43 have reviewed that more than 30 inhibitors of GSK
have been identified to treat several diseases, including Alzheimer’s
disease and other neurodegenerative diseases.

Note that the capacity of disease-related phosphorylation data we
collected is not lager enough, we cannot rule out the possibility that
these data were gleaned from small-scale studies, which often aimed
at studying only the better-known protein kinases, and not their less
explored relatives, while the data in background set almost come
from high-throughput studies. So the statistics analysis between dis-
ease-related and normal phosphorylation data might have bias. But
to authors’ knowledge, there is no efficient method for large-scale
analysis of the relationship between kinases and phosphorylation
related diseases with computational model. Although we are not
completely sure that this statistics analysis is reliable, it provided a
useful resource for further experimental medicinal considerations. In
addition, with the rapid development of the biotechnology, more and
more diseased-related phosphorylation data will be detected, and our
idea of analysing the disease-related phosphorylation could give
another choice for the pathogenesis research.

When personalized medicine is the next frontier of scientists,
industry and the general population, it is important to develop com-
putational approaches that can lead to a better understanding of the
etiology of a disease. Considering the essential roles of phosphoryla-
tion in protein functions, integration of phosphorylation kinases and
molecular information is a sensible step in this direction because it
provides a structural and functional perspective to both the human
protein kinase and abnormal phosphorylation. Our work can not
only be used in pathophysiological diagnosis researches of abnormal
phosphorylation but also in the selection of protein kinase inhibitors
of clinical applications.

Based on the existing data, we constructed the kinase-specific
predictors and carried out the systematic analysis of all disease-
related phosphorylation and obtained some satisfactory result, but
several issues must be solved in future researches. (i) The phosphor-
ylation sites used in the predictors were mostly identified by high-
throughput methods, which may have inherent bias in terms of
representing the global phosphorylation events and consequently
affect the performance of prediction. As techniques like electron
transfer dissociation and alternative proteases are helping to resolve
technology limitations, more complete phosphorylation data sets
will be released. We will update our predictors as the new data
become available. (ii) We have only labelled positive data, but we
do not have labelled background and negative data (i.e. we still can-
not ensure the non-phosphorylation substrates are truly negatives,
although we have discarded the inaccessible substrate sites by using
the structural filters). (iii) The types of kinase for disease-related
phosphorylation substrates are only predicted from the aspect of
kinase family due to the data limitation of single kinases (we only
considered those kinases whose substrates is larger than 50), then the
analysis for these diseased phosphorylation might not be elaborate
enough. More kinases will be included in the system with the avail-
ability of more kinase-specific phosphorylation data and more
detailed analysis for disease-related phosphorylation substrates will
be carried out.

Methods
The PSEA method. Gene Set Enrichment Analysis (GSEA) was developed and used
on DNA microarray data to detect coordinated expression changes in a group of
functionally related genes and then was applied to find the putative functions of the
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long non-coding RNAs46–48. Taking advantage of the idea of GSEA, we proposed a
new method called PSEA (Phosphorylation Set Enrichment Analysis) to detect new
sites phosphorylated by a specific kinase, kinase family and kinase group. For each
term, we focused on finding sites which were similar in sequence with discovered
ones. We treated the phosphorylation sites and their surrounding amino acids as
phosphorylated peptides. Phosphorylated peptides from the above three levels of
kinase hierarchical classification formed kinase specific peptides sets (see Tables
S1–S3). To determine whether a query peptide could be phosphorylated or not, we
just needed to judge whether this query peptide was similar to the phosphorylated
peptides in that set. The PSEA method we developed can efficiently estimate this
similarity and the significance of the similarity. The following calculation was based
on the conception of the 15 amino acid long peptides. Compared with the original
GSEA method several necessary changes have been made49. The details of the PSEA
method (shown in Figure 6) are described as follows:

(i) Prepare the input data. Predefined each kinase group, kinase family and
single kinase specific phosphorylation site peptide set SP containing N pep-
tides, for example, SP (CDK2/S) containing 318 peptides and SP (CDK2/T)
containing 182 peptides, as shown in Table S1. Predefined background
peptide set Sb containing 10,000 randomly selected peptides from whole
background set.

(ii) Calculate Similarity Score. First, similarity scores between the query peptide
(denoted as Pquery) and each peptide in Sp and Sb were calculated according
to local sequence similarity13. For example, for two local sequence fragments
S1 and S2 (the window size is 2n 1 1), define the distance D(S1,S2) between S1

and S2 as:

D(S1,S2)~

Pn

i~{n
Sim(S1(i),S2(i))

2nz1
ð1Þ

Sim(a,b)~
M(a,b){min(M)

max(M){min(M)
ð2Þ

where, Sim is derived from the normalized amino acid substitution matrix. a
and b are the two amino acids, M is the substitution matrix (BLOSUM62 was
used in this paper). Then, all similarity scores were mixed together and
ranked from high to low. According to the above steps, we know that if
Pquery is similar to the peptides in Sp for a specific kinase level (single kinase,
kinase family or kinase group), these peptides in Sp should be enriched at the
top of the ranked similarity score list, and Pquery is likely a novel phosphor-
ylation site for that kinase level.

(iii) Calculate Enrichment Score (ES). To test the enrichment of the peptides in Sp

at the top of the ranked list, a running sum score was calculated by walking
down the ranked list. Here, we denote di as the similarity scores between

peptide Pquery and peptide Pi (contained in Sp), and D as the sum of jdij for all
Pi. While walking down the ranked list, the running sum score increased
jdj j/D when encountering a peptide Pj in Sp and decreased 1/10,000 when
encountering a peptide in Sb. Finally, ES was defined as the maximum of the
running sum score.

(iv) Evaluate Significance of ES. To evaluate the significance of the ES for a given
peptide, a total of 999 peptide sets with the same size as Sp were randomly
selected from the background peptides, and denoted as Sb1 to Sb999. Then the
ES for each set was calculated one by one by treating each set as predefined
peptide set. Finally, all of these 1000 ES (ES(Sb1), ES(Sb2)…ES(Sb999), plus
ES(Sp)) were ranked from high to low. If the rank of ES(Sp) is L, the nominal
P-value of the given peptide was calculated as L/1000. The P-value should be
ranked from 0.001 to 1, with the minimum interval of 0.001. The smaller the
P-value is, the more significant the chance that the given peptides were
phosphorylated by the specific kinase. In practice, the number of randomly
selected peptide sets can be changed according to different needs.

For the PSEA method described above, there are several advantages for clas-
sification. Firstly, it does not require the balanced number of positive and negative
datasets, as many machine learning methods did. Secondly, it directly calculates the
sequence similarity between two single peptides. In most of the cases, peptides in the
kinase set can be divided into several subsets which share little variation with each
other. The PSEA method is particularly suitable for these cases, because the ES of a
given peptide would be significant as soon as it is similar to some but not all peptides
in the kinase set.

Predicting the disease-related phosphorylation substrates. The information about
disease-related phosphorylation which could cause severe diseases were obtained
from the PhosphoSitePlus50, which is an online systems of biology resource providing
comprehensive information and tools for the study of post-translational
modifications (PTMs) of the protein, and providing MS/MS records for sets of
modification sites observed in specified diseases, cell lines, and tissues. We collected
320 human disease-related phosphorylation proteins, which contain 806 disease-
related phosphorylation terms. After collecting all the data, we further consulted the
SwissVariant51, UniProtKB/Swiss-Prot and PubMed databases about their effects,
and the references to the variations, phosphorylation information and related
diseases of corresponding proteins. The main alteration of these disease-related
phosphorylation data are hyperphosphorylation and hypophosphorylation, which
could further result in a series of diseases, such as Alzheimer’s disease, breast cancer,
and so on. As one disease-related phosphorylation site could cause two or more
diseases and we only analyse the relationship between kinase and disease-related
phosphorylation substrate, then we only count one time for these phosphorylation
sites. So after removing the redundant disease-related phosphorylation terms, we
lastly collected 265 disease-related phosphoserines, 63 disease-related
phosphothreonines and 237 disease-related phosphotyrosines (the data can be

Figure 6 | Detailed processes of the PSEA method.
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obtained from our online web site). With the kinase-specific predictor, PSEA, we
predicted the corresponding kinase family for each disease-related phosphorylation
site (because of the data limitation, the single kinase predictors only cover a small part
of all kinase in PSEA, so we use kinase family predictors to predict the disease-related
phosphorylation sites).

Enrichment analysis of normal and disease-related phosphorylation sites. Gene
Ontology (GO) is a major bioinformatics initiative. It meets the need for consistent
descriptions of gene products in different databases. It has been developed to manage
the overwhelming mass of current biological data from a computational perspective
and become a standard tool to annotate gene products for various databases52.
Enrichment analysis was performed to identify over- or under-represented GO terms
in the loss and gain of disease-related phosphorylation, compared to the normal
phosphorylation in the entire human phosphorylation proteome. According to the
two-sided category of Fisher exact test, the P-value of 0.05 was considered significant
and was calculated. Besides, the KEGG pathway was analysed by using online DAVID
program36,37, which provides a comprehensive set of functional annotation tools for
investigators to understand biological meaning behind large list of genes. We also
used the STRING database (version 9.1) of protein-protein interaction network to
analyse and explain the relationship between the kinase and the disease-related
phosphorylation substrates.

Assessment of the performance. The performance of PSEA was evaluated with the
positive and negative test sets, with the accuracy (Acc), specificity (Sp), sensitivity
(Sn) and the Matthews correlation coefficient (MCC) measurements defined in the
following way:

Sn~
TP

TPzFN
ð3Þ

Sp~
TN

TNzFP
ð4Þ

Acc~
TPzTN

TPzFPzTNzFN
ð5Þ

MCC~
TP|TN{FP|FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPzFNð Þ TNzFPð Þ TPzFPð Þ TNzFNð Þ

p ð6Þ

where, TP is the number of true positive predictions, TN is the number of true
negative predictions, FN is the number of false negatives, and FP is the number of false
positives. The accuracy denotes the percent of correct prediction in both the positive
and negative sets. The sensitivity and specificity depend on the threshold used for the
prediction. A highly stringent threshold will improve the specificity but reduce the
sensitivity, whereas less stringent threshold will increase the sensitivity at the price of
lower specificity. The MCC accounts for the true and false positives and negatives and
is usually regarded as a balanced measure that can be used even if the classes are of
very different sizes. Besides, receiver operating characteristic (ROC) curves were
calculated and plotted based on Sp and Sn to evaluate the prediction performance of
single kinases, and areas under ROC curves (AUCs) were also calculated based on the
trapezoidal approximation.

Threshold setting. Threshold setting is also a difficult problem. In general, most of us
chose different threshold for every protein kinase. Here we proposed that a uniform
rule to choose cut-off values based on calculated P-values. For all single kinases,
kinase families and kinase groups, the high, medium and low thresholds were
established with P-values smaller than 0.002, 0.005 and 0.015, respectively. The high
threshold is recommended to test a large-scale prediction of human phosphorylation
sites. The medium threshold often reduces the stringency to be useful in small-scare
experiments. Also, the low threshold reduces the specificity to improve sensitivity
considerably which is very useful in extensively experimental identification of all
potential phosphorylation sites in substrates.
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