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ABSTRACT The Collaborative Cross (CC) is a panel of recently established multiparental recombinant
inbred mouse strains. For the CC, as for any multiparental population (MPP), effective experimental design
and analysis benefit from detailed knowledge of the genetic differences between strains. Such differences
can be directly determined by sequencing, but until now whole-genome sequencing was not publicly
available for individual CC strains. An alternative and complementary approach is to infer genetic
differences by combining two pieces of information: probabilistic estimates of the CC haplotype mosaic
from a custom genotyping array, and probabilistic variant calls from sequencing of the CC founders. The
computation for this inference, especially when performed genome-wide, can be intricate and time-
consuming, requiring the researcher to generate nontrivial and potentially error-prone scripts. To provide
standardized, easy-to-access CC sequence information, we have developed the Inbred Strain Variant
Database (ISVdb). The ISVdb provides, for all the exonic variants from the Sanger Institute mouse
sequencing dataset, direct sequence information for CC founders and, critically, the imputed sequence
information for CC strains. Notably, the ISVdb also: (1) provides predicted variant consequence
metadata; (2) allows rapid simulation of F1 populations; and (3) preserves imputation uncertainty, which
will allow imputed data to be refined in the future as additional sequencing and genotyping data are
collected. The ISVdb information is housed in an SQL database and is easily accessible through a
custom online interface (http://isvdb.unc.edu), reducing the analytic burden on any researcher using
the CC.
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The Collaborative Cross (CC) is a large panel of recombinant inbred mouse
strains derived from a genetically diverse set of eight inbred founder strains:
A/J (A]), C57BL/6] (B6), 129S1Sv/Im] (129), NOD/ShiLt] (NOD), NZO/
HILt] (NZO), CAST/Ei] (CAST), PWK/PhJ (PWK), and WSB/Ei] (WSB).
These eight founder strains were first outcrossed for three generations to
produce mice with contributions from all eight founder strains. These
outcrosses were initiated, with different founder orderings, in over 1000 in-
dependent breeding funnels (Shorter et al. 2017). Mice within each funnel
were subsequently inbred for multiple generations until two or more an-
imals were identified by MegaMUGA genotyping as collectively having
over 90% of the genome fixed (i.e, homozygous and consistent for a

Volume 7 | June 2017 | 1623


http://orcid.org/0000-0003-4569-5160
http://orcid.org/0000-0002-3950-3794
http://orcid.org/0000-0001-9984-2600
http://orcid.org/0000-0002-5738-5795
http://orcid.org/0000-0002-2419-0430
http://isvdb.unc.edu
https://doi.org/10.1534/g3.117.041491
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.041491/-/DC1
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.041491/-/DC1
mailto:william.valdar@unc.edu

founder haplotype). These animals, hereafter termed the most recent com-
mon ancestors (MRCAs), were then chosen to become the obligate ances-
tors of all subsequent generations and bred to produce a distinct CC strain.
The set of MRCAs from all strains composes the CC’s obligate ancestors;
that is, the set of individuals that together circumscribes the initial genetic
material that can be passed on to subsequent CC mice. As a result of
this breeding scheme, the inbred CC strain genomes are random and
independent mosaics of the eight founder haplotypes Collaborative
Cross Consortium (2012); (Srivastava et al. 2017) (Figure 1; more
details at http://csbio.unc.edu/CCstatus).

This combination of independent genomes and high genetic di-
versity, along with the reproducibility of inbred strains, has made the CC
a unique resource in mammalian genetics, and early studies on the CC
have begun to exploit these features (Aylor et al. 2011; Ferris et al. 2013;
Phillippi et al. 2014; Rasmussen et al. 2014; Mosedale et al. 2017; Green
et al. 2017; Gralinski et al. 2017). To make optimal use of the CC strains,
it is desirable to have an accurate catalog of the genetic differences
between them—specifically, the positions and other characteristics of
all known CC strain genetic variants—and to be able to predict which
variants will be polymorphic in future hypothetical crosses of CC
strains and of CC strains with other laboratory strains.

Such information could be determined directly by sequencing, but
CC sequencing, soon to be released for a single male per strain (Srivastava
et al. 2017), is not yet easily accessible. Furthermore, sequencing from
a single animal will not resolve uncertainty arising from residual het-
erozygosity, since two animals from the same strain could easily differ
at residually heterozygous loci. More generally, whole-genome se-
quencing in most organisms is expensive and inconvenient.

A commonly used alternative is haplotype-based variant imputation,
whereby comparatively sparse and cheap genotyping data are combined
with more complete information about allelic state in (even extremely
distant) relatives to infer allelic state at ungenotyped positions in the target
sample. This typically involves inferring shared haplotype blocks and, by
assuming that individuals sharing a haplotype block also share the
corresponding allelic state, using this to impute genotype (Li et al. 2009;
Marchini and Howie 2010). A broad array of such imputation methods
have been developed for use in humans (e.g., Hawley and Kidd 1995;
Scheet and Stephens 2006; Marchini et al. 2007; Browning and
Browning 2009; Howie et al. 2009; Li et al. 2010) and livestock
(e.g» VanRaden et al. 2011; Hickey et al. 2012; Sargolzaei et al. 2014);
these typically either start by inferring haplotypes from the genotype
data or by approximating the pool of extant haplotypes via a large
reference panel, and then use those haplotypes as a means to impute
variant genotypes, which are assumed to be the primary interest.

In MPPs of model organisms, where the founder haplotypes are
usually known, it is more common for primary interest to focus on
reconstructing the haplotype mosaic itself, e.g., for the purpose of linkage
disequilibrium mapping (Mott et al. 2000; Liu et al. 2010; King ef al. 2012;
Fu et al. 2012; Gatti et al. 2014; Verbyla et al. 2014; Zheng et al. 2015). In
such cases, haplotype-based imputation of specific variants may proceed
as a second, refinement step to inform fine-mapping and candidate
prioritization (Yalcin et al. 2005; Tian et al. 2011). In any analyses using
imputed variants, it important to note that the haplotype-based variant
imputation is inherently probabilistic. A failure to account for variant
imputation uncertainty can negatively affect the robustness of down-
stream decisions (e.g., overconfidence in a functional assignment), and
can also produce misleading estimations of association significance and/
or variant effects (e.g., Marchini et al. 2007; Guan and Stephens 2008;
Kutalik et al. 2011; Zheng et al. 2011; Zhang et al. 2014).

Haplotype-based variant imputation lends itself particularly well to
MPPs because the haplotype blocks and the variants within are drawn
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Figure 1 Breeding process for two Collaborative Cross (CC) strains.
Both funnels begin by outcrossing the same eight founders, but the
initial outcrossing order differs, resulting in completely independent
populations per funnel. Animals are outcrossed for three generations,
then inbred until genotyping reveals at least two animals with >90%
consistent homozygosity by haploytpe. These homozygous animals
[a.k.a., the most recent common ancestors (MRCAs)] are chosen to
become the obligate ancestors for the CC strains; all subsequent gen-
erations of a CC strain descend from a subset of the MRCAs. In (A),
arrows show CC1 MRCA regions of inconsistent homozygosity (L1) and
residual heterozygosity (L2 and L3). After further inbreeding, only L2
continues to segregate. In (B), the CC2 MRCA set includes three an-
imals rather than two. After further inbreeding, only L1 continues to
segregate, but a de novo mutation has become fixed at L2.

from a known and relatively limited number of founders that can be (more)
affordably deeply sequenced and genotyped. This in turn reduces variant
imputation uncertainty. For MPP Rl strains in particular, once an animal’s
variants are imputed, the need for even sparse genotyping is largely obvi-
ated in its inbred descendants; they are effectively genotyped as well.
Haplotypes can, and have been, similarly imputed for the entire CC pop-
ulation based on the CC MRCAs. In particular, a hidden Markov model
(HMM)-based method (Fu et al. 2012) has previously been applied to
MegaMUGA genotyping of the CC MRCA animals coupled with
MegaMUGA genotyping from founder animals, (Welsh et al. 2012;
Morgan et al. 2015; Srivastava et al. 2017) to impute a probabilistic
estimate of each CC strain’s haplotype mosaic. Sequencing of the founders by
the Sanger Institute has provided a catalog of the sequence variants within the
founder haplotypes (Keane et al. 2011) as well as their predicted functional
consequences (McLaren et al. 2010), allowing for CC variant imputation.
However, although probabilistic imputed descriptions of CC hap-
lotypes are already available, the final step of imputing probabilistic CC
variant state using these haplotypes is currently left up to the researcher.
This imputation step can be time-consuming, especially genome-wide,
and it typically requires the researcher to develop their own ad-hoc,
nontrivial scripts to parse and process input files. We sought to ease this
burden by creating the ISVdb. This database computes and stores
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imputed probabilistic CC variant information once, and then provides
efficient, uniform, and convenient access through a publicly accessible
webtool.

ISVdb stored data and functionality

For all Sanger Institute sequencing variant positions that are exonic (or
100 bp upstream or downstream), polymorphic between CC founders,
and correspond to SNP/indels, the ISVdb provides conveniently acces-
sible information on the following:

a) unphased genotypes for CC strains/founders, including the func-
tional consequences per genotype, per transcript;

b) unphased haplotype pairs (hereafter, “diplotypes”) for CC strains,
derived probabilistically from MegaMUGA genotyping;

¢) unphased genotypes for hypothetical F1 crosses among and be-
tween CC and founder strains;

d) unphased diplotypes for hypothetical F1 crosses among and be-
tween CC and founder strains.

All information in the ISVdb is associated with a probability, to
reflect the uncertainty of inference (discussed in the next section). The
ISVdb interface is designed to be practical and oriented toward concrete
tasks. For example, the ISVdb could be used to answer the following
questions:

a) Given microarray measurements of CC expression, which probes
ought to be masked from analysis to minimize the effect of differ-
ential hybridization due to variants within the corresponding
probed regions?

b) Where should PCR primers be designed to bind so as to avoid
differential hybridization, while still amplifying informative
regions?

¢) What are the alleles per variant per CC strain in a given region, in
order to perform association mapping?

d) Given a pair of CC strains, or set of pairs of CC strains, where
would the resulting F1 offspring be heterozygous? Which CC
strains could be crossed with one another, or against a founder
strain, to ensure that a certain region is heterozygous in the
offspring?

e) Which CC strains contain a stop-gain codon in a particular gene?

f) What is the ratio of missense to synonymous mutations on a
particular chromosome?

g) Which regions are fixed across all CC strains? Which regions are
still segregating in a subset of CC strains?

h) Which regions are most uncertain, either in haplotype or in ge-
notype, across CC strains?

ISVdb preserves uncertainty

The primary purpose of the ISVdb is to provide genome-wide, inferred
CC genotypes. However, this inference depends on several processes and
measurements that are themselves imprecise: (1) sequencing of founder
strains was imperfect so some founder variant calls are ambiguous or
incorrect; (2) uncertainty in the sparse, genotyping-based estimates of
CC diplotypes; and (3) the CC strains themselves are still segregating in
some regions.

Properly representing and accounting for such sources of un-
certainty is essential to avoid inaccuracies in downstream inference.
Consider the effect of diplotype uncertainty on predicting the
functional consequences of the alleles in an F1 hybrid from two
CC mice.
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Suppose one of the CC parents had a 40:30:30 probability of AJ/AJ vs.
129/129 vs. NOD/NOD diplotype, where AJ carries a synonymous
mutation, whereas 129 and NOD both carry a stop-gain mutation.
Assuming the most likely diplotype, AJ/AJ, would imply a synonymous
mutation in the F1, even though there is a greater (60%) probability of a
stop-gain mutation.

The closest similar resource to the ISVdb, the CC “pseudoge-
nomes” set, (Morgan and Welsh 2015; Huang et al. 2013) was
designed primarily for sequence alignment: it employs most-likely
point estimates of genotype and assumes that all alleles are fixed.
Therefore, a key secondary goal of the ISVdb is to provide a resource
that retains all of the aforementioned uncertainty in CC and F1
genotype inference. The ISVdb achieves this by storing multiple
records per variant, in which each record includes a probability of
that varjant state.

METHODS

Inputs for database construction

All inputs are based on the GRCm38 mouse reference assembly.
Probabilistic estimates of CC unphased diplotypes were computed as
of March 24, 2016. These diplotype estimates were derived from a HMM
applied to MegaMUGA microarray measurements (Morgan and Welsh
2015).

Founder variants were determined using the Sanger Institute Mouse
Genomes Project mouse variant VCF files, REL-1410 (from October
2014), corresponding to Ensembl release 75 of GRCm38 (Keane et al.
2011). These VCF files included SNPs and indels (1-100 bp). Exon
boundaries were drawn from Ensembl release 75 as well (Ramasamy
et al. 2013).

CC genotype and diplotype inference: derivation
By tracing the potential transmission path of alleles from founders to CC
strains, an expression can be derived for the probabilistic distribution of
the unphased CC genotype, entirely in terms of known quantities. That
is, we can derive an expression for the unphased CC genotype at each
founder variant position, in terms of known unphased founder genotype
probabilities from sequencing, and known unphased MegaMUGA
haplotyping at markers. Along the way, we can also derive the probability
distributions of the CC diplotypes. The equations below are specific to a
given variant; they need to be recalculated for every founder variant and
CC strain combination.

First, note that the unphased CC genotype probability distribution
can be defined in terms of that of the phased CC genotype:

p(UGC = {a,a’}) :p(GC = (ma')) +p(Gc = (tl'7t1))7 1)

where UG, is the unphased genotype of CC strain ¢, {a,a'} is an
unphased genotype with (possibly identical) alleles a and a’, G, is
the phased genotype of CC strain ¢, and (a,a’) is a phased genotype
such that a is inherited maternally and a’ is inherited paternally.

The probability of the (typically unobservable) phased CC genotype
can be expressed in terms of phased founder diplotype as:

p(GC = (a,a’)) =

(hh')e H HP<GC = (@.)|Pe= (h7h,)> 'p<DC - (h,h’)),

(@)

where D, is the phased diplotype of ¢ at the variant, (h, h') describes
the phased diplotype composed of (possibly identical) haplotypes
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hand k', which transmit alleles a and a’ respectively, and H is the set
of all haplotypes.

Assuming maternal and paternal alleles are transmitted indepen-
dently, the first term in the product of the right hand side of (2) can be
expressed as:

p(Ge = (a.a)[D = (1)) =p(Ty = a) - p(Ty=a'), ()

where Tj, is the allele transmitted from parental haplotype h. T} in
turn depends on the founder h genotype, which is uncertain due to
potential sequencing error, and on the number of a alleles in that
founder genotype, which could be zero (homozygous for the minor
allele), two (homozygous for the major allele), or even one (hetero-
zygous) as some loci are not fully inbred in the founders. Assuming
transmission of either copy is equally likely,

p(Th=a)= Z(% number of a alleles in g) p(UG,=g), (4)
g€G

where UGy, is the unphased genotype for the founder of haplotype A,
G = the set of all possible genotypes and g is a genotype.

The second term in the product within Equation (2), p(D, = (h, k")),
also needs to be derived in terms of known values: we do not know the
probability of a given diplotype at any arbitrary variant position.
Rather, we do know diplotype probabilities of the markers to the left
and right of each variant position. As such, we can linearly interpolate
between the two markers:

o 1)
o ~p(D<C_l) - (h,h’)) T, -p(D(m - (h,h’))

wp+ wy

)]

where w; and w, are the distances from the variant position to the left-
nearest and right-nearest haplotyping markers, respectively. D, ;) and
Dy are the phased diplotypes of the cc strain at the left-nearest and
right-nearest haplotyping markers, respectively.

Equation (5) is expressed in terms of phased diplotypes, but our
observed MegaMUGA marker diplotype probabilities are unphased. If
we assume that both phasings are equally likely, then for the left marker
(similarly for the right),

p <D(c$l)> = %P (UD(CJ)> (6)

where UD is the unphased diplotype. The probabilities of each
unphased diplotype are known from microarray assays of the CC
strains.

This concludes the derivation: using (1)-(6), the unphased CC ge-
notype distribution, p(UG,), can be fully expressed from known
unphased founder genotype distribution p(UGj,) and known unphased
CC marker diplotype distributions p(UD( ) )-

Genotype and diplotype inference for simulated

F1 offspring

Once CC genotype/diplotype probabilities have been inferred, unphased
genotype/diplotype probabilities for F1 offspring between CC strains
and/or founder strains can be inferred as well. As in the previous
derivation, we can begin by expressing unphased genotype in terms
of phased genotype:
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(i~ o) (o= (o)) (00 - ()

Where UG); is the unphased genotype of the offspring of inbred
strain 1 and inbred strain 2. Gy, is the phased genotype.

Each phased genotype can then be rewritten in terms of the alleles
transmitted from its parent strains. Assuming transmission of an allele
from strain 1 is independent of transmission of an allele from strain 2,

P(6 = o))

= [p(Tl =a) ~p(T2 = a’) +p<T1 = a’) p(T, = a)} /2
®)

Combining (7), (8), and (4), the unphased offspring genotype distri-
bution can be expressed in terms of known quantities. Diplotype
probabilities for F1 offspring can be derived nearly identically.

Functional consequence inference
Functional consequences per variant, and per transcript, have been
predicted in the founder strains by the variant effect predictor
(McLaren et al. 2010). We assume that any CC strain inheriting a foun-
der’s haplotype inherits the same transcripts and functional conse-
quences as were in the founder in that haplotype region. This
assumption, that the genetic background will not affect functional con-
sequence, is not necessarily true; if a recombination event were to occur
within a gene (joining the sequence of two different founders into the
same gene in a CC strain) and was upstream of some variant, that variant
might no longer have the same effect. Nonetheless, our assumption is
mostly reasonable: given the relatively small number of recombinations
per CC line—on average 135 (Srivastava et al. 2017)—the number of
midgene recombinations is necessarily small, and an even smaller num-
ber of these recombinations will actually have an effect on downstream
variants. What might in fact be problematic to functional prediction
within the CC, more so than within-gene recombination, is the original
process by which functional consequences were predicted in the founder
strains: predictions were made a single variant at a time, without account-
ing for other, potentially compensatory variants within the same gene.
Of note, functional consequences in the ISVdb are represented as
uncertain; i.e., the probability of a given CC genotype is also applied to
the functional consequence of that genotype.

Database and GUI implementation

Scripts to parse VCF and haplotype files, perform genotype and dip-
lotype inference, and store the resulting processed information in a
MariaDB database, were implemented using a combination of Python,
VCFtools (Danecek et al. 2011), and R (R Core Team 2015). The ISVdb
online GUI was implemented using the Python Flask library. The GUI
was deployed online on the Carolina Cloud Apps managed platform,
provided by UNC Information Technology Services.

Two sets of tables are stored within the MariaDB database: (1) an
almost completely normalized set of tables with minimal redundancy and
(2) a set of prejoined, nonnormalized tables derived from the normalized
table that are designed to allow the GUI (which provides for typical ISVdb
use cases) to return results efficiently, using a minimum number of joins.
This second set of tables was an intentional trade-off of space for time.

A few additional database optimizations of note were necessary,
especially to rapidly generate probabilistic variant states for F1 crosses. In
particular, the ISVdb.v1.1 “database” is actually implemented (using R
code) as a collection of smaller databases, in which each smaller
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Show 10 3 entries Search: r |
variant_id chrom pos strain allele_1 allele_2 prob is_max gene_id .
1189172 19 6054748 CCO12 C C 0.249 0 ENSMUSG00000007338
1189172 19 6054748 CCO12 T il 0.249 0 ENSMUSG00000007338
1189172 19 6054748 CCO12 il C 0.499 1 ENSMUSG00000007338
B gene_id “  transcript_id consequence_1 consequence_2
vesnes ENSMUSGO00000007338 ENSMUST00000007482  3_prime_UTR_variant 3_prime_UTR_variant
""" ENSMUSGO00000007338 ENSMUST00000007482  reference reference
"""" ENSMUSG00000007338 ENSMUST00000007482 reference 3_prime_UTR_variant

Figure 2 (A) Example workflow of the Inbred Strain Variant Database (ISVdb) online graphical user interface (GUI). A user has queried the
genotype of CC012, on chromosome 19, from 6054740:6054749. The “Primary Query” panel also allows additional strains, and/or specification
of the region by genes instead. The user is interested in all zygosity variants, of all consequences, and all probabilities, and thus has applied no
secondary restriction. After the user clicked “Submit!,” a URL to download the resulting table was generated, as well as an online version of the
table. The first three rows of the table are shown here: noticeably they all represent the same variant in the same strain. The difference between
the rows is highlighted in the yellow box: the genotype per row and its associated probability. Collectively, the three rows represent that there is a
25% probability of a C/C genotype, 25% of T/T, and 50% of T/C at this variant in CC012. (B) The remaining wrapped columns of output from
part (A) (A was too wide). Note that each genotype has a different consequence, accentuating that only accounting for the most likely genotype
would cause a nonnegligible loss of information. Also, note that this figure was pieced together from a screen capture to fit on a single page.

database represents a single chromosome. Where applicable, most ta-
bles were indexed by variant and strain. Tables sizes were reduced by
dropping those variant diplotypes (and corresponding genotypes)
whose probability was < 0.001. Consequently, probability distributions
at some variants may not sum exactly to 1.

Data availability

The ISVdb version corresponding to this publication is ISVdb.v1.1,
uploaded on March 15, 2017. A frozen snapshot of ISVdb.vl.1,
including the v1.1 website interface and the variant information it
provides, will be maintained at http://isvdb.unc.edu/archive. Sub-
sequent ISVdb versions will be housed in the archive as well.
The frozen ISVdb.vl.l contents, and the inputs used to gener-
ate those contents, are also permanently stored on Zenodo at

-=.G3:Genes| Genomes | Genetics

https://doi.org/10.5281/zenod0.399474 (Oreper et al. 2017b). All
ISVdb.v1.1 results can be recreated from Supplemental Material,
File S8 and File S9, which are briefly described below, and in further
detail in File S1. As subsequent versions of ISVdb are developed,
their contents will also be archived (at another location) on Zenodo.

For ISVdb.vl1.1: File S1 contains detailed descriptions of all supple-
mental files; File S2 contains marker diplotype data for CC strains; File S3
contains nonmitochondrial SNPs for founders; File S4 contains indels for
founders; File S5 contains mitochondrial SNPs for founders; File S6 con-
tains the custom format specification for these VCF files; File S7 contains
BL37.75 exons (along with other genomic features); File S8 contains an
ISVdb.v1.1 dump of the imputed CC diplotypes per strain and per chro-
mosome, in CSV format; and File S9 contains an ISVdb.v1.1 dump of the
imputed CC genotypes per strain and per chromosome, in CSV format.
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Code used to generate the ISVdb and its GUI is available at https://
github.com/danoreper/ISVdb.git (Oreper et al. 2017a).

RESULTS AND DISCUSSION

The ISVdb houses and provides GUI access to imputed probabilistic
genotype and diplotype data, for all eight founders and all (as of March
24, 2016) 72 CC strains. CC allelic state is imputed at all exonic
(% 100 bp) founder SNPs and indels (which can be as long 100 bp),
but not at founder large structural variant positions (Morgan et al.
2017).

According to the ISVdb estimates of allelic state across strains, the
genotype in most variants is known with high certainty (Figure S1 in
File S10). Variants with uncertain genotype appear widely and
evenly distributed across the genome (Figures S2-S103 in File
S10). Residual heterozygosity, a key driver of uncertainty, is esti-
mated to affect 3.1% of exonic (= 100 bp) variants overall, but can
vary dramatically between strains and chromosomes; e.g., the pro-
portion of variants affected by residual heterozygosity ranges from
0 in CCO003 on chr 2 to 0.38 in CC056 on chr 8 (Table S1). Note that
heterozygous variants are defined as those with atleast a 25% chance
of continuing to segregate.

Approximately 72.6% of (the polymorphic) CC strain variants are
identical to the B6 mouse reference genome (Table S1). Intronic (8.8%),
downstream (4.3%), noncoding transcript (3.4%), and upstream variants
(2.9%) differing with respect to B6 are the next most common mutations,
while alleles expected to have a large effect, such as stop-gain (0.003%) or
stop-loss (0.001%) mutations, are extremely rare (Table S2).

Database accessibility/usability: ISVdb GUI
The intended interface to ISVdb data is through the publicly accessible
ISVdb GUI, hosted at http://isvdb.unc.edu; the GUI allows what we
believe to be the most common types of queries.

The ISVdb GUI can be broken up into roughly three panels:

a) A primary query panel that allows the user to query the ISVdb for:
(i) inbred strain genotypes, diplotypes, and F1 genotypes and dip-
lotypes; (ii) specify strains of interest; and to (iii) specify the ge-
nomic region(s) of interest; by basepair window, by genes, or by
(internal ISVdb) variant IDs.

b) A secondary restriction panel that allows the user to limit results:
(i) to the maximum probability estimate of variant state; (ii) and/
or only to that variant state which is more likely than a user-
specified probability threshold; (iii) to variants of a particular
zygosity; and (iv) for genotype and genotype cross queries, to
variants having particular functional consequences.

¢) An output panel that allows the user to: (i) submit the primary
query with secondary restrictions; (ii) save the full results by open-
ing a download URL in a browser; and (iii) examine the (first 1000)
results in a sortable and searchable table displayed online.

Additionally, the GUI provides: (i) a link to complete archived
versions of the ISVdb and (ii) a link to CSV dump files of genotype
and diplotype, per strain, per chromosome.

GUI-based genotype query

The ISVdb is most typically used to determine the genotype of a set of CC
strains in some region. When the ISVdb GUT is queried for genotype, it
produces a table with the following columns:

variant_id: an internal ISVdb variant ID per variant.
chrom: chromosome of variant.
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pos: variant start position, in mm10 coordinates.
strain: the inbred strain- either a CC or a founder strain.

The unphased genotype (allele_1 and allele_2 are arbitrary):
allele_1: the sequence of one allele at the variant.
allele_2: the sequence of the other allele at the variant.

prob: the probability that at this variant, this is the actual genotype.
Note that at any given variant position there is a distribution of
possible genotypes; as such there will be multiple rows represent-
ing each variant position, each with its own probability.

is_max: whether this is the maximum likelihood genotype at this variant.

gene_id: the Ensembl ID of a gene enclosing the variant. There may
be multiple overlapping genes enclosing a variant, resulting in a
separate row per gene for the same varijant.

transcript_id: the Ensembl ID of a transcript enclosing a variant. A
single variant will usually be enclosed by multiple transcripts,
each of which is affected differently by the variant; i.e., there will
different consequences per transcript, at the same variant, neces-
sitating a separate row per transcript for the same variant.

consequence_1: the predicted consequence of allele_1 on the tran-
script, with respect to B6. If allele_1 is the B6 allele, the conse-
quence is “reference”. Note that a consequence is always with
respect to some transcript.

consequence_2: the predicted consequence of allele_2 on the
transcript.

Example workflow for a genotype query

We provide an example of a genotype query to illustrate a partial ISVdb
workflow, and also to demonstrate how uncertainty is represented in the
ISVdb by storing multiple rows for a single variant in a single strain.
Details are provided in the Figure 2 caption.

Genotype queries are similar to other ISVdb queries
Genotype queries are just one of the four types of queries enabled by the
ISVdb GUI. The remaining types of ISVdb queries are almost identical to
a genotype query, and all of them represent uncertainty in the same
manner as a genotype query. Rather than describing them exhaustively,
we will emphasize how each differs from a genotype query.

a) Genotype cross query: rather than accepting a list of strains, this
query only accepts two strains, simulates their F1 offspring, and
returns data nearly identical in structure to genotype query data,
except for a second strain per record.
Diplotype query: there is no notion of a functional consequence
with regard to a diplotype, thus, diplotype queries return neither
functional consequences nor transcript IDs, which are closely tied
to functional consequence in the ISVdb. Additionally, instead of
records with (allelel, allele2) genotype, a diplotype query returns
records with (haplotypel, haplotype2) diplotypes.
c) Diplotype cross query: just like the genotype cross query, this query
accepts two strains as input and simulates their F1. It returns diplotype
data that is nearly identical in structure to that from a diplotype query.

b

=~

Incorporation of CC Sequencing and up-to-date

CC genotyping

The basis for the current version of ISVdb variant calls is integration
of MegaMUGA genotyping data from the MRCAs of each CC strain
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with the sequencing data from a single mouse per founder strain
(Keane et al. 2011; Fu et al. 2012; Srivastava et al. 2017) Consequently,
the ISVdb currently has important limitations regarding completeness,
heterozygosity, and imputation precision. With regard to completeness,
in the generations since the MRCAs, additional mutations have accu-
mulated and, thanks to the extremely small effective population size
within each CC strain, rapidly become fixed. Sequencing results suggest
that the number of variants now segregating in the CC has increased by
2% since the MRCA generation. (Srivastava et al. 2017). Similarly,
many of the regions harboring residual heterozygosity in the MRCA
animals have by now become fixed. Regarding the precision of the
imputation itself, the ability to construct the underlying haplotype
mosaic is limited by, among other things, the resolution of the
MegaMUGA genotyping array (or of any array), and particularly
how well that array can mitigate the inherent difficulties arising with
inferring haplotype state at recombination breakpoints and regions of
identity-by-descent between founders. Our imputed variants thus re-
flect an incomplete and uncertain view of the current generation’s
CC genomes.

To address these limitations and gain a deeper understanding of the
CC population, finer resolution data from a more recent breeding
generation has been collected: the genome of a single male per CC
strain has been sequenced (Srivastava et al. 2017), and this will not only
identify the de novo CC mutations but also reduce the uncertainty
in CC strain genotypes at known variants. Nonetheless, since
sequencing is limited to a single animal per strain, it does not
by itself provide a definitive answer genome-wide, largely due
to residual heterozygosity. In the near future, a set of three other
males per strain from the sequencing generation will be genotyped on
the MUGA platform (Fernando Pardo-Manuel de Villena, personal
communication).

The ISVdb will progressively incorporate these new sets of data
into its variant representation according to the following release
schedule:

IDVdb.vl.l1 (March 15, 2017): the current ISVdb version, corre-
sponding to this publication.

ISVdb.v1.2 (~June 2017): inclusion of the whole genome (rather
than exons = 100 bp as in ISVdb.v1.1), and the incorporation
of the latest MGP sequencing of the founder panel (REL-
15.04).

ISVdb.v2.0 (~July 2017): inclusion of sequenced de novo vari-
ants as new records in the ISVdb. This depends on projected
availability of the sequencing data, which is expected in April
2017.

ISVdb.v2.1 (~Sep 2017): inclusion of a first pass at integration of
sequencing and same-generation MUGA genotyping, to better
impute state at known (rather than de novo) variants: where
sequencing and MUGA variant calls are inconsistent, ISVdb
probabilities will be some sort of weighted sum of the data sour-
ces. Depends on projected availability of MUGA genotyping
data, expected in July 2017.

ISVdb.v3.0 (~December 2017): (a) a more sophisticated method of
modeling the inconsistencies between and among genotyping
and sequencing data to arrive at better estimates of genotype
uncertainty and residual heterozygosity; (b) this may be coupled
with reestimation of the founder genotypes themselves using CC
sequencing data, which indirectly provide us with ultradeep
founder sequencing and could be thought of as ancestral variant
imputation; and (c) inclusion of indels/SNPs for the whole ge-
nome rather than only for exons.
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ISVdb.v3.1 (~February 2018): inclusion of structural variants (> 100 bp)
and submission of a follow-up publication describing the latest
developments.

As the reference genome and its exon annotations changes, the
ISVdb will be updated as well.

In addition to updating the ISVdb with more accurate state, in-
corporation of the newest high-resolution data will allow a useful
comparison between generations. In particular, detection of loci that
have become fixed since the MRCA generation will open a new line of
inquiry as to the possible selective advantage of the newly fixed alleles.

In summary, we have developed a database that stores imputed
probabilistic variant state for CC strains and founder strains, and can
rapidly generate probabilistic variants states for F1 populations. Imputed
state includes alleles as well as predicted functional consequences of
those alleles. This resource is a useful complement to sequencing data,
and is easily accessible at http://isvdb.unc.edu.
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