
1Scientific Reports |         (2020) 10:3718  | https://doi.org/10.1038/s41598-020-60789-7

www.nature.com/scientificreports

Effects of extracellular medium 
conductivity on cell response in the 
context of sub-microsecond range 
calcium electroporation
Vitalij Novickij1,2*, Nina Rembialkowska3, Gediminas Staigvila1,2 & Julita Kulbacka   3*

In the present study, we report the effects of extracellular medium conductivity on cell response in 
the context of sub-microsecond range (100 ns–900 ns) electroporation, calcium electroporation and 
cell size. The effects of 25 ns and microsecond range (100 μs) pulses were also covered. As a model, 
three different cancer cell lines of various size (C32, MCF-7/DX and MC38/0) were used and the results 
indicated different size-dependent susceptibility patterns to the treatment. The applied pulsed electric 
field (PEF) protocols revealed a significant decrease of cell viability when calcium electroporation was 
used. The dependence of calcium ion transport and finally the anticancer effect on the external medium 
conductivity was determined. It was shown that small differences in conductivity do not alter viability 
significantly, however, mostly affect the permeabilization. At the same, MC38/0 cell line was the least 
susceptible to calcium electroporation, while the C32 line the most. In all cases calcium electroporation 
was mostly dependent on the sensitivity of cells to electroporation and could not be effectively 
improved by the increase of CaCl2 concentration from 2 mM to 5 mM. Lastly, sub-microsecond PEF 
stimulated aquaporin-4 and VDAC1/Porin immunoreactions in all treated cells lines, which indicated 
that cell water balance is affected, ions exchange is increased and release of mitochondrial products is 
occurrent.

Electroporation is a phenomenon of pulsed electric field (PEF) initiated permeabilization of biological cell plasma 
membrane, which serves as a basepoint of many successful biomedical and biotechnological methodologies1,2. 
The mechanism of electroporation is dependent on cell polarization in PEF and transient charge accumulation on 
the cell membrane (known as transmembrane potential, TMP)3,4. When a threshold TMP is reached, the permea-
bility of cell membrane is increased due to occurrence of transient hydrophilic pores5. It is believed that oxidative 
effects can be a separate mechanism responsible for the formation of pores during electroporation6,7, nevertheless, 
polarization of the cell is a primary trigger.

Polarization of the cell depends on the parameters of PEF, however, also on the permittivity and conductivity 
of both the cells and the medium3,8. Therefore, the effects of extracellular medium conductivity on electroporation 
efficiency have been focused for decades9–12. Absolute majority of the scientific works focus the micro-millisecond 
range of pulses, while a new modality of shorter (nanosecond range) pulses was introduced and is gaining pop-
ularity13,14. Currently, there are two contributions10,11 experimentally focusing the 12–102 ns range of pulses in 
the context of extracellular medium conductivity, while the sub-microsecond range is not covered in literature. 
Both papers are published by the same group Silve et al., however the upmost interest lies in the peculiar cell 
response to 12 ns pulses. According to these studies, the same DC3-F cell line indicated an opposite response 
to nanosecond pulses: permeabilization induced by 12-ns pulses of moderate magnitude 32 kV/cm is higher in 
1.5 S/m medium11, while the same pulses of 142 kV/cm are more effective in 0.1 S/m medium10. The lack of studies 
in the nanosecond and sub-microsecond range prevent forming descriptive conclusions about the mechanism 
of the phenomena. However, it is clear that electroporation does not linearly depend on the energy delivered to 
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the cells, therefore, treatment protocol selection becomes a non-straightforward task due to the dramatic shifts of 
treatment efficacy, which currently cannot be fully understood or predicted.

At the same time, calcium electroporation is a new modality of electrochemotherapy, which is sensitive 
to the mentioned phenomena15–17. Firstly, depending on the protocol the concentration of calcium may vary 
several-fold (i.e. from 0.5 to 5 mM)18, which inevitably alters the medium conductivity. Also, during in vitro stud-
ies the STM buffer (popular in electroporation works) is no longer applicable since calcium and phosphates pre-
cipitate15, limiting the methodology to buffers like 10 mM HEPES19, which have different conductivities. Changes 
in conductivity can severely alter the efficiency of electroporation and thus make the treatment planning, perme-
abilization prediction, comparison or consolidation of knowledge complicated.

In this work, we present experimental data on extracellular medium conductivity effects during electropo-
ration in the submicrosecond range (100 ns–900 ns) using mouse colon carcinoma MC38/0 cell line as a model. 
We superposition our data with available studies10,11 in the nanosecond range using 25 ns pulses of 60 kV/cm. To 
maximize the consolidation of knowledge and to provide a reference for the described efficacies, we also cover the 
conventional microsecond range (100 μs × 8) pulses. Selected treatment parameters from each range were also 
compared for human cancer cell lines MCF-7/DX and C32 to prove that the observed effects are consistent. Lastly, 
we show that calcium electroporation is dependent mostly on the sensitivity of cells to electroporation and cannot 
be effectively compensated by the increase of calcium concentration. The effects of different pulse parameters on 
the functioning of water channel (aquaporin-4) and pore-forming voltage dependent anion channel (VDAC) 
were studied.

Results
Simulation of cell transmembrane potential.  When the physics of pore size and resealing are not intro-
duced, the dynamics of potential relaxation does not depend on the applied pulse duration, but rather on poten-
tial amplitude and RC parameters of the system. Therefore, for analysis of potential relaxation the 8 kV/cm × 1 μs  
pulse was used. The results of potential relaxation in different conductivity of extracellular medium are shown in 
Fig. 1.

The cell was represented as an axisymmetric structure of material boundaries of different conductivity/thick-
ness (Fig. 1A), which influenced the dynamics of cell depolarization (Refer to Fig. 1B). It can be seen in Fig. 1B 
that the higher was the conductivity of the extracellular medium the more effective the depolarization of the cell. 
Also, the polarization of the cell is altered when the conductivity of external medium is comparable or higher than 
the conductivity of the intracellular liquid, due to the changes of current densities.

The dynamics of cell polarization and depolarization during 200 ns and 100 μs pulses are shown in Fig. 2.

Figure 1.  FEM simulation of cell transmembrane voltage, where (A) – axisymmetric mesh structure; (B) – 
post-pulse cell transmembrane potential relaxation for different conductivity mediums. Electric field direction 
is shown to provide the information about the pulse polarity during application of PEF.
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As it can be seen in Fig. 2, the lowest conductivity medium (0.05 S/m) due to RC charging nature of the 
cell limits the charging speed of the membrane. During 100 μs pulses the transient to reach the peak potential 
is in the range of 3.5 μs, which in comparison to duration of the pulse is not significant. However, the situa-
tion dramatically changes in the sub-microsecond range (200 ns), when the polarization time of the cell is a lot 
longer compared to the pulse duration. As a result, the induced transmembrane voltage during the same pulse 
(8 kV/cm × 200 ns) varies dramatically between mediums of different conductivity. Even a slight change (from 
0.05 to 0.1 S/m) influences the increases of transmembrane voltage up to 55% due to differences in dynamics of 
polarization.

Experimental data.  Electrotransfer in different conductivity mediums.  The efficiency of electrotransfer for 
MC38/0 was evaluated in two buffers: STM – standard for in vitro electroporation experiments and HEPES – 
typical for in vitro calcium electroporation studies. Taken that the only difference was the buffer, the resultant 
conductivities were 0.1 S/m and 0.05 S/m, respectively. Parametric analysis of PEF influence on the uptake of 
YO-PRO-1 (YP) was performed. The results are summarized in Fig. 3. In order to establish that the changes in 
uptake between STM and HEPES were mainly influenced by the extracellular medium conductivity, from each 
range of parameters (Fig. 3A–D) a protocol was selected (EP1–EP4) to test the uptake when HEPES is mixed 
with highly conductive phosphate buffered saline (PBS) to a resultant conductivity of the final solution of 0.1 S/m 
(identical to STM based medium).

As it can be seen in Fig. 3A, for the microsecond range (100 μs × 8), lower conductivity of the medium 
influenced higher permeabilization rate in the whole range of PEF amplitudes (0.6–1.5 kV/cm). Matching of the 
HEPES-based medium conductivity to STM resulted in lower permeabilization (compared to HEPES), however 
the difference was not statistically significant (P > 0.05).

Further, the 200 ns × 200 pulsing sequences were used in the 6–16 kV/cm range (Fig. 3B). The differences 
between HEPES and STM were more profound compared to the microsecond range protocols. However, the 
lower conductivity buffer (HEPES) resulted in lower permeabilization efficiency compared to the higher con-
ductivity STM, which was also predicted by the FEM simulation (Refer to Fig. 2). Matching of the HEPES based 
solution conductivity to the STM resulted in identical response as in STM, which is in agreement with RC model 
of the cell.

The same methodology was applied to test the phenomena in 100–900 ns range and a fixed amplitude PEF 
was used (12 kV/cm). The results are summarized in Fig. 3C. It can be seen, that the tendency is consistent in 
the sub-microsecond range – lower conductivity medium negatively influences the permeabilization efficiency. 
Matching/increasing of the conductivity (HEPES+PBS) improves the efficiency of YP uptake.

Lastly, we performed the series of experiments in the nanosecond range (60 kV/cm × 25 ns), which were also 
consistent with the RC model of the cell (Fig. 3D). However, we were not able to observe a significant (P < 0.05) 
incremental effect in permeabilization with increase of the number of the pulses from 200 to 1200.

Susceptibilities of human cancer cell lines to electroporation.  In order to establish that the observed effects of 
extracellular buffer conductivity are not cell specific, we have tested the selected protocols (EP1–EP4) on human 
skin melanoma (C32) and breast cancer (MCF7/DX) cell lines. The results are presented in Fig. 4.

As it can be seen in Fig. 4, different cells lines feature different susceptibility to electroporation, however, the 
tendency of the response in the context of extracellular medium conductivity is the same. In microsecond range 
(EP1), all three cell lines showed an increase in uptake of YP when a lower conductivity buffer was used (HEPES). 
Also, the skin amelanotic melanoma cell line was the most susceptible to the treatment followed by drug resistant 
breast cancer cells. The colon cancer (MC38/0) cell line was the least susceptible to PEF and the result was con-
sistent in the whole range of parameters (EP1–EP4).

Metabolic activity of cells after calcium electroporation.  In order to achieve high efficiency of calcium electro-
poration, high permeabilization rate of the cells must be ensured to maximize the electrotransfer. Therefore, 

Figure 2.  Dynamics of cell polarization and depolarization in extracellular mediums of different conductivity.
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for viability evaluation experiments (based on MTT assay) the energy of (EP1–EP4) was increased to ensure 
saturated permeabilization (EP5–EP8). Also, two concentrations of calcium were used (2 mM and 5 mM). All 
the experiments were performed in HEPES buffer. The 2 mM concentration was selected based on the available 
knowledge on calcium electroporation. It is known that a threshold in concentration exists when the calcium 

Figure 3.  Dependence of YP uptake on applied PEF parameters and medium type in MC38 cell line, where (A) – 
conventional 100 μs × 8 protocols; (B) – 200 ns × 200 pulses protocols; (C) – 12 kV/cm × 8 pulses protocols; (D) –  
60 kV/cm × 25 ns protocols; CTRL – untreated control; PBS – phosphate buffered saline.

Figure 4.  Dependence of YP uptake with selected PEF protocols between different cell lines, where EP1–
0.8 kV/cm × 100 μs × 8; EP2–8 kV/cm × 200 ns × 200; EP3–12 kV/cm × 500 ns × 8; EP4–60 kV/cm × 25 ns × 
400.
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electrotransfer starts to be effective, while 2 mM is an optimal dose across many cell lines20. The resultant con-
ductivity of the medium during the 2 mM Ca2+ electroporation procedure was 0.08 S/m. The 5 mM concentration 
(medium conductivity of 0.1 S/m) was selected to test if there is any treatment efficacy dependence on calcium 
concentration in the sub-microsecond range, which was not covered in literature previously. The results are sum-
marized in Fig. 5.

As it can be seen in Fig. 5, the metabolic activity data are in agreement with permeabilization experiments 
in terms of different susceptibility of cells to pulsed electric field. The C32 line was the most susceptible to treat-
ment, followed by MCF7/DX. The MC38/0 line showed the weakest response to the treatment. The differences in 
efficacy between calcium concentrations were statistically non-significant in absolute majority of experimental 
instances independently on the cell line, which implies that the efficacy of calcium electroporation is mostly 
dependent on the applied parameters of PEF/cell susceptibility and cannot be compensated by the increase of the 
calcium dose.

Taking into account the difference in electroporation efficacy between different conductivity buffers, we 
also expected to observe a reflection of the observed phenomena in the viability data. However, it was not the 
case. Independently on the applied protocol, the differences in metabolic activity in the context of extracellular 
medium conductivity were not statistically significant.

Aquaporin-4 and VDAC1/Porin immunostaining.  The expression of two membrane proteins: aquaporin-4 (AQ-4),  
which forms a water-specific channel and VDAC1/Porin (a mitochondrial channel involved in cell volume regu-
lation and apoptosis) were further analyzed in the study.

In case of melanoma (C32) the number of cells was reduced and the morphology was altered after electropo-
ration and in particular with calcium ions (Table 1 and Fig. 6a). We have observed a significant decrease of cell 
volume due to cell shrinkage and loss of adhesion by filopodia. However, the levels of AQ-4 were the same as in 
the control samples without PEF treatment.

In case of breast adenocarcinoma cells (MCF-7/DX) a slight increase of AQ-4 immunoassayed reaction 
when exposed to calcium ions was observed. The combination with PEF treatment triggered an increase of 
AQ-4 expression, i.e. EP6 (97% positive cells with 2 mM Ca2+). At the same time, EP4 parameter caused a slight 
decrease of the immune reaction, however, cell number was significantly reduced. Colon cancer cells revealed 
relatively low expression of AQ-4 in control samples (23%), while both calcium ions and electroporation alone 
increased the immunostained reaction (61% and 78%, respectively). The combined protocols (PEF + CaCl2) 
enhanced the intensity of the reaction and the percentage of expressing cells for all protocols.

Various levels of expression of VDAC1-porin channel in C32, MCF-7/DX and MC38 cells were also inves-
tigated. Amelanotic melanoma and colon cancer cells showed the most intense reaction, whereas lower level of 
the reaction was exhibited in resistant breast cancer cells. The results of VDAC1 immunoassay are presented in 
Table 2 and Fig. 7. A significant increase of the immune reaction after calcium electroporation was observed 
(100% stained cells). The altered cell morphology, i.e. reduction of cell size due to shrinking and a reduced num-
ber of cells were detected (Fig. 7a). In case of breast cancer cells the increase of VDAC1 expression was detected 
for nanosecond protocols EP6, EP7, EP8, and when calcium electroporation was used (Fig. 7b). Similarly, colon 
cancer cells showed the highest increase of VDAC1 expression when CaEP was used (almost 100% of stained 
cells). Nanosecond range pulses provoked breaking up of the cells from grouped culture into smaller populations 
and cell shrinking (Fig. 7c).

Discussion
In the present study, we report the effects of extracellular medium conductivity on cell response in the context of 
sub-microsecond range (100–900 ns) electroporation, calcium electroporation and cell size. The results are super-
positioned with intense 25 ns pulses and conventional (100 μs × 8) microsecond range treatment.

Figure 5.  Viability of different cell lines evaluated based on MTT assay after calcium electroporation, where 
EP5–1.2 kV/cm × 100 μs × 8; EP6–12 kV/cm × 200 ns × 200; EP7–12 kV/cm × 800 ns × 8; EP8–60 kV/cm × 
25 ns × 1200.
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The external medium conductivity had a major impact on the permeabilization rate of the cells in all the 
described electroporation ranges. For sub-microsecond range pulses, the data were in perfect agreement with the 
RC model of the cell predicting that the lower conductivity medium will reduce the permeabilization efficiency. 
Basically, the RC constant is too high for the effective charging of the cell membrane, thus lower TMP is induced 
even due to the slight reduction of conductivity. In the microsecond range the situation is the opposite and there 
is a controversy with the simple RC model, however, recently it was proven that microsecond range pulses addi-
tionally induce deformation during the pulse21. As a result, the altered cell form-factor influences the induced 
TMP and thus permeabilization efficiency12. Our experimental data are in agreement with available experimental 
works10,12,22, therefore, taking into account the deformation factor experienced during microsecond range electro-
poration, the mechanism seems plausible. For nanosecond pulses (25 ns) we were not able to observe the shifts in 
response between the low and high conductivity buffers as it was highlighted by Silve et al., previously11. However, 
we have used 60 kV/cm PEF, which can be still non-sufficient to observe the effect since the shift occurs only in 
extremely high field according to the mentioned study. Therefore, our data indicate that in the submicrosecond 
range (25 ns–900 ns) with field intensities up to 60 kV/cm, the response is consistent with the conventional RC 
response of the cell (lower conductivity = slower membrane charge and lower permeabilization).

We have also determined different susceptibility patterns for three cells lines and the results are in agreement 
with the size distribution of the selected cells. The smallest MC38/0 line was least susceptible, while the big-
gest C32 line was the most sensitive to the treatment. According to the established electroporation theory and 
the Krassowska cell model3, the induced TMP is the lowest for MC38/0, which shows no controversy with the 
observed susceptibility patterns. In the context of calcium electroporation the data obtained from viability assay 
follows the same susceptibility pattern. Additionally, calcium electroporation increased the conductivity of the 
suspension and thus affected the treatment also purely through polarization. Nevertheless, small differences in 
conductivity do not alter viability significantly, however mostly affect permeabilization, which is useful for pro-
tocol optimization purposes. This seems promising for applications where high permeabilization with minimum 
loss in viability is required such as electrotransfection. It was also shown that calcium electroporation cannot be 
effectively improved by the increase of calcium concentration above the threshold. The result is in agreement with 
the study23 by Wasson et al. During study design we speculated that the ultrashort pulses will result in lower elec-
trotransfer of calcium compared to the conventional procedures, thus increase of the concentration will allow to 
compensate for the loss. Partially it was true and the difference in treatment efficiency between 2 mM and 5 mM 
calcium concentrations was more profound in sub-microsecond range compared to the ESOPE protocol (Refer 
to Fig. 5), however, the differences were not statistically significant. It implies that 2 mM calcium concentration 
ensures almost saturated cell inactivation efficiency independently on the pulse range.

Lastly, the expression of two membrane proteins AQ-4 and VDAC1/Porin were investigated in the study 
to determine the influence of sub-microsecond pulses on the cell water balance, ions exchange and the release 
of mitochondrial products. Mitochondrial channels are responsible for regulation of mitochondrial ATP and 
calcium flux24. VDAC1/porin mitochondrial channel can control energy and cell metabolism, and as we know 
calcium ions can modulate its activity24. Thus, the processes that can affect lipid organization of cell membrane 
can also interfere with the action of membrane channels. In our study, the process of electroporation changed 
the expression of aquaporin-4 and VDAC1 channel. We suppose that electrical pulses can stimulate cell to over-
express transmembrane channels (here AQ-4 and VDAC1) and increase the flow of solute through the mem-
brane. Thus, in the context of “electropores” additional ways of transport are created. We assume that EP can 
induce overexpression of transmembrane proteins and supposedly can inhibit the channel in an open state or 

CaCl2 Control EP5 EP6 EP7 EP8

C32

0 mM 100%, ++ 95% ++/+++ 100%, +++ 100%, +++ 100%, +++

2 mM 100%, ++ 100%, +++
100%, +++ 
(strong cell 
shrinkage)

100%, +++ 
(strong cell 
shrinkage)

100%, +++

5 mM 98%, ++/+++ 97%, +++ 100%, +++
100%, +++ 
(strong cell 
shrinkage)

100%, ++/+++

MCF-7/DOX

0 mM 35%, −/+ 45% ++ 57%, ++/+++ 68% +++ 55% ++

2 mM 98% ++ 36%, ++ 97%, +++
74%, +++ 
(reduced cell 
size)

45%, + (reduced 
cell size and 
number)

5 mM 97% +/++ 10%, +/++ 100%, +++ 85%, ++/+++ 42%, + (reduced 
cell number)

MC38/0

0 mM 23%; + 32%, ++/+++ 24%, ++ 46%, ++/+++ 32%, ++/+++

2 mM 61%; ++ 42%, ++/+++ 77%, ++/+++ 53%, ++/+++ 51%, +++

5 mM 78%; ++ 91%, +++ 81%, ++/+++ 62%, ++/+++ 79%, +++

Table 1.  Positive grading quantification of immunocytochemical staining of Aquaporin-4 expression in the 
three different cell lines: C32 – human amelanotic melanoma; MCF-7/DOX – human breast adenocarcinoma 
cells resistant to doxorubicin; MC38/0 – murine colon adenocarcinoma.
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stimulate its activity. Such a phenomenon can explain the loss of cell volume. Previously, it was shown that cell 
volume change for e.g. after electroporation can lead to the consequent activation of chloride and potassium 
channels, with simultaneous water flow via aquaporins25. Recently, it was also highlighted that ion channels are 
quite promising targets in anticancer protocols. Ion channels are responsible for numerous cellular processes 
and their expression varies in different types of cancers26,27. In our study, an increase of expression of water chan-
nels and mitochondrial VDAC1 was determined, which can significantly support the cytotoxic and antican-
cer effect caused by EP and CaEP. The disruption of the channel functioning is an additional factor that may 
cause cell death26,27. Molecular dynamics study involving electropermeabilization effect on transmembrane water 
channels (aquaporins) demonstrated a significant effect of water self-diffusion during and immediately after the 
pulses28. Further studies revealed that electric pulses can play a role in gating mechanism, hence influencing water 

Figure 6.  Immunoassayed reaction with anti-aquaporin-4 antibody detected in (a) amelanotic human 
melanoma cells (C32); (b) human resistant breast adenocarcinoma cells (MCF-7/DX) and (c) murine colon 
adenocarcinoma cell (MC38/0), where EP5–1.2 kV/cm × 100 μs × 8; EP6–12 kV/cm × 200 ns × 200; EP7–
12 kV/cm × 800 ns × 8; EP8–60 kV/cm × 25 ns × 1200.
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permeability29. Thus, the modulation of selected channels expression and activity by electroporation seem to be a 
relatively good approach. However, further research is required.

To conclude, we have presented an experimental coverage of the cellular effects of PEF in the sub-microsecond 
range in the context of medium conductivity, calcium electroporation and cell size. We have also, provided data 
indicating the influence of sub-microsecond pulses on water and mitochondrial channels, which can be an addi-
tional way for molecules delivery, despite “nanopores”. The results may have application in optimization of PEF 
parameters for calcium electroporation and establishment of new approaches employing ion channel transport 
in anticancer therapy.

Material and Methods
Pulsed power setups.  The experimental setup consisted of 3 kV, 100 ns–1 ms square wave high voltage 
pulse generator (VGTU, Vilnius, Lithuania)30 and a commercially available electroporation cuvette with 1 mm 
gap between electrodes (Biorad, Hercules, USA). For 25 ns pulse delivery the PPG-20 generator (FID Technology, 
Germany) was used. The voltage (VC) that was applied to the cuvette was varied in the 0.06–6 kV range, corre-
sponding to 0.6–60 kV/cm electric field. Several groups of pulsing protocols were used: 1) 0.6–1.6 kV/cm × 100 μs 
× 8/1 Hz; 2) 6–16 kV/cm × 200 ns × 200/1 kHz; 3) 12 kV/cm × 100–900 ns × 8/1 Hz; and 4) 60 kV/cm × 25 ns ×  
200–1200/200 Hz.

The waveforms for 2–4 groups of protocols is shown in Fig. 8. The waveform for the ESOPE range protocols 
(1) is not shown since it is conventional. The waveform for 2nd and 3rd group of PEF protocols (Fig. 8A,B) do not 
feature significant overshoots/transient processes. However, the 4th group of pulses (Fig. 8C) has some oscillations 
mainly due to non-perfect impedance matching, which was a limitation of our infrastructure. The 25 ns duration 
was determined by the evaluation of the width of the pulse at 50% of the peak amplitude.

For C32 and MCF7/DX cell lines eight PEF protocols were used (EP1-EP8): EP1–0.8 kV/cm × 100 μs × 8; 
EP2–8 kV/cm × 200 ns × 200; EP3–12 kV/cm × 500 ns × 8; EP4–60 kV/cm × 25 ns x 400; EP5–1.2 kV/cm × 100 μs × 8;  
EP6–12 kV/cm × 200 ns × 200; EP7–12 kV/cm × 800 ns × 8; EP8–60 kV/cm × 25 ns × 1200.

Finite element method model.  The 2D axisymmetric finite element method (FEM) model of the cell 
in PEF was designed using COMSOL Multiphysics (COMSOL, Stockholm, Sweden). The input electrical pulse 
(8 kV/cm) was programmed by combining the rectangular and analytic COMSOL functions. The cell size was 
chosen to be 11 μm to simulate a MC38 cell line31. The cell membrane was defined as a thin 5 nm layer3 of resistive 
material (2.5 × 10−7 S/m)32. Intracellular medium conductivity30 was selected to be 0.5 S/m, while the extracel-
lular medium conductivity was varied in 0.05–0.5 S/m range. Complete free triangular mesh consisted of 28049 
domain elements and 513 boundary elements. Transmembrane potential charging was evaluated for 8 kV/cm × 
200 ns and 1.2 kV/cm × 100 μs pulses.

Cell culture.  The studies were performed in vitro on human breast adenocarcinoma cell line 
doxorubicin-resistant type (MCF-7/DX), obtained from the Department of Tumor Biology, Comprehensive 
Cancer Center, Maria Sklodowska-Curie Memorial Institute in Gliwice (Poland), human amelanotic melanoma 
cells (C32) purchased in ATCC®, MC38 murine colon adenocarcinoma cells were adapted to in vitro condi-
tions in Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences 
(Wroclaw, Poland)33. MCF-7/DX and C32 cells were grown in DMEM (Sigma, Poland), supplemented with 10% 
fetal bovine serum (Lonza BioWhittaker, Switzerland) and penicillin/streptomycin (Sigma, Poland). MC38 cells 
were maintained RPMI (Sigma, Poland) supplemented with 5% fetal bovine serum (FBS, Lonza BioWhittaker, 
Switzerland), 1% penicillin/streptomycin (Sigma, Poland), 0.5% sodium pyruvate (Sigma-Aldrich) and 50 µmol/L 

CaCl2 Control EP5 EP6 EP7 EP8

C32

0 mM 71%, ++ 83%, ++ 100%, +++ 100%, +++ 94%, ++/+++

2 mM 88%, ++/+++ 99%, +++ 100%, +++ 100%, +++ 100%, +++

5 mM 89%, ++/+++ 100%, +++
100%, +++ 
(reduced cell 
number)

99%, ++/+++ 
(cell shrinkage)

100%, +++ (cell 
shrinkage)

MCF-7/DOX

0 mM 65%, +/++ 53%, + 15%, + 88%, ++ 69%, +

2 mM 91%, ++ 57%, ++ 98%, ++/+++ 67%, +/++ 77%, ++ (cell 
shrinkage)

5 mM 90%, ++ 96%, +++ (reduced 
cell number) 100%, ++/+++ 100%, ++/+++ 100%, +++

MC38/0

0 mM 26%, ++ 59%, ++/+++ 75%, ++/+++ 67%, +++ 61%, ++

2 mM 34%, ++ 86%, ++ 82%, +++ 78%, +++ 83%, +++

5 mM 100%, +++ 100%, +++ 100%, +++ 96%, +++ 100%, +++

Table 2.  Positive grading quantification of immunocytochemical staining of VDAC1 expression in the three 
different cell lines: C32 – human amelanotic melanoma; MCF-7/DOX – human breast adenocarcinoma cells 
resistant to doxorubicin; MC38/0 – murine colon adenocarcinoma.
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2-mercaptoethanol (Sigma-Aldrich). Cell cultures were cultivated as a monolayer on a plastic flask 25 and 75 cm2 
(Nunc, Denmark), maintained in a humidified atmosphere at 37 °C and 5% CO2. and detached for the experi-
ments by trypsinization (trypsin 0.025% and EDTA 0.02% solution, Sigma, Poland). Cells were passed every 2–3 
days and a day before the experiment.

Figure 7.  Immunoassayed reaction with anti-VDAC1 antibody detected in (a) amelanotic human 
melanoma cells (C32); (b) human resistant breast adenocarcinoma cells (MCF-7/DX) and (c) murine colon 
adenocarcinoma cell (MC38/0), where EP5–1.2 kV/cm × 100 μs × 8; EP6–12 kV/cm × 200 ns × 200; EP7–
12 kV/cm × 800 ns × 8; EP8–60 kV/cm × 25 ns × 1200.
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Electroporation.  For electroporation cells were trypsinized and centrifuged (5 min, 1000 rpm, Centrifuge 
MPW-341 with stable rotor, MPW Med. Instruments, Poland). Then cells were counted and for each sample 5 
× 105 of cells were resuspended in STM buffer (10 mM phosphate (Chempur, Poland), 1 mM MgCl2 (POCH, 
Poland), 250 mM sucrose (POCH, Poland); pH 7.4) or HEPES buffer (10 mM, Sigma) containing 250 mM sucrose 
(POCH, Poland) and 1 mM MgCl2 in MilliQ water. For calcium electroporation, CaCl2 was added for a final 
2 mM or 5 mM concentration. After pulse delivery, the cells were incubated for 10 min at room temperature.

Viability assay.  MTT assay was performed 24 h after the end of EP experiments to evaluate cells mitochon-
drial function as a viability marker. Cells were incubated with 100 μl of the MTT [3-(4,5-Dimethylthiazol-2-yl)-
2,5-Diphenyltetrazolium Bromide] reagent (Sigma, Poland) at 37 °C for 1.5 h. Then, formazan crystals were 
dissolved with addition of 100 μl of acidic isopropanol and mixed. The absorbance was measured at 570 nm using 
multiwell plate reader (EnSpire Multimode Reader; Perkin Elmer, USA). The results were expressed as the per-
centage of mitochondrial function relative to untreated control cells. Experiments were repeated minimum three 
times in triplicate.

Flow cytometry and spectrophotometry.  Flow cytometry analysis was performed to evaluate elec-
troporation efficacy through the assessment of the ability of cells to internalize impermeant dye – Yo-pro-1. 
Immediately before EP, YO-PRO™-1 iodide (YP-1, λexc491/λem509, Thermo Scientific, Poland) was added to 
the cell suspension. Concentration of YP-1 in the STM or HEPES buffer was 1 μM. Flow cytometric analysis was 
performed using CyFlow CUBE-6 flow cytometer (Sysmex, Poland). The samples were excited using the 488-nm 
line of the blue laser and the fluorescence of YP-1 was measured with FL-1 detector. Data were analyzed using 
CyView software (Sysmex).

Immunocytochemical staining.  After the EP experiment cells were seeded on 10-well slides (Thermo 
Scientific, USA), incubated for 24 hours, rinsed with PBS and fixed using 4% paraformaldehyde. Then immu-
nocytochemistry was performed using the EXPOSE Mouse and Rabbit Specific HRP/DAB Detection IHC kit 
(Abcam, USA, ab80436). Briefly, after rinsing with PBS (3 × 5 min), peroxidase activity was blocked by 30 min 
incubation with 1% H2O2 and samples were permeabilized by incubation with 1% Triton X-100 (Sigma, Poland) 
in PBS (LabEmpire, Poland). Then the cells were incubated with selected antibodies for overnight at 4 °C. The 
following primary antibodies (diluted 1:200, purchased from Abcam, USA) were used: anti-Aquaporin 4 anti-
body [4/18] – a mouse monoclonal IgG (ab9512, Abcam), anti-VDAC1/Porin antibody – a rabbit polyclonal 
IgG (ab34726, Abcam). Then cells were incubated with the secondary antibody conjugated with horseradish 
peroxidase (HRP). Next, samples were incubated with a diaminobenzidine-H2O2 mixture in order to visualize 
the HRP label to visualize the peroxidase label and counterstained with hematoxylin (Roth, Poland) for 3 min. 
After dehydration in ethanol gradient (Chempur, Poland) and xylene (Chempur, Poland) microscopic slides were 
covered using DPX (Aqua-Med Zpam-Kolasa, Poland). The samples were examined using an upright microscope 
(Olympus BX53, Poland). Number of stained cell was determined by counting 100 cells in 3 randomly selected 
fields. The intensity of immunohistochemical staining was evaluated as (−) negative (no reaction), (+) weak, 
(++) moderate, and (+++) strong.

Figure 8.  The representative waveforms of the pulses. Acquired using DPO4034 digital oscilloscope (Tektronix, 
Beaverton, USA), where (A) 200 ns pulses; (B) 900 ns pulse; (C) 25 ns pulse; the colors are inverted.
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Statistical analysis.  One-way analysis of variance (ANOVA; P < 0.05) was used to compare different treat-
ments. Tukey HSD multiple comparison test for evaluation of the difference was used when ANOVA indicated 
a statistically significant result (P < 0.05 was considered statistically significant). The data was post-processed 
in OriginPro software (OriginLab, Northampton, MA, USA). All experiments have been performed at least in 
triplicate and the treatment efficiency was expressed as mean ± standard deviation.

Data availability
The data are available from VN on request.
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