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Generalized autocalibrating partially parallel acquisition (GRAPPA) has been a widely used parallel MRI technique. However,
noise deteriorates the reconstructed image when reduction factor increases or even at low reduction factor for some noisy datasets.
Noise, initially generated from scanner, propagates noise-related errors during fitting and interpolation procedures of GRAPPA to
distort the final reconstructed image quality. The basic idea we proposed to improve GRAPPA is to remove noise from a system
identification perspective. In this paper, we first analyze the GRAPPA noise problem from a noisy input-output system perspective;
then, a new framework based on errors-in-variables (EIV) model is developed for analyzing noise generation mechanism in
GRAPPA and designing a concrete method—instrument variables (IV) GRAPPA to remove noise. The proposed EIV framework
provides possibilities that noiseless GRAPPA reconstruction could be achieved by existing methods that solve EIV problem other
than IV method. Experimental results show that the proposed reconstruction algorithm can better remove the noise compared to
the conventional GRAPPA, as validated with both of phantom and in vivo brain data.

1. Introduction

Over the past few years, generalized autocalibrating partially
parallel acquisition (GRAPPA) [1], as an efficient parallel
magnetic resonance imaging (pMRI) technique, has been
widely studied. However, two main categories of errors exist
withinGRAPPAmethod:model error and noise-related error
[2]. While the first kind of errors mainly originates from
limited number of autocalibration signal (ACS) lines and
restricted kernel size, the second kind of errors generates
from noise in measured data and propagation error in kernel
weight estimation. Some methods have been proposed to
improve GRAPPA in recent years like using localized coil
calibration and variable density sampling [3], multicolumn
multiline interpolation [4], regularization [5, 6], reweighted
least square [7], high-pass filtering [8], cross-validation [2],
iterative optimization [9, 10], IIR GRAPPA [11], and so forth.

The conventional GRAPPA [1] can be considered as a
𝑘-space interpolation procedure along 1D phase-encoding

direction, before which a fitting procedure calculates the
interpolation coefficients using ACS lines. Multicolumnmul-
tiline interpolation (MCMLI) GRAPPA [4] extended the
conventional GRAPPA to 2D version by fitting coefficient
and interpolating missing data along phase-encoding and
frequency-encoding directions, which can be viewed as
improving model by increasing the kernel size. However,
interpolation weights are still generated from ACS lines
which are contaminated by noise in sampling from scanner,
so that noise still exists, which is likely even to be exaggerated
in propagation process. Furthermore, as reduction factor
increases, image quality deteriorates severely by noise and
residual aliasing [8]. On the other hand, some datasets were
seriously noise contaminated, so they display poor SNR even
at low reduction factor around 2 or 3.

Noise has been a major concern in many MRI experi-
ments. Some researchers also studied GRAPPA noise prob-
lem from various angles, including truncated SVD and
Tikhonov regularization [5] and iterative reweighted least
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square [7]. These methods tried to suppress noise in esti-
mating weight process rather than from system identification
perspective. Since GRAPPA reconstruction has been viewed
as a linear system [1, 11], in which ACS and a part of acquired
data construct the input and output of the system in fitting
process, based on the observation that input and output
have been contaminated by noise from scanner, estimation
of GRAPPA modeling weights will be biased, whose sever-
ity depends on measured noise power. This paper studies
GRAPPA as a noisy input-output system, which has been
addressed in various ways, including Koopmans-Levin (KL)
method [12], logarithmic least squares frequency-domain
method [13], combined instrumental variables and subspace
fitting method [14], and bias-eliminated least squares meth-
ods [15]. Noisy input-output system can be described by
means of errors-in-variables (EIV) model [13, 16], which
accounts for measurement errors in parameter estimation
[17]. Since noisy signals exist in inputs and outputs of fitting
procedure, GRAPPA is generalized as a noisy input-output
system represented by the EIV model.

This article presents a framework based on the EIVmodel
for identifying true weights of GRAPPA reconstruction.
Under this framework, a concrete method—IV GRAPPA—
is proposed, which discovers true functional relationship
among sampled andmissing 𝑘-space signals in terms of accu-
rate fittingweights.Theproposedmethodprovides a practical
approach for improving SNR with good performance. In the
following sections, we provide theoretical foundation and
mathematical description of the proposedmethod, and based
on which, a set of representative experimental results and our
discussions are presented.

2. Theory and Method

2.1. GRAPPA. The key component in GRAPPA is a seg-
mented fitting and interpolation routine [4]. Central 𝑘-
space of each coil is fully sampled at the Nyquist rate,
and outer 𝑘-space is downsampled by a reduction factor.
Central 𝑘-space, as the training dataset, is used for estimating
weights, and then missing data points are reconstructed by a
linear combination of acquired points from all 𝐿 coils. This
fitting and interpolation processes can be generalized as the
following equation:

𝑆𝑗 (𝑘𝑦 + 𝑟Δ𝑘𝑦, 𝑘𝑥) =
𝐿

∑
𝑙=1

𝑁𝑎

∑
𝑏=−𝑁𝑏

𝐻𝑟

∑
ℎ=−𝐻𝑙

𝑤𝑗,𝑟 (𝑙, 𝑏, ℎ)

⋅ 𝑆𝑙 (𝑘𝑦 + 𝑏𝑅Δ𝑘𝑦, 𝑘𝑥 + ℎΔ𝑘𝑥) ,
(1)

where 𝑆 is 𝑘-space signal, 𝑤 denotes weight set, 𝑅 denotes
reduction factor, 𝑗 is the target coil, 𝑙 counts all coils, and 𝑏
and ℎ transverse neighbor acquired points. The variables 𝑘𝑥
and 𝑘𝑦 represent coordinates along frequency-encoding and
phase-encoding directions, respectively.

The formulation of GRAPPA can be generalized as an
overdetermined system of linear equations [5, 11, 18], which
can be simply represented as

𝑏 = 𝐴𝑥, (2)

where 𝐴 represents the acquired data matrix in fitting and
interpolation processes which is the same as 𝑆𝑙 in (1), 𝑏
denotes acquired data matrix in fitting process and target
data matrix in interpolation process which is equivalent to
𝑆𝑗 in (1), and 𝑥 represents reconstruction weights which is
equivalent to 𝑤 in (1). From the linear system view, 𝐴 and
𝑏 represent input and output of the system, respectively. The
objective of the fitting process is to calculate the interpolation
weights, and interpolation process maps the acquired data to
a desired complete set of 𝑘-space data.

2.2. Noisy Input-Output System. In the fitting process, since
both input 𝐴 and output 𝑏 are acquired from central 𝑘-
space, which have the measurement noise, GRAPPA is
belonged to errors-in-variables (EIV) problem [17]. Linear
inverse problems give rise to parameter estimation problem
with correlated errors-in-variables, in which both input and
output variables are contaminated by noises, so fitting such
data using standard least squares can lead to bias in the
solution.

Usually measurement errors are usually described using
latent variables approach [19]. If 𝐴 and 𝑏 are observed values
of acquired 𝑘-space signal, we assume that there exist some
unobserved latent variables (noise-free signal) 𝐴 and 𝑏,
which model the true functional relationship 𝑓 of fitting
and interpolation, such that observed values 𝐴 and 𝑏 are
contaminated noisy observation:

𝐴 = 𝐴 + 𝜂𝐴,

𝑏 = 𝑏 + 𝜂𝑏,

𝑓 : 𝑏 = 𝐴𝑥,

(3)

where 𝜂𝐴 and 𝜂𝑏 represent contaminated noises and 𝑥
denotes true fitting weights, which cannot be observed.

In the fitting process, both 𝐴 and 𝑏 are known variables;
according to (2) and (3), 𝑓 : 𝑏 = 𝐴𝑥 can be reformulated as

𝑏 + 𝜂𝑏 = (𝐴 + 𝜂𝐴) 𝑥, (4)

where all denotations have the same meanings as those of (2)
and (3). So, there is a bias 𝜂𝑥 in weights 𝑥 generated from
fitting process:

𝑥 = 𝑥 + 𝜂𝑥. (5)

In the interpolation process, target data are unknown vari-
ables denoted by 𝑏𝑢, which can be generalized as

𝑏𝑢 = 𝐴𝑥 = (𝐴 + 𝜂𝐴) (𝑥 + 𝜂𝑥)

= 𝐴𝑥 + 𝐴𝜂𝑥 + 𝜂𝐴𝑥 + 𝜂𝐴𝜂𝑥,
(6)

where 𝜂𝐴𝜂𝑥 represents the propagated noise errors in terms
of a nonlinear form. In addition, the terms 𝐴𝜂𝑥 and 𝜂𝐴𝑥
also contribute biases in estimating the target signal 𝑏𝑢.
From above analysis, we can see noise generation routine
in GRAPPA under the framework of errors-in-variables
problem.
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2.3. IV GRAPPA. In order to reduce noise level caused by
EIV problems, somemethods have been proposed, including
total least squares (TLS) and instrumental variables [16].
TLS method that is a modeling technique with considering
observational errors is not scale invariant [20], so that it
may not be directly used for removing noise in 𝑘-space
reconstruction, because signal amplitudes at low frequency
and high frequency of 𝑘-space differ largely in scale.

The IV method is commonly used to estimate the system
dynamics (the transfer function from the input 𝐴 to the
output 𝑏) [16], which provides a consistent estimator when
explanatory variable (such as𝐴 in (3)) is correlated with error
terms (such as 𝜂𝐴 in (3)). It needs to provide an instrument
weighting matrix. To achieve consistent estimation, instru-
ments variables are uncorrelated with errors and correlated
with endogenous explanatory variable (such as 𝐴 in (3)).
Since least squares method generally achieves biased and
inconsistent estimates where measurement errors exist, IV
method may achieve unbiased and consistent estimates of
fitting weights in GRAPPA. According to model structure in
(2) for estimating weights 𝑥, while least squares method is
formulated as

�̂�LS = (𝐴𝐴𝐻)
−1 𝐴𝑏, (7)

the basic IV estimate of 𝑥 is presented as

�̂�IV = (𝑍𝐴𝐻)
−1 𝑍𝑏, (8)

where 𝑍 represents instrument matrix and𝐻 denotes conju-
gate transpose. The generalized method of moments (GMM)
[21] can be used to generate IV estimator as

�̂�IV = (𝐴𝐻𝑍(𝑍𝐻𝑍)
−1 𝑍𝐻𝐴)

−1

𝐴𝐻𝑍(𝑍𝐻𝑍)−1 𝑍𝐻𝑏

= (𝐴𝐻𝑃𝑍𝐴)
−1 𝐴𝐻𝑃𝑍𝑏,

(9)

where 𝑃𝑍 represents the projection matrix 𝑍(𝑍𝐻𝑍)−1𝑍𝐻.
This IV estimator is also called the generalized instrumental
variables estimator (GIVE), or the two-stage least squares
(2SLS) estimator [22].

Based on IV estimator, we can apply it on GRAPPA
reconstruction for estimating “true” weights. However, as
mentioned above, model error also exists in GRAPPA recon-
struction, which is not conformed to EIV model. For this
reason, in actual experiments,model error is also exaggerated
by IVmethod so that aliasing artifacts are more obvious than
that generated by least squares method. We only consider
removing noise-related error here using IV estimator in (9).

2.4. Selection of Instrument. There are twomain requirements
of choosing instruments [22]:

(i) The instruments should be correlated with the
endogenous explanatory variables, conditional on
other explanatory variables.

(ii) The instruments cannot be correlated with the error
terms (noise).

For 𝑘-space, because noise-related errors are generally
decided by signals at high frequency region (outer region)
and generation of aliasing artifacts is usually dependent
on signals at low frequency region (central region), in
order to avoid aliasing artifacts’ deterioration by IV method
mentioned above, we choose signals between high frequency
and low frequency regions for constructing instruments to
achieve a compromise between removing noise and suppress-
ing aliasing artifacts.

One common method of selecting instruments is to take
the delayed outputs of the system [16]. In fitting process
as shown in (2), the outputs of linear fitting process are
still ACS data and acquired data sampled from 𝑘-space.
Therefore, we directly use a part of these ACS data and
acquired data to construct the instruments 𝑍 for solving
weights, which can be considered as the delayed outputs of
the system. Specifically, we usually choose 2000–4000 data
points on ACS and acquired lines between low and high
frequency regions as instruments in experiments for 256
× 256 size 𝑘-space. Furthermore, we also defined a central
window on 𝑘-space, in which missing data points are still
interpolated byweights generated from the conventional least
squares technique. On the other hand, missing points outside
of the central window are generated by IV method. After
interpolating missing points, some of which are then used
to calculate goodness-of-fit coefficients to combine sliding
blocks [1], ACS lines and acquired lines are finally used to
replace corresponding locations to generate the complete
reconstructed 𝑘-space.

3. Experiments and Results

3.1. Experiment Settings. The performance of the proposed
method is validated by four datasets. A phantomwas sampled
by Gradient Echo pulse sequence with parameters (TE/TR
= 10/100ms, 31.25 kHz bandwidth, matrix size = 256 ×
256, FOV = 250mm2) on a 3T commercial scanner (GE
Healthcare, Waukesha, WI) with an 8-channel head coil. The
second is a four-channel head coil (axial plane, 4 coils, 256
× 256 matrix) scanned on a 3T commercial scanner (GE
Healthcare,Waukesha,WI).The third is a sagittal dataset that
was on a 1.5T SIEMENSAvanto systemwith a 4-channel head
coil using a 2DT1-weighted spin echo protocol (TE/TR=Min
Full/500ms, 24 cmFOV, 256× 256matrix).The fourth is a set
of in vivo brain data, whichwere acquired on a 3T commercial
scanner (GE Healthcare, Waukesha, WI) with an 8-channel
head coil (In vivo, Gainesville, FL).

The sum-of-square (SoS) reconstructions from the fully
sampled data of all channels are shown as the reference
(denoted as “Ref.” in images) for comparison. GRAPPA
reconstructions with the same sampling pattern and with the
same net reduction factor are also presented for comparison.
For each dataset, all images are shown in the same scale. For
kernel size, the number of blocks usually takes 4, and the
number of columns ranges from 1 to 10 [1, 4, 8, 9, 11]. We
also choose 4 blocks, and a larger number of columns: 11 for
reducing the influence of artifacts.
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Ref. G 4-65 G 3-32 P 4-56

(a)

(b)

(c)

Figure 1: The reconstructions (a), zoomed square regions (b), and difference maps (c) from scanned phantom data, in which each column
represents one kind of reconstruction or reference. “G” representsGRAPPA, “P” denotes proposedmethod, the number at left of “-” represents
reduction factor, and the number at right of “-” is the number of ACS lines.

3.2. Results and Discussion. In the case of phantom data
to which white Gaussian noise was added, the reduction
factor takes 4 for GRAPPA reconstruction. For the equivalent
comparison, the proposed method adopts the same sampling
pattern as above GRAPPA reconstruction with reduction
factor 4, 4000 acquired and ACS data points, and a 32 ×
32 central window are used. Again, GRAPPA reconstruction
with the same net reduction factor is also considered for
comparison, in which a lower reduction factor of 3 and less
number of ACS lines are used.

For the phantomdataset, we can see that, at reduction fac-
tor 4, noises are generated byGRAPPA reconstruction, which
seriously deteriorate image quality. Furthermore, another
sampling pattern of reduction factor 3 and 32 ACS lines,
which has the same net reduction factor as the previous
sampling pattern, also has noise contamination problem. By
comparison, the proposed IV method better removes the
noise in reconstruction process, which reduces more noise
than both GRAPPA reconstructions.

Figure 2 shows experimental results for the four-channel
brain (axial), the four-channel brain (sagittal), and the eight-
channel brain (axial) datasets, respectively. For the four-
channel brain (axial) dataset, the reduction factor also takes
4 for GRAPPA reconstruction, and the proposed method
adopts the same sampling pattern with reduction factor 4,
2000 acquired and ACS data points for instruments, and a 64
× 64 central window. In addition, GRAPPA reconstruction
with the same net reduction factor is also considered for
comparison, in which a lower reduction factor of 3 and less
number of ACS lines are used. For the four-channel brain
(sagittal) dataset, the sampling pattern with the reduction
factor 3 and 64 ACS lines is used for GRAPPA and the
proposed method that adopts 4000 acquired and ACS points
for instruments and a 64× 64 central window. Similar to four-
channel brain (axial) dataset, the eight-channel brain (axial)
dataset uses almost the same sampling pattern to that of
the four-channel brain (axial) dataset. The proposed method
uses 4000 acquired and ACS data points for instruments and
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Figure 2: Continued.
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(f)

Ref. G 4-38 3-12 PG 4-38

(g)

(h)

(i)

Figure 2: The reconstructions (rows (a), (d), (g)), the corresponding zoomed square regions (rows (b), (e), (h)), and difference maps (rows
(c), (f), (i)) from scanned in vivo data, in which “Ref.” is reference image, “G” represents GRAPPA, and “P” denotes proposed method, the
number at left of “-” represents reduction factor, and the number at right of “-” is the number of ACS lines. Rows (a–c) are the four-channel
brain (axial) results; rows (d–f) are the four-channel brain (axial) results; rows (g–i) are the eight-channel brain (axial).

a 48 × 48 central window for hybrid least squares and IV
estimation.

Visual evaluation on three in vivo dataset results indicates
that compared to GRAPPA reconstructions with the same
sampling pattern and with the same net reduction factor, the
proposed method improves the image quality in terms of
SNR and preserves more details. Furthermore, the proposed

method also suppresses the aliasing artifacts well. The pro-
cessing time of the proposed method is about 1.5–3 times of
GRAPPA reconstructions.

The normalized mean square error (NMSE) provides a
quantitative evaluation on experimental results as shown in
Table 1. The parameters of reconstructions in Table 1 are
the same as previous ones for Figures 1 and 2. In terms of
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Table 1: Comparison of NMSEs.

GRAPPA with same sampling pattern GRAPPA with same reduction factor Proposed
8-coil phantom 0.07 0.0421 0.0326
4-coil axial 0.4704 0.2506 0.0576
4-coil sagittal 0.6121 None 0.246
8-coil axial 0.1951 0.1176 0.1079

NMSE, the proposed method is superior to both GRAPPA
reconstructions for each testing dataset.

4. Conclusion

In this paper a general framework for removing noise of
Cartesian GRAPPA reconstruction is presented. The noise
generation procedure can be derived from the noisy input-
output system perspective for fitting and interpolation com-
ponents of GRAPPA. The IV method that has been success-
fully used to solve the EIV problems is applied on GRAPPA
reconstruction to estimate “true” weights. Under the pro-
posed framework, it may be possible for other methods (such
as [12–15]) that solve the EIV problems to remove noise
introduced in GRAPPA reconstruction.
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