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This paper proposed a fast convergence and balanced adolescent identity search algorithm (FCBAISA) for numerical and
engineering design problems. The main contributions are as follows. Firstly, a hierarchical optimization strategy is proposed to
balance the exploration and exploitation better. Secondly, a fast search strategy is proposed to avoid the local optimization and
improve the accuracy of the algorithm; that is, the current optimal solution combines with the random disturbance of Brownian
motion to guide other adolescents. Thirdly, the Chebyshev functional-link network (CFLN) is improved by recursive least squares
estimation (RSLE), so as to find the optimal solution more effectively. Fourthly, the terminal bounce strategy is designed to avoid
the algorithm falling into local optimization in the later stage of iteration. Fifthly, FCBAISA and comparison algorithms are tested
by CEC2017 and CEC2022 benchmark functions, and the practical engineering problems are solved by algorithms above. The
results show that FCBAISA is superior to other algorithms in all aspects and has high precision, fast convergence speed, and

excellent performance.

1. Introduction

Optimization is an important part to find better solutions
when solving many scientific problems [1]. Many practical
problems ultimately boil down to a set of decision variables
that make the objective function to obtain the most optimal
value. Researchers have found that meta-heuristic algo-
rithms can solve many practical problems in the specified
error range, which greatly improves the efficiency. There-
fore, a variety of meta-heuristic algorithms are widely
proposed by researchers, which are used to find approximate
solutions of many complex problems. Based on studies from
many researchers, meta-heuristic approaches can be divided
into four main categories [2], and its details are shown in
Figure 1.

A mature global optimization method with good stability
and wide applicability is named evolutionary computation.
EAs are inspired by the evolutionary operation of organisms
in nature. They have characteristics of organization, adaptive,

and learning, which can be applied to solve complex prob-
lems effectively, which is difficult to be solved by traditional
optimization algorithms. Some of the renowned algorithms
are genetic algorithm (GA) [3], differential evolution (DE)
[4], estimation of distribution algorithms (EDA) [5], etc.
Swarm intelligence mainly simulates a group behavior of
insects, herds, birds, and fish. Each member of the pop-
ulation constantly changes direction by learning its own
experience and other members’” experience. This phenom-
enon stimulates design algorithms and distributed problem
solution. There are many such algorithms, for example,
particle swarm optimization (PSO) [6], investigation of bee
colony algorithm (ABC) [7], bacterial foraging algorithm
(BFA) [8], Harris hawks optimization algorithm (HHO) [9],
research on firefly algorithm (FA) [10], fruit fly optimization
algorithm (FOA) [11], krill herd algorithm (KH) [12], re-
search on crow search algorithm (CSA) [13], grass fibrous
root optimization algorithm (FRO) [14], Flamingo search
algorithm (FSA) [15], flow direction algorithm (FDA) [16],


mailto:haoliu@ustl.edu.cn
https://orcid.org/0000-0002-8205-9211
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5692427

T
PSO I CSO
|
ABC | GWA
|
Swarm-based
- T
= o
3 =]
,,,,,,,, 5 o g Lo _]
i I°a
Z %
2. a.
Evolutionary
|
DE | EDA
GA i ES
1

Figure 1: Classification of meta-heuristic techniques (meta-heu-
ristic diamond).

grey wolf optimizer (GWO) [17], battle royale optimization
algorithm (BRO) [18] and coot swarm optimization (CSO)
[19].

Meta-heuristic algorithms are based on physics or
chemistry and formed by observing some physical or
chemical phenomena and using their laws including gravity,
potential energy, ecosystem, and motion. Simulated
annealing (SA) [20], gravitational search algorithm (GSA)
[21], noisy intermediate-scale quantum algorithms (NISQ)
[22], chemical reaction optimization (CRO) [23], charged
system search (CSS) [24], black hole (BH) [25], ions motion
algorithm [26], multiverse optimizer (MVO) [27] and vortex
search (VS) [26] are some optimizers in this category.

The last kind of meta-heuristic algorithm is based on
human behavior, habit, thought, and logic. It is very popular
in solving many problems, such as Tabu search (TS) [28],
mine blast algorithm (MBA) [29], teaching-learning-based
optimization (TLBO) [30], interior search algorithm (ISA)
[31], exchange market algorithm (EMA) [32] and heuristic
genetic algorithm (HGA) [33].

Optimization is applied to various real-life applications
to reduce the waste of resources, save costs, reduce expenses,
and maximize benefits. Researchers develop a large number
of new algorithms or hybrid algorithms to solve real-life
problems. In the process of product development, the newly
developed political optimization algorithm (POA) was used
and minimized the product cost, which is a new idea for
industrial companies to fill the gap in their product design
stage [34]. The new optimizer based on the ecogeography-
based optimization algorithm (EBO) was applied to vehicle
design for the first time, and better design results are ob-
tained [35]. A new optimization algorithm based on
grasshopper optimization algorithm and Nerdler-Mead
algorithm (HGOANM) was developed to explore robot
design of the robot gripper mechanism. The results showed
that this algorithm can solve practical engineering problems
quickly in Reference [36]. A new hybrid Taguchi salp swarm
algorithm (HTSSA) was designed and used to speed up the
optimization process of industrial structure design. The
results reflected that the ability of HTSSA was superiority to
optimize the product design process [37]. The new optimizer
was developed, which is based on Seagull optimization
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(SOA), and its performance was verified by large-scale in-
dustrial engineering problems [38].

With the research and development of algorithms, the
continuous development of optimization algorithm diversity
is encouraged. A novel meta-heuristic approach based on
human behavior for solving various complex optimization
problems was introduced and called adolescent identity
search algorithm (AISA) [39], which are first proposed by
Esref Bogar and Selami Beyhan in 2020. This paper makes a
series of improvements to AISA, which can make it per-
formance better. The main contributions can be summarized
as follows:

(i) This work divides the iteration into three layers and
makes full use of the update mechanism of each
layer to obtain the best adolescent identity, which
can enrich population diversity, and balance the
capabilities of exploration and exploitation better.

(i) The current optimal solution guides other adoles-
cents to combine Brownian motion, which can
accelerate the convergence speed of the algorithm
and prevent the algorithm from local optimization.

(iii) Recursive least squares estimation (RLSE) is pro-
posed to estimate the weight factor better. Opti-
mizing the improved CFLN can improve the ability
of exploration and exploitation, which makes the
optimal solution and can be found more eftectively
by the algorithm.

(iv) To prevent AISA into local optimum at the late
iteration, a terminal bounce strategy is proposed.

The structure of this paper is listed as follows. In Section
2, the adolescent identity search algorithm (AISA) is in-
troduced. Section 3 describes FCBAISA in detail. The ex-
perimental comparison among FCBAISA and other
algorithms is presented and discussed in Section 4. The
practical engineering problems are solved by FCBAISA and
comparison algorithms in Section 5. In Section 6, the
summaries of this paper and the future work based on
FCBAISA are listed.

2. The Canonical AISA

An optimization algorithm constructed on human behavior
was called AISA by Esref Bogar and Selami Beyhan in 2020.
Through observing the formation process of adolescent
identity and modeling it mathematically, a creative algo-
rithm has been formed. This section briefly describes AISA,
the details in Reference [39].

2.1. Population Random Initialization. In AISA, a random
initial population is generated by

xXj=1b;+U(0,1); % (ub; = Ib;),i = 1,2,...,N;
j=L12,...,n,

1

where x', is the j identity feature of the i’ adolescent and
U (0,1) is an random number distributed uniformly in the
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range [0, 1]. Ib is the lower boundary vectors of search space,
and ub represents the upper.

2.2. Creating a New Identity. According to the characteristics
of adolescent identity exploration, it is assumed that a sit-
uation is randomly selected during the iterative update. The
three cases of adolescent identity feature selection in this
algorithm are as follows:

Case 1. Teenagers form their identities by observing the
surrounding society, judging social values, and choosing the
correct beliefs and attitudes. Specifically, the Chebyshev
functional-link network (CFLN) [40] approximation model
is introduced to find the best adolescent identity, and the
modeling process is as follows.

Chebyshev polynomials are shown in the following
equation:

L ifs =0,
T (x)=1 x ifs=1, (2)
2xTg (%) =T, (x), ifs=2,
where s is the degree of Chebyshev polynomials.

Normalizing input samples (population) for the CFLN
model in [-1,1] by using the following equation:

N L (3)
X.=L—)—1,

7 ub; - 1b;
where X', is normalized value of the j identity feature of the
i adolescent. Ib and ub are the lower and upper boundary
vectors of search space. The identity is represented by the
following normalized input matrix:

=1 =1 =1

xl x2 e xn

ez

%= . 4)
~N =N ~N
X1 X3 o Xy dNxn

Then, according to (2), the matrix ¥ of each input el-
ement is obtained by (5), and ¥ is the regression matrix.

[Ty (%)) - To(%p) oo Ty (%,) - T.(%,)
= T, (’Acﬁ) Ts(’?1) """ T, (iﬁ) Ts@f,)
[Ty (&) o T(R) oo T(®)) - T(E) L
'1//} ...... y/il
v v
AR WY

(5)

Weighting factors are estimated by using the least square
estimation (LSE) in approximate model as follows:

3
o=(¥"e) ¥ f
¥=[a],...,0, - - L. a) ] (6)
= [ wl’ ...... R w” ]1><(n><5)’

where w/ represents the weight vector of the j* input.
All elements in (4) after normalization, the fitness values
are calculated by (7) and stored in the matrix F.

7i=via, (7)
fo B T
SRR ER )

~N =N ~N
f 1 f 2 ' f n ANxn
Finally, the fitness values of the random initialization
matrix elements are calculated and find the row index of the
minimum value of each column in the matrix through the
approximate model to form the best vector of identity of the
present population, as shown in the following equation:

* ml
X. =X.

i . =l .
; i ,m]=argm1n(l){fj|l=1,2,...,N},V]. (9)

In Case 1, new identity of the i" adolescent is defined as

Ko = &' =1y (%' = x7), (10)
where r; € [0,1] represents a random number, and x*
represents the best identity feature created by each teenager
in (8). The (10) represents a new identity that adolescents

strive to acquire from their peer group with good behaviors.

Case 2. Believing that a role model has noble quality, good
style, and imitating the role model to form the new identity.

Adolescents imitate the role model to form the new
identity because they believe that a role model has noble
quality and good style.

Therefore, adolescents can choose a better individual
than themselves through learning. In this case, the updating
formula for generate a new identity is written by the fol-
lowing equation:

X=X =y (e =X, (11)
where r, € [0,1] is a random number, and x™” is the role
model, which the best individual. When p#rm, x? is an
adolescent selected in the population randomly.

Case 3. Adolescents may be negatively affected by the group
and form bad identity choices such as smoking, dropping
out of school, and fighting. In this case, the updating formula
for obtaining the new identity of the i adolescent is written
by the following equation:

new

X o=x - r3(xi - xq), (12)

where r; € [0,1] is an n-dimensional vector of uniformly
distributed numbers in the interval [0, 1], and x7 is a
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negative identity vector and is written by the following
equation:
L (13)

xT=[x"x%, ... Lo

where x* is negative identity feature, which is an element
randomly selected from the population matrix to make the
algorithm that has the exploration capability.

3. The Proposed FCBAISA

Different from other meta-heuristic algorithms, AISA tries
to find the fitness of adolescents and uses CFLN optimi-
zation. AISA performance is good in exploration, exploi-
tation, avoidance of local optimization, and convergence.
However, there are also some problems such as unbalanced
exploration and exploitation abilities, falling into local op-
timum, and premature convergence. Adolescent identity
development is a complex concept, which can integrate
different network structures. Therefore, new ideas can still be
injected into the algorithm.

3.1. Hierarchical Optimization Strategy. CFLN optimization
method is very novel and effective for exploration, which is
used in Case 1. In order to better play the role of CFLN, the
iteration is divided into three layers to execute each update
mechanism separately in this paper. This strategy can in-
crease the diversity of the population and balance the
abilities of exploration and exploitation better. In addition,
improved CFLN topology in Section 3.3 has the better ability
of exploration, as shown in Figure 2.

3.2. Quick Search Strategy. This paper uses the current
optimal solution (Gbest) to guide other adolescents in the
whole search process and uses the characteristic that
Brownian motion obeys standard normal distribution to
design a fast search strategy to speed up the convergence
speed of the algorithm. The Gbest guides other adolescents
to update. In most cases, the optimal solution can be found
faster. In addition, Brownian motion [41] is introduced to
form a new update mechanism, because Brownian motion
can replace random disturbance and effectively accelerate
the convergence speed of the algorithm. This method enables
teenagers to obtain the best adolescent identity as soon as
possible, as shown in Figure 3.
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FIGURE 3: Brownian motion.

Based on the current optimal solution (Gbest) and
Brownian motion, as shown in (14), the formula of Case 1 is
changed to the following equation.

x;b =b,. x (Gbest - xi), (14)

X =x by s (r X —x") by % x
new 2 1 3

pb> ( 15 )
where b, is n-dimensional Brownian motion. r; € [0,1]
represents a random number, and b, and b, are two random
numbers generated by Brownian motion.

In addition, Brownian motion is integrated into Cases 2
and 3, and the corresponding update formulates are changed
as (16) and (17), respectively.

x;ew = x' — randn * (2P = x™), (16)

xl ., = x' —randn * (xi - xq). (17)

3.3. RLSE Weight Factor Strategy. The classical least square
estimator (LSE) can be written as follows:

AOXO = bo, (18)

Ay _ by
Sl

where A, is a N x n matrix, X, = [X, X,,..., X, ] isanx
1 parameter vector, and by = [b;, b, ...,by]" is an output
vector. The LSE can be given from following equations:

X =(ATA)) " Alb,, (20)

(DT e

In AISA, the weight factor is estimated by (19), which is
the classical LSE recursive least squares estimation (RSLE)
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(3) r=rand;

(6) EFs=EFs+1;

(10) end if
(11) end if

(1) counters = counters+ 1;
(2) if counters > 20 then

(4) Compute the New best by equation (26)
(5) Boundary constraint process;

(7)  iffit (Newbest') < fit (Gbest)then
(8) Gbest = New best’; .
9) fit (Gbest) = fit (New best)';

ALGOrITHM 1:Terminal bounce mechanism.

[42] and is used to optimize the least square estimation and
estimate the weigh factor of its approximate model.

A 1T A
Glz[ 0] [ °]:G0+A{A1,
Al 1

A 1T b 17!
[ 0] [ 0] :G1X0+(b1—A1X0)A1T>

A, b, (22)

X1 =G'Gi X, + G/ A (b - A X,)
= X0+ G A (b - A,X,)
-1 4T
X=X +G HA (bs+1 - As+1Xs)’

s+14%s+1
where we eliminate A, and b, variables, G, = AlA,,
X, = G,'Al'b,.

In AISA, CFLN uses the LSE to estimate the weight
factor of the approximate model. In this paper, a dynamic
way to estimate the weight factor of the approximate model
based on the LSE by learning from the recursive proof of
RLSE. RLSE can dynamically estimate the weight factor of
the approximate model and make CFLN more efficient as
shown in Figure 2. FCBAISA can find the optimal solution
more efficient by modifying the approximate model to affect
the algorithm update mechanism. The formula is changed as
(27).

0 =(¥"e) ¥ f, (23)

0 = w+(¥Y) ¥ (f - V), (24)

a:[@} e @) o a’?]lx(m) 03
= [ wl ...... w" ]IX(nXs)

3.4. Terminal Bounce Mechanism. In this paper, a terminal
bounce mechanism is designed to avoid the algorithm falling
into local optimization in the later stage of iteration. Spe-
cifically, the algorithm may fall into local optimization if the
number of iterations increases, especially in the later stage of
iteration, while the value of global optimization does not
change within the specified number of iterations. In this
paper, the value of the timer is set to 20 and adds a counter to

monitor the change of the global optimum value, which is
the end disturbance mechanism that will be triggered when
there is no change in the global optimum value after 20
iterations, which can make the algorithm jump out of the
local optimum. In order to achieve better disturbance effect,
two individuals are selected randomly from the population
and the Gbest is added for guidance when designing the end
disturbance strategy. The pseudocode is given by Algorithm
1, and the specific design of the terminal bounce mechanism
is as formula (26).

x =r* Gbest + (1 —r) * (rand * (x (ind (1)) — x (ind (2))),
(26)

where Gbest represents the current optimal solution,
r € [0, 1] denotes a random number, and ind (1) and ind (2)
are two indexes generated from the population randomly.
In summary, a fast convergence and balanced AISA is
proposed (FCBAISA), Algorithm 2, and Figure 4 gives the
pseudocode and flowchart of FCBAISA, respectively.

4. Experimental Results and Analysis

4.1. Benchmark Function and Comparison Algorithm. The
CEC2017 benchmark functions are applied to check the
performance of FCBAISA in this paper. Among the
CEC2017 benchmark functions [43], {f}, 5}, {f4 ~ fiob
{fi1 ~ fa} and {f,; ~ f3} are unimodal functions, simple
multimodal functions, hybrid functions, and composite
functions, respectively. f, has not been tested, the reason is
the instability in high dimensional, and the details can be
found in Reference [44]. The CEC2022 benchmark function
includes unimodal function, basic functions, hybrid func-
tion, and composition function. These benchmark functions
are detailed in Tables 1 and 2.

For checking the effectiveness and superiority of
FCBAISA, it is compared with the performance of eight
evolutionary algorithms. In order to be more fair and rea-
sonable, the comparison algorithms include the classical
algorithm and the new excellent algorithm. These are as
follows: transient search algorithm (TSO) [45], the Ar-
cherfish Hunting Optimizer algorithm (AHO) [46], butterfly
optimization algorithm (BOA) [47], dynamic differential
annealed optimization (DDAO) [48], PSO [6], owl search
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Input: FCBAISA population size N, the lower and upper bounds of variables respectively: Ib, ub, maximum number of iterations
MaxIter, maximum number of function evaluations MaxFEs, the degree of Chebyshev polynomials: k;
Output: the best Optimal solution

(1) while (Iter < = MaxlIter) and (FEs< = MaxFEs) do
(2) Form the matrix X by equation (3)
(3) Form the regressor matrix ¥ and its subregressor vectors (y!,..., 1//2’ ) by equation (5)
(4) Compute the weight vectors (', ..., ") by equations (23), (24)
(5) Form the matrix F by ¢
(6) Find the best feature vector (x*) by equation (9)
(7) fori=1to Ndo
(8) if FEs > MaxFEs/3 then
9) Update b; ~ randn(N, n), b, ~ randn, r; ~ rand
10) Xop = blj * (Gbest — x))
(11) Xpew = X' = by (rx —x") = Xy,
12) if Fs > MaxFEs/3AFEs < 2MaxFEs/3 then
13) Find the best adolescent and best group position (x™)
(14) Randomly choose one of the adolescents p|p #rm
@15) x;ew = x' —randn * (xP — x™™)
@16) else
17) Generate the negative identity vector (x7) by (13)
(18) xl . =x'—randn* (x' - x9)
19) end if
(20) end if
(21) Boundary constraint process;
(22) Apply the updating mechanism:
(23) fori =1 to Ndo
(24) if fit (Xnew') < fit (X')then
(25) X! = Xnew';
(26) fit (X?) = fit (Xnew');
(27) end if
(28) iffit (X') < fit (Gbest)then
(29) Gbest = X';
(30) fit (Gbest) = fit (X');
(31) counters = 0;
(32) else
(33) Execute Terminal bounce mechanism in Algorithm 1
(34) end if
(35) end for
(36) end for
(37) end while
(38) Return the best solution found

ALGORITHM 2: Pseudocode of FCBAISA.

algorithm (OSA) [49], and gravitational search algorithm
(GSA) [50]. The contents of these algorithms are shown in
Table 3. To compare the performance of algorithms fairly,
the population size (N) of all algorithms is 30, the di-
mension (n) is 30, and each algorithm runs 50 times in-
dependently. The maximum number of function evaluations
is 30000, and the maximum number of iterations is 1000 in
the CEC2017 benchmark functions. The population size (N)
of all algorithms is 30, the dimension (#) is 20, and each
algorithm runs 50 times independently. The maximum
number of function evaluations is 100000, and the maxi-
mum number of iterations is 3334 in the CEC2022
benchmark functions.

4.2. Comparison between FCBAISA and Other Algorithms.
In order to be more fair and reasonable, the comparison
algorithm includes the classical algorithm and the new

excellent algorithm. The results of CEC2017 and CEC2022
benchmark functions are shown in Tables 4 and 5, re-
spectively. Among the CEC2017 benchmark functions,
FCBAISA ranks first in 21, second in 6, and first after the
comprehensive comparison. For other algorithms, the
comprehensive performance of PSO is better, ranking third.
From the mean comparison, it is found that FCBAISA
performs better on 21 benchmark functions, and GSA and
PSO perform better on four and three test functions, re-
spectively. From the comparison of standard deviation, it is
found that the stability of FCBAISA is poor, but it also ranks first
in 15 benchmark functions. In complex problems, the stability of
FCBAISA is improved. By comparing the optimal solutions of
each algorithm, FCBAISA can find a better optimal solution
among 16 benchmark functions in CEC2017 benchmark
functions. In CEC2022 benchmark functions, FCBAISA ranks
first in 10 benchmark functions, second in 2 benchmark



Computational Intelligence and Neuroscience 7
No
Start Initialize the population L Termination -
a sizeand cooditions Lkl el (B condition met ?
Yes
Find the best feature Calculate weight vectors Calculate regressor matrix
vector (x*) by Eq. (9) by Egs. (26 - 27) by Eq. (3)
RLSE weight factor strategy
No No
FEs > MaxFEs / 3 ——— , ~FEs>MaxFEs/ 3 &&
FEs< 2MaxFEs /3
Yes Yes
Quick|search strategy Brownian motion exists case 2 and 3
Update «/,,,, by Eq. (15) Update «/,,,, by Eq. (16) Update x',,,, by Eq. (17)
Case 1 Case 2 | Case 3
. Update Newbest' b Calculate fitness of
Calculate fitness of x},,,, P aEq. (;/9) Y Newbest —
Terminal bounce mechanism
End
F1GURE 4: Flowchart of FCBAISA.
TaBLE 1: The information of the CEC2022 benchmark functions used in this paper.
No. Functions Fopt
Unimodal function 1 Shifted and full-rotated Zakharov function 300
2 Shifted and full-rotated Rosenbrock’s function 400
Basic functions 3 Shifted and full-rotated expanded Schaffer’s 6 function 600
4 Shifted and full-rotated noncontinuous Rastrigin’s function 800
5 Shifted and full-rotated levy function 900
6 Hybrid function 1 (N=3) 1800
Hybrid functions 7 Hybrid function 2 (N=6) 2000
8 Hybrid function 3 (N=5) 2200
9 Composition function 1 (N=5) 2300
Composition functions 10 Composition function 2 (N=4) 2400
p 11 Composition function 4 (N=6) 2600
12 Composition function 4 (N=6) 2700

Search range: [-100, 100]

functions, and first after the comprehensive comparison. From
the mean comparison, it is found that FCBAISA performs better
on 10 benchmark functions. It is concluded that the FCBAISA
algorithm can effectively solve the simple and complex prob-
lems, especially when solving complex problems, it is better than
other algorithms. In general, FCBAISA performs better in all
aspects and can find the optimal solution quickly and efficiently
in most benchmark functions.

4.3. Convergence Rate. In CEC2017 benchmark functions,
f, and f; are two unimodal functions, and FCBAISA has a
very fast convergence rate. f,is a simple multimodal function.
At the beginning of the iteration, the decline speed of GSA in
the convergence curve is faster than that of FCBAISA. But in
the later stage of the iteration, FCBAISA exceeds GSA, indi-
cating the strong development ability of the improved

algorithm. f,, f,; and f o are hybrid functions. The faster the
convergence speed of FCBAISA, the greater the advantages of
FCBAISA in this kind of functions. f,,, f,s, and f5, are
composite functions, and the convergence speed of FCBAISA
is the fastest among the three composite functions and indi-
cates that FCBAISA has strong performance in solving com-
plex problems. The convergence curve is shown in Figure 5. In
CEC2022 benchmark functions, FCBAISA performs better on
most benchmark functions, and all details are in Figure 6.

4.4. Statistical Analysis. For testing the FCBAISA and the
above experimental results, statistical analysis is carried out,
including the Wilcoxon rank test, Friedman test, and Quade
test. Wilcoxon rank test mainly checks the performance of
FCBAISA and compares algorithms one by one. Friedman
test and Quaid test mainly test all algorithms together, then
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TaBLE 2: The information of the CEC2017 benchmark functions used in this paper.

Fun Function Range Sopt
fi Shifted and rotated bent cigar function [-100, 100] 100
fs Shifted and rotated Zakharov function [-100, 100] 300
fa Shifted and rotated Rosenbrock’s function [-100, 100] 400
fs Shifted and rotated Rastrigin’s function [-100, 100] 500
fs Shifted and rotated expanded Scaffer’s function [-100, 100] 600
f Shifted and rotated Lunacek bi-Rastrigin function [-100, 100] 700
fs Shifted and rotated noncontinuous Rastrigin’s function [-100, 100] 800
fo Shifted and rotated levy function [-100, 100] 900
fio Shifted and rotated Schwefel’s function [-100, 100] 1000
fu Hybrid function 1 (N=3) [~100, 100] 1100
fi Hybrid function 2 (N =3) [-100, 100] 1200
fis Hybrid function 3 (N=3) [-100, 100] 1300
fia Hybrid function 4 (N=4) [-100, 100] 1400
fis Hybrid function 5 (N=4) [~100, 100] 1500
fie Hybrid function 6 (N =4) [~100, 100] 1600
fi7 Hybrid function 6 (N=5) [-100, 100] 1700
fis Hybrid function 6 (N=5) [-100, 100] 1800
f1o Hybrid function 6 (N=5) [-100, 100] 1900
Fao Hybrid function 6 (N=6) [-100, 100] 2000
fa Composition function 1 (N=3) [-100, 100] 2100
fa Composition function 2 (N=3) [-100, 100] 2200
I Composition function 3 (N=4) [-100, 100] 2300
faa Composition function 4 (N=4) [-100, 100] 2400
fas Composition function 5 (N=5) [-100, 100] 2500
fa Composition function 6 (N=5) [-100, 100] 2600
fa Composition function 7 (N=6) [-100, 100] 2700
fas Composition function 8 (N=6) [-100, 100] 2800
fa Composition function 9 (N=3) [-100, 100] 2900
f30 Composition function 10 (N=3) [-100, 100] 3000

TaBLE 3: Relevant parameter values of the algorithm.

Algorithm Years Parameter information Values
AISA [39] 2020 Number of Chebyshev polynomials (s) 3
TSO [45] 2020 NScaling factor 0.85
Theta pi/12
AHO [46] 2021 Omega 0.01
maxCount 10
p 0.8
BOA [47] 2019 a 0.1
c 0.01
MaxSublt 10
DDAO [48] 2020 T, 2000
Alpha 0.995
€1, Gy 2
PSO [6] 1998 " 0904
Beta 0-1.9
OSA [49] 2018 Epsilon le-16
Rnorm 2
GSA [50] 2009 ElitistCheck 1
Minflag 1
FCBAISA presented 2021 Number of Chebyshev polynomials (s) 30
compare the performance of the algorithm from the overall For the Wilcoxon rank test, its criterion is when the
point of view, and finally give the ranking and p_value.  significance level is 0.05, when p_value < 0.05,if R* <R™ is

Through these tests, the performance of the improved al-  marked as “+,” FCBAISA and other algorithms are signif-
gorithm can be well tested. icantly better. On the contrary, it will be marked as “+,”
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TaBLE 4: Experimental results of FCBAISA and other algorithms in CEC2017 benchmark functions.
Function TSO AHO BOA DDAO PSO OSA GSA AISA FCBAISA
Mean 5.04E+10 119E+11 6.05E+10 520E+10 1.73E+10 568E+10 4.50E+06 514E+09 9.23E+03
Std  7.51E+09 1.44E+10 3.99E+09 4.89E+09 8.06E+09 60IE+09 1.65E+07 325E+09 2.35E+04
i Best 2.86E+10 7.76E+10 481E+10 3.89E+10 1.03E+09 4.71E+10 4.80E+02 526E+08 1.99E+02
5 9 8 6 4 7 2 3 1
Mean 9.33E+04 212E+05 9.4E+04 949E+04 1.08E+05 933E+04 842E+04 239E+04 1.59E+04
Std  1.04E+03 366E+04 426E+03 150E+04 320E+04 143E+03 2.65E+03 8.67E+03 1.06E+04
fs Best 8.89E+04 151E+05 7.78E+04 G6.06E+04 559E+04 8.65E+04 7.76E+04 853E+03 2.50E+03
6 9 4 7 8 5 3 2 1
Mean 122E+04 417E+04 203E+04 145E+04 1.67E+03 135E+04 586E+02 1.03E+03 5.03E+02
Std  283E+03 673E+03 622E+02 237E+03 1.06E+03 163E+03 3.67E+01 3.67E+02 2.62E+01
fs Best 7.08E+03 295E+04 1.90E+04 8.60E+03 7.43E+02 9.85E+03 533E+02 6.10E+02 4.00E+02
5 9 8 7 4 6 2 3 1
Mean 8.67E+02 1.04E+03 934E+02 939E+02 6.69E+02 9.67E+02 7.57E+02 7.76E+02 7.05E+02
Std  4.03E+01 4.02E+01 179E+01 249E+01 4.02E+01 179E+01 1.16E+01 3.37E+01 3.27E+01
fs Best 7.85E+02 9.46E+02 890E+02 877E+02 594E+02 9.15E+02 7.22E+02 6.92E+02 6.34E+02
5 9 6 7 1 8 3 4 2
Mean 6.77E+02 712E+02 6.83E+02 696E+02 622E+02 6.97E+02 6.62E+02 6.55E+02 6.50E +02
Std  744E+00 8.62E+00 7.87E+00 6.57E+00 6.98E+00 682E+00 2.63E+00 9.24E+00 8.74E+00
fs Best 6.58E+02 6.88E+02 668E+02 670E+02 611E+02 674E+02 656E+02 622E+02 6.31E+02
5 9 6 7 1 8 4 3 2
Mean 143E+03 3.22E+03 134E+03 143E+03 1.04E+03  1.49E+03 1.01E+03 1.15E+03  9.77E+02
Std  4.65E+01 245E+02 2.15E+01 420E+01 1.54E+02 293E+01 450E+01 6.49E+01 4.67E+01
f7 Best 1.34E+03 2.60E+03 129E+03 134E+03 8.10E+02 142E+03 9.12E+02 1.03E+03 8.94E+02
6 9 5 7 3 8 2 4 1
Mean 1.14E+03 1.35E+03 1.13E+03 118E+03 9.63E+02 117E+03 9.63E+02 1.01E+03 9.77E+02
Std  240E+01 335E+01 1.65E+01 154E+01 393E+01 180E+01 1.098E+01 255E+01 3.32E+01
fs Best 1.08E+03 128E+03 1.09E+03 1.I3E+03 897E+02 114E+03 941E+02 9.50E+02 9.11E+02
6 9 5 8 2 7 1 4 3
Mean 1.03E+04 266E+04 120E+04 135E+04 7.47E+03 134E+04 429E+03 6.55E+03 3.96E+03
Std  131E+03 266E+03 7.66E+02 1.63E+03 2.69E+03 148E+03 325E+02 146E+03 1.76E+03
fs Best 7.40E+03 2.08E+04 1.05E+04 1.05E+04 3.84E+03 1.00E+04 3.67E+03 345E+03 1.84E+03
5 9 6 8 4 7 2 3 1
Mean 8.98E+03 9.42E+03 9.01E+03 9.09E+03 551E+03 9.08E+03 4.30E+03 6.89E+03 6.70E+03
Std  7.05E+02 294E+02 2.88E+02 296E+02 747E+02 4.92E+02 2.87E+02 529E+02 7.84E+02
o Best 7.35E+03 8.85E+03 816E+03 7.96E+03 274E+03 7.27E+03 364E+03 591E+03 501E+03
5 9 6 8 2 7 1 3 4
Mean 1.13E+04 2.62E+04 8A4IE+03 126E+04 225E+03 129E+04 4.34E+03 144E+03 1.27E+03
Std  260E+03 7.03E+03 6.61E+02 2.83E+03 1.02E+03 227E+03 1.00E+03 1.08E+02 6.46E+01
fu Best 536E+03 132E+04 7.33E+03 607E+03 1.35E+03 8.69E+03 255E+03 127E+03 1.17E+03
6 9 5 7 3 8 4 2 1
Mean 1.03E+10 2.57E+10 2.02E+10 1.02E+10 2.14E+09 157E+10 221E+08 215E+07 6.32E+05
Std  3.66E+09 525E+09 1.75E+09 1.83E+09 1.35E+09 1.90E+09 1.73E+08 4.30E+07 6.09E+05
fia Best 3.64E+09 1.53E+10 17IE+10 528E+09 629E+06 121E+10 248E+06 4.53E+05 9.95E+03
6 9 8 5 4 7 3 2 1
Mean 313E+09 1.87E+10 2.14E+10 536E+09 545E+08 751E+09 552E+04 312E+04 9.24E+03
Std  3.00E+09 6.86E+09 591E+09 206E+09 821E+08 273E+09 1.13E+04 3.05E+04 6.37E+03
fis Best 2.34E+08 7.73E+09 111E+10 1.68E+09 1.60E+05 3.86E+09 283E+04 7.79E+03 3.46E+03
5 8 9 6 4 7 3 2 1
Mean 8.89E+06 8.66E+06 244E+06 3.06E+06 1.69E+05 235E+07 1.19E+06 1.62E+03 1.62E+03
Std  2.80E+06 563E+06 158E+06 1.64E+06 157E+05 LI7E+07 2.04E+05 7.11E+01 5.87E+01
fua Best 2.65E+06 1.39E+06 4.24E+05 3.18E+05 1.12E+04 3.61E+06 7.90E+05 1.50E+03 1.51E+03
8 7 5 6 3 9 4 2 1
Mean 2.02E+08 3.26E+09 6.89E+08 554E+08 7.47E+04 894E+08 1.39E+04 2.52E+03 2.02E+03
Std  242E+08 143E+09 198E+08 2.05E+08 5.55E+04 283E+08 2.16E+03 7.65E+02 1.79E+02
fis Best 6.13E+05 8.12E+08 1.65E+08 6.43E+07 1.29E+04 6.51E+08 8.68E+03 1.87E+03 1.76E+03
5 9 7 6 4 8 3 2 1
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TasLE 4: Continued.
Function TSO AHO BOA DDAO PSO OSA GSA AISA FCBAISA
Mean 5.30E+03 6.80E+03 9.95E+03 535E+03 293E+03 6.32E+03 3.68E4+03 3.25E+03 2.98E+03
f Std 6.47E+02 9.04E+02 455E+02 390E+02 442E+02 7.14E+02 210E+02 3.68E+02 2.52E+02
16 Best 3.55E+03 5.13E+03 9.23E+03 4.24E+03 2.02E+03 523E+03 326E+03 250E+03 2.30E+03
5 8 9 6 1 7 ! 3 2
Mean 441E+03 830E+03 1.79E+04 3.68E+03 240E+03 2.84E+04 2.87E+03 215E+03 2.13E+03
f Std 401E+03 6.47E+03 223E+03 250E+02 258E+02 163E+04 1.99E+02 1.84E+02 1.31E+02
17 Best 2.38E+03 3.13E+03 140E+04 3.21E+03 203E+03 549E+03 252E+03 1.82E+03 1.86E+03
6 7 8 5 3 9 4 2 1
Mean 1.53E+08 1.71E+08 9.62E+07 3.88E+07 5.07E+06 2.76E+08 176E+06 272E+03 3.77E+03
f Std  649E+07 128E+08 3.16E+07 203E+07 3.53E+06 139E+08 4.33E+05 9.95E+02 5.78E+03
18 Best 7.80E+06 7.75E+06 223E+07 627E+06 180E+05 117E+07 8.06E+05 2.06E+03 2.23E+03
7 8 6 5 4 9 3 1 2
Mean 4.82E+08 4.34E+09 147E+09 6.72E+08 1.19E+07 8.44E+08 2.54E+04 251E+03 2.04E+03
f Std  3.82E+08 223E+09 4.66E+08 241E+08 3.16E+07 506E+08 1.01E+04 213E+03 5.89E+01
19 Best 6.66E+06 538E+08 209E+08 292E+08 2.16E+03 214E+08 120E+04 197E+03 1.96E+03
5 9 8 6 4 7 3 2 1
Mean 3.02E+03 3.29E+03 3.11E+03 311E+03 2.52E+03 328E+03 343E+03 253E+03 2.49E+03
f Std  213E+02 1.57E+02 1.16E+02 122E+02 1.78E+02 1.79E+02 143E+02 1.17E+02 8.70E+01
20 Best 245E+03 292E+03 2.65E+03 2.67E+03 214E+03 290E+03 311E+03 226E+03 2.30E+03
4 8 5 6 3 7 9 2 1
Mean 271E+03 2.87E+03 275E+03 274E+03 245E+03 278E+03 261E+03 251E+03 2.49E+03
f Std  346E+01 451E+01 1.63E+01 279E+01 3.88E+01 3.94E+01 216E+01 4.08E+01 3.35E+01
2 Best 2.65E+03 276E+03 271E+03 2.67E+03 239E+03 268E+03 257E+03 244E+03 2.43E+03
5 9 7 6 1 8 4 3 2
Mean 822E+03 1.06E+04 6.38E+03 887E+03 6.87E+03 1.02E+04 7.35E+03 3.37E+03 2.30E+03
f Std  842E+02 6.88E+02 3.04E+02 7.69E+02 8.79E+02 447E+02 2.65E+02 638E+02 3.51E+00
2 Best 6.50E+03 8.60E+03 5.64E+03 7.00E+03 506E+03 9.06E+03 686E+03 2.67E+03 2.30E+03
6 9 3 7 4 8 5 2 1
Mean 3.50E+03 3.62E+03 3.60E+03 340E+03 297E+03 3.70E+03 377E+03 297E+03 2.96E+03
f Std  8.07E+01 1.06E+02 572E+01 823E+01 6.53E+01 140E+02 138E+02 695E+01 6.43E+01
23 Best 3.36E+03 335E+03 3.50E+03 3.17E+03 285E+03 3.39E+03 3.54E+03 2.84E+03 2.83E+03
5 7 6 4 3 8 9 2 1
Mean 436E+03 4.03E+03 428E+03 359E+03 3.I8E+03 397E+03 3.38E+03 316E+03 3.12E+03
f Std  256E+02 248E+02 6.10E+01 9.75E+01 5.83E+01 8.84E+01 6.03E+01 7.98E+01 9.18E+01
2 Best 3.75E+03 346E+03 412E+03 342E+03 301E+03 376E+03 324E+03 3.0lE+03 2.99E+03
9 7 8 5 3 6 4 2 1
Mean 4.48E+03 1.64E+04 644E+03 531E+03 349E+03 496E+03 298E+03 319E+03 2.90E+03
f Std  321E+02 274E+03 135E+02 3.66E+02 4.81E+02 3.89E+02 124E+01 126E+02 1.63E+01
2 Best 3.89E+03 1.14E+04 G6I13E+03 425E+03 294E+03 4.I3E+03 295E+03 3.02E+03 2.88E+03
5 9 8 7 4 6 2 3 1
Mean 1.18E+04 152E+04 1.04E+04 109E+04 544E+03 123E+04 7.81E+03 683E+03 5.26E+03
f Std  110E+03 178E+03 155E+02 627E+02 926E+02 8.66E+02 371E+02 840E+02 125E+03
2 Best 9.62E+03 1.06E+04 9.75E+03 8.93E+03 4.16E+03 106E+04 7.15E+03 4.22E+03 2.81E+03
7 9 5 6 2 8 4 3 1
Mean 423E+03 4.66E+03 4.12E+03 4.08E+03 3.31E+03 481E+03 502E+03 328E+03 3.26E+03
f Std  1.55E+02 3.19E+02 1.63E+02 1.62E+02 4.57E+01 622E+02 1.74E+02 4.52E+01 4.85E+01
27 Best 3.86E+03 3.87E+03 3.83E+03 3.71E+03 324E+03 410E+03 445E+03 321E+03 3.19E+03
6 7 5 4 3 8 9 2 1
Mean 6.64E+03 110E+04 853E+03 7.08E+03 598E+03 6.87E+03 3.51E+03 3.78E+03 3.23E+03
f Std  7.57E+02 1.33E+03 924E+01 471E+02 1.19E+03 567E+02 149E+02 227E+02 2.62E+01
28 Best 5.00E+03 7.96E+03 8.30E+03 6.06E+03 351E+03 572E+03 336E+03 3.42E+03 3.20E+03
5 9 8 7 4 6 2 3 1
Mean 591E+03 8.88E+03 181E+04 6.51E+03 4.14E+03 8.08E+03 4.93E+03 426E+03 4.05E+03
f Std  543E+02 3.35E+03 244E+03 438E+02 295E+02 128E+03 2.35E+02 2.60E+02 2.17E+02
el Best 4.87E+03 572E+03 124E+04 548E+03 368E+03 622E+03 4.50E+03 3.59E+03 3.66E+03
5 8 9 6 2 7 4 3 1
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TaBLE 4: Continued.
Function TSO AHO BOA DDAO PSO OSA GSA AISA FCBAISA
Mean 1.85E+08 1.28E+09 3.01E+09 6.99E+08 128E+07 2.75E+09 9.00E+05 248E+05 3.07E+04
¥ Std 9.84E+07 3.65E+08 146E+09 242E+08 1.50E+07 9.75E+07 4.35E+05 1.30E+06 2.07E+04
30 Best 5.82E+07 3.33E+08 8.00E+08 1.93E+08 294E+04 229E+09 126E+05 9.35E+03 7.49E+03
5 7 9 6 4 8 3 2 1
Total rank 163 244 192 181 92 214 106 74 39
Final rank 5 9 7 6 3 8 4 2 1
TaBLE 5: Experimental results of FCBAISA and other algorithms in CEC2022 benchmark functions.
Function TSO AHO BOA DDAO20 PSO OSA GSA AISA FCBAISA
Mean 532E+04 595E+04 511E+04 429E+04 1.81E+04 945E+04 242E+04 5.59E+02 4.85E+02
f Std  358E+04 911E+03 1.66E+04 7.39E+03 156E+04 3.95E+04 4.60E+03 2.83E+02 2.23E+02
! Best 2.00E+04 3.48E+04 248E+04 2.57E+04 3.09E+02 3.11E+04 1.59E+04 321E+02 3.01E+02
7 8 6 5 3 9 4 2 1
Mean 1.90E+03 548E+03 3.66E+03 2.02E+03 586E+02 312E+03 4.68E+02 557E+02 4.47E +02
Std  5.89E+02 1.64E+03 747E+02 244E+02 114E+02 7.16E+02 196E+01 6.14E+01 1.02E+01
f Best 9.08E+02 2.10E+03 233E+03 1.30E+03 446E+02 2.05E+03 4.01E+02 4.69E+02 4.07E+02
5 9 8 6 4 7 2 3 1
Mean 6.73E+02 692E+02 6.67E+02 6.75E+02 6.15E+02 6.87E+02 636E+02 6.34E+02 6.04E +02
f Std  1I5E+01 1.04E+01 113E+01 562E+00 596E+00 9.85E+00 9.58E+00 1.08E+01 1.64E+00
3 Best 6.50E+02 6.69E+02 634E+02 6.63E+02 6.04E+02 6.65E+02 6.07E+02 G612E+02 6.01E+02
6 9 5 7 2 8 4 3 1
Mean 9.58E+02 1.05E+03 9.68E+02 9.83E+02 8.73E+02 9.80E+02 8.75E+02 8.75E+02 8.51E+02
f Std 1.74E+01 1.82E+01 1.02E+01 1.07E+01 231E+01 156E+01 1.06E+01 1.40E+01 147E+01
4 Best 9.22E+02 1.01E+03 944E+02 940E+02 8.36E+02 938E+02 851E+02 8.37E+02 8.22E+02
5 9 6 8 2 7 4 3 1
Mean 325E+03 840E+03 3.24E+03 3.96E+03 1.75E+03 381E+03 9.64E+02 1.82E+03 9.79E+02
f Std  395E+02 115E+03 346E+02 439E+02 GO04E+02 4.03E+02 116E+02 429E+02 529E+01
5 Best 243E+03 638E+03 225E+03 295E+03 9.02E+02 297E+03 9.00E+02 111E+03 9.08E+02
6 9 5 8 3 7 1 4 2
Mean 116E+09 351E+09 2.62E+09 1.08E+09 179E+07 3.40E+09 3.06E+03 196E+03 1.89E+03
f Std  1.08E+09 1.30E+09 129E+09 355E+08 191E+07 114E+09 122E+03 6.52E+01 4.50E+ 01
6 Best 8.62E+06 6.99E+08 191E+08 3.33E+08 2.13E+03 133E+09 195E+03 1.87E+03 1.82E+03
6 9 7 5 4 8 3 2 1
Mean 220E+03 226E+03 217E+03 2.19E+03 208E+03 225E+03 2.36E+03 2.08E+03 2.05E+03
f Std  3.63E+01 442E+01 247E+01 2.54E+01 3.96E+01 584E+01 6.65E+01 2.62E+01 1.34E+01
7 Best 211E+03 217E+03 212E+03 213E+03 2.03E+03 217E+03 220E+03 2.03E+03 2.03E+03
6 8 4 5 3 7 9 2 1
Mean 230E+03 269E+03 542E+03 241E+03 227E+03 234E+03 251E+03 223E+03 2.23E+03
Std  910E+01 28l1E+02 676E+03 865E+01 6.12E+01 1I3E+02 1.06E+02 328E+00 2.21E+00
fs Best 223E+03 226E+03 233E+03 227E+03 222E+03 224E+03 223E+03 222E+03 223E+03
4 8 9 6 3 5 7 2 1
Mean 296E+03 323E+03 3.99E+03 2.87E+03 259E+03 3.73E+03 251E+03 249E+03 2.48E+03
f Std  1.99E+02 1.85E+02 533E+02 8.58E+01 958E+01 3.09E+02 160E+01 1.03E+01  2.14E-01
9 Best 2.65E+03 2.88E+03 3.05E+03 2.70E+03 249E+03 3.10E+03 249E+03 248E+03 248E+03
6 7 9 5 4 8 3 2 1
Mean 5.82E+03 621E+03 3.23E+03 2.80E+03 4.08E+03 6.56E+03 4.75E+03 290E+03 2.66E +03
f Std  1.29E+03 136E+03 144E+03 2.07E+02 9.76E+02 7.91E+02 623E+02 575E+02 5.58E+02
10 Best 2.58E+03 2.69E+03 252E+03 2.55E+03 2.52E+03 329E+03 2.50E+03 2.50E+03 2.50E+03
7 8 4 2 5 9 6 3 1
Mean 7.73E+03 1.08E+04 9.05E+03 7.14E+03 505E+03 9.04E+03 291E+03 3.84E+03 3.01E+03
f Std  1.13E+03 143E+03 581E+02 7.04E+02 1.01E+03 509E+02 1.05E+02 4.94E+02 1.05E+02
11 Best 4.83E+03 7.04E+03 7.13E+03 503E+03 3.34E+03 7.87E+03 2.60E+03 310E+03 282E+03
6 9 8 5 4 7 1 3 2
Mean 3.56E+03 3.64E+03 3.30E+03 341E+03 3.03E+03 4.36E+03 3.71E+03 3.01E+03 2.94E+03
¥ Std 328E+02 1.70E+02 1.09E+02 7.92E+01 648E+01 3.84E+02 246E+02 5.77E+01 3.73E+00
12 Best 3.06E+03 325E+03 3.09E+03 3.22E+03 295E+03 3.55E+03 3.15E+03 295E+03 2.93E+03
6 7 4 5 3 9 8 2 1
Total rank 70 100 75 67 40 91 52 31 14
Final rank 6 9 7 5 3 8 4 2 1
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Composition Function 10 (N=3)
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F1GURE 5: Convergence curves of 9 algorithms in CEC2017 benchmark functions. (a) f;. (b) f5. (¢) fo. (d) f12. (€) fi3. () fio- (8) fo2- () fos. (i) fro-

indicating that FCBAISA performs worse than other algo-
rithms. If there is no significant difference between
FCBAISA and other algorithms, it will be marked as “=.” In
Tables 6 and 7, the last row gives the sum of each tag to judge
whether FCBAISA has significant advantages over other
comparison algorithms. In comparison with other improved
algorithms, FCBAISA got “+” on at least 25 benchmark
functions, except for 20 “+” compared with PSO, and only
two “—.” To sum up, these tests show that the performance of
FCBAISA is better than other comparing algorithms.

For Friedman and Quade test, the significance level is
0.05, if p_value < 0.05, indicating that the test result is true.
The results of the Friedman and Quade tests are shown in
Tables 8 and 9 and indicate that the FCBAISA ranks first.
After the Friedman test result in Table 8, the FCBAISA has a
p-value of 1.2942E-10 and the test result is 8.6552. For
Quade test result in Table 9, it can be observed that
FCBAISA’s final ranking is number one. FCBAISA’s result is
8.8229 with a p_value of 2.2054E-43 in the Quade test. In
summary, after three statistical tests, it can be proved that
FCBAISA has significant advantages over 8 other compar-
ative algorithms, including improved algorithms and other
excellent algorithms.

5. Practical Engineering Problems

This section uses FCBAISA and all comparison algorithms to
solve several problems of engineering design. The superi-
ority of FCBAISA is further tested by analyzing those ex-
perimental results. Engineering design problems include
pressure vessel design [51], welded beam design [52], gear
train engineering design [53, 54], and speed reducer design,
and the details are as follows.

5.1. The Problem of Pressure Vessel Design. Pressure vessels
are designed to minimize costs. The pressure vessel, as
shown in Figure 7, consists of a cylindrical center and
hemispherical heads at both ends, where L (x,), T, (x,), T,
(x,), and R(x;) are the length of the cylindrical part, the
thickness of the shell, the thickness of head, and the inner
radius, respectively. This problem consists of four con-
straints, including three linear inequalities and a non-
linear inequality, and its model is shown in the following
equation.

Min f (x) = 0.6224x,x3%, + 1.7781x,x;
+3.1611x7x, + 19.84x7x;

¥1 (x) = —x; +0.0193x, <0,

(x) = —x, +0.00954x, <0,
%) 2 3 (27)

4
st y3(x) = —xix, - 3 x5 + 1,296,000 < 0,

y4(x) = x, —240<0.

| 1<xp,x,<99, 10<x;,x, <200.

In Table 10, it can be seen that the optimal solution of
each algorithm in solving the problem of pressure vessel
design is 6.06E-10, and FCBAISA is better than that of other
algorithms. The convergence curve of the algorithm involved
in this paper on pressure vessel problem is shown in
Figure 8.
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5.2. The Problem of Welded Beam Design. In this design
problem, the main restrict factors of the design cost of
welded beams include shear stress (1), bending stress (o)
in the beam, buckling load on the bar (P,), end deflection

of the beam (§), and side constraints. The variables in-
volved including h(x,), I(x,), t(x;), and b(x,) in this
design problem, and the details are shown in Figure 9. This
problem consists of seven constraints, including two



18 Computational Intelligence and Neuroscience
TaBLE 6: The results of Wilcoxon rank test for the benchmark functions of CEC2017.
Functi FCBAISA vs AISA FCBAISA vs PSO FCBAISA vs BOA FCBAISA vs DDAO
aneton p_value R* R +/=/- pwvalue R* R +/=/~ p_value R* R +/=/- p_value R* R +/=/-
fi 7.56E-10 0 1257 + 7.56E-10 0 1275 + 7.55E-10 0 1230 + 7.56E-10 0 1275 +
f3 6.42E-04 284 766 + 7.55E-10 0 1274 + 7.56E-10 0 1275 + 7.55E-10 0 1274 +
fa 7.50E-10 0 1200 + 7.56E-10 0 1173 + 7.55E-10 0 1184 + 7.55E-10 0 1275 +
fs 1.85E-09 15 1095 + 7.71E-05 1047 180 - 7.55E-10 0 1260 + 7.56E-10 0 1275 +
fe 4.30E-03 342 758 + 7.55E-10 1253 0 - 8.03E-10 1 1258 + 7.56E-10 0 1273 +
f; 7.50E-10 0 1230 + 9.80E-03 370 905 + 7.55E-10 0 1258 + 7.55E-10 0 1272 +
fs 2.88E-07 80 1169 + 7.18E-02 777 430 = 7.55E-10 0 1268 + 7.54E-10 0 1270 +
fo 3.43E-08 66 1014 + 1.07E-07 87 1142 + 7.55E-10 0 1186 + 7.53E-10 0 1271 +
flo 4.37E-01 618 557 = 4.51E-09 1182 26 - 7.54E-10 0 1240 + 8.03E-10 1 1274 +
fu 476E-09 31 1158 + 7.55E-10 0 1234 + 7.55E-10 0 1233 + 7.55E-10 0 1270 +
fi2 801E-10 1 1162 + 755610 0 1258 +  7.55E-10 0 1268 +  7.56E-10 0 1272  +
f13 7.77E-08 81 1054 + 7.55E-10 0 1275 + 7.55E-10 0 1235 + 7.55E-10 0 1271 +
Sfia 9.96E-01 637 582 = 7.55E-10 0 1230 + 7.55E-10 0 1212 + 7.56E-10 0 1270 +
f15 8.35E-06 96 1099 + 7.56E-10 0 1275 + 7.55E-10 0 1226 + 7.56E-10 0 1270 +
fie 1.02E-04 235 835 + 3.88E-01 706 509 = 7.55E-10 0 1194 + 7.56E-10 0 1270 +
fir 1.54E-01 460 785 = 6.99E-08 79 1145 + 7.55E-10 0 1217 + 7.55E-10 0 1270 +
fis 6.00E-03 860 353 - 7.56E-10 0 1240 + 7.55E-10 0 1173 + 7.55E-10 0 1270 +
fio 9.78E-05 234 836 + 7.55E-10 0 1232 + 7.55E-10 0 1250 + 7.55E-10 0 1270 +
fa 3.57E-01 530 733 = 2.04E-01 506 769 = 7.56E-10 0 1275 + 7.55E-10 0 1270 +
fa 4.30E-03 297 894 + 4.53E-05 1060 215 - 7.54E-10 0 1179 + 7.55E-10 0 1270 +
f22 7.54E-10 0 1227 + 7.56E-10 0 1226 + 7.56E-10 0 1226 + 7.56E-10 0 1270 +
fas 9.50E-01 631 609 = 3.82E-01 547 716 = 7.55E-10 0 1225 + 7.56E-10 0 1275 +
f24 2.67E-02 213 867 + 1.63E-04 170 1028 + 7.55E-10 0 1260 + 7.56E-10 0 1273 +
f25 7.50E-10 0 1225 + 7.55E-10 0 1228 + 7.55E-10 0 1214 + 7.56E-10 0 1274 +
fa 591E-08 76 1034 + 9.96E-01 553 638 = 7.56E-10 0 1275 + 7.56E-10 0 1271 +
f27 1.36E-01 483 703 = 6.44E-04 284 981 + 7.56E-10 0 1233 + 7.56E-10 0 1273 +
fas 7.52E-10 0 1209 + 7.56E-10 0 1275 + 7.55E-10 0 1182 + 7.56E-10 0 1268 +
fa 2.20E-05 198 1011 + 7.81E-02 455 770 = 7.54E-10 0 1101 + 7.56E-10 0 1275 +
30 2.50E-03 324 796 + 7.55E-10 0 1192 + 7.56E-10 0 1245 + 7.56E-10 0 1275 +
Total 22/6/1 19/6/4 29/0/0 29/0/0

linear and five nonlinear inequality, its model as in
equation (28), where x = [x;, x5, X3, x4] = [h,1,1,b].

Min f (x) = 1.10471x7 %, + 0.04811x;%, (14 + x;),
(g1 (x) = 7(x) + Ty <0,

gy (x) = 0(%x) + 0, <0,

g3 (x) = 8(x) + 6, <0,

gs(x) =x, —x4<0,

gs(x)=P—-P.(x)<0,

ge(x) =0.125 - x, <0,

g7 (x) = 0.10471x" + 0.04811x;x, (14 + x,)

-5<0,

(28)
S.t. A

[ 0.1<xy,x,<2, 0.1 <x,,x5<10,

where T(x)= \/(T' Y427 7" %, 2R + (7")2, 7' = PIN2x %5, 7"

= MRIJM = P(L+x,/2), R=[x2/4+ (x, +x3/2),] =

2{ V2x,%, [0 /4+ (x, +x3/2)2]}0(x) =6PL/x,x3,8(x) =

4PL’/Ex,x;, P, (x) = 4.013E\x3x3/36/L* {1 - x3/2LVE/4G}
and where P=6000lb,L=14in,E=30x10°psi,G=12x 10°
DSty Typayx = 13600psi, 0 . =30000psi,6 . = 0.25in.

In Table 11, it can be seen that the optimal solution of each
algorithm in solving the problem of welded beam design is 2.0632,
and FCBAISA is better than that of other algorithms. The con-
vergence curve of the algorithm involved in this paper on welded
beam design problem is shown in Figure 10.

5.3. The Problem of Gear Train Engineering Design. The
problem of gear train engineering design is to find the
minimum value of gear and tooth ratio without affecting
the efficiency as shown in Figure 11. The number of teeth
must be an integer; thus, the design variables for this
problem are discrete. Because constraints are constraints
on design variables, the problem of constraints on dis-
crete variables can increase its complexity. So, in this
design problem, n,, ng, np, and ny are decision variables,
the integer variable of the upper bound is 60, and the
lower is 12. Besides, the gear ratio is defined as
(ngnp)/ (ngny), this specific problem can be modelled as
(29), where x = [x, x5, x5, x4] = [14,1p, Np, ng].

1 2
Min f (x) =<——ﬂ> .

6.931 X3Xy (29)

st.12<x;<60,x; € N,i =1,2,3,4.
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TaBLE 7: The results of Wilcoxon rank test for the benchmark functions of CEC2017.

Functi FCBAISA vs AHO FCBAISA vs OSA FCBAISA vs TSO FCBAISA vs GSA
unction
p_value R* R~ +/=/- p_value R* R +/=/- p_value R* R +/=/-~ p.value R* R +/=/-

£, 755E-10 0 1270 +  7.55E-10 0 1221 +  7.56E-10 0 1270 +  3.82E-01 547 728 =
fs 752E-10 0 1232 +  7.55E-10 0 1180 +  7.56E-10 0 1270 +  7.55E-10 0 1178  +
fa 750E-10 0 1270 +  7.54E-10 0 1161 +  755E-10 0 1270 +  801E-10 1 1172  +
fs 753E-10 0 1270 +  7.55E-10 O 1168 +  7.55E-10 0 1270 +  1.30E-09 9 1188  +
fe 755E-10 0 1270 +  7.55E-10 O 1228  +  8.03E-10 1 1274 +  1.26E-08 48 1162 +
1, 752E-10 3 1268 +  7.54E-10 0 1230 +  7.54E-10 5 1162+  1.50E-03 267 966  +
fs 753E-10 7 1270 +  7.55E-10 0 1267 +  7.55E-10 0 1275  +  9.30E-03 760 368

fo 748E-10 0 1275 + 755E-10 O 1132  +  746E-10 0 1252 +  541E-02 438 792 =
fio 732E-10 0 1275 +  7.55E-10 0 1204 +  907E-10 3 1272  +  7.55B-10 1222 0

I 743E-10 9 1275 + 7.54E-10 0 1143 +  749E-10 0 1260 +  7.38E-10 0 1152  +
fi 781E-10 0 1237 + 755E-10 0 1196 + 658E-10 0 1255 +  739E-10 0 1128  +
fis 742E-10 2 1270 +  755E-10 0 1197 +  751E-10 0 1267 +  753E-10 0 1209  +
fua 749E-10 0 1271 +  755E-10 0 1226 +  7.53E-10 0 1273 +  751E-10 0 1194  +
fis 745E-10 0 1238 +  7.55E-10 0 1203 +  7.54E-10 0 1245 +  755E-10 0 1266  +
fie 748E-10 0 1235 + 755E-10 O 1243 + 748E-10 0 1236 + 757E-10 0 1161  +
fir 737E-10 0 1272 +  755E-10 0 1156 +  749E-10 0 1269 +  7.50E-10 0 1266  +
fis 751E-10 0 1269 +  7.54E-10 0 1053 +  748E-10 0 1270 +  7.49E-10 0 1170  +
fio 747E-10 0 1272 + 7.52E-10 0 1217 +  752E-10 0 1270 +  753E-10 0 1227  +
Fo 752E-10 0 1262 + 7.55E-10 0 1180  +  803E-10 1 1274 +  755E-10 0 1238  +
fa 743E-10 0 1254 + 755E-10 0 1145 +  746E-10 0 1267 +  7.54E-10 0 1167  +
fa 749E-10 0 1270 +  7.55E-10 0 1204 +  743E-10 0 1252 +  755E-10 0 1206  +
fa 739E-10 0 1273 + 7.54E-10 0 1173 +  748E-10 0 1243 +  754E-10 0 1131  +
fou 751E-10 0 1270 +  7.55E-10 0 1268 +  750E-10 0 1241  +  138E-09 4 1265 +
fas 752E-10 0 1265 +  755E-10 0 1225  +  7.39E-10 4 1270 +  755E-10 0 1216  +
Fas 7.44E-10 0 1267 +  755E-10 0 1190 +  748E-10 0 1269 +  7.55E-10 0 1202  +
far 750E-10 0 1267 +  7.55E-10 0 1210 +  7.52E-10 0 1263 +  7.54E-10 0 1167  +
Fs 741E-10 0 1251 +  752E-10 O 1133 +  753E-10 0 1268 + 7.54E-10 0 1173  +
Fao 747E-10 0 1235 +  752E-10 0 1239  +  751E-10 1 1270 +  801E-10 1 1193  +
Fao 752E-10 3 1272 +  7.54E-10 0 1122+  752E-10 2 1273  +  7.54E-10 0 1140  +
Total 29/0/0 29/0/0 29/0/0 25/2/2

TaBLE 9: The results of Quade test for the benchmark functions of
TaBLE 8: The results of Friedman test for the benchmark functions CEC2017.
of CEC2017.

Name Score Rank
Name Score Rank AHO 1.5264 9
AHO 1.5517 9 OSA 2.7701 8
OSA 2.6724 8 BOA 3.0414 7
BOA 3.3621 7 DDAO 3.8103 6
DDAO 3.7759 6 TSO 4.3229 5
TSO 4.3620 5 PSO 6.3506 4
GSA 6.3793 4 GSA 6.7701 3
PSO 6.8448 3 AISA 7.5851 2
AISA 7.3965 2 FCBAISA 8.8229 1
FCBAISA 8.6552 1 p-value 2.2054E-43
p-value 1.2942E-10
In Table 12, it can be seen that the optimal solution of }

each algorithm in solving the problem of gear train engi- Ti t *

h s

neering design is 2.23E-10, and FCBAISA is also better than
that of other algorithms. The convergence curve of the al-
gorithm involved in this paper on gear train engineering
design problem is shown in Figure 12.

5.4. The Problem of Speed Reducer Design. In this constrained
optimization problem (see Figure 13), the variables x,, x,,
and x;, are face width (b), teeth module (m), teeth number
(2), and x,, x5, and x, represent length of the first shaft (I,), FIGURE 7: Model design.
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TaBLE 10: Experimental results of pressure vessel design problem.

TSO AHO BOA DDAO PSO OSA GSA AISA FCBAISA
X, 0.9129 0.8948 1.139 0.8572 0.7851 0.7859 0.9297 0.7866 0.7824
X5 0.4688 0.4708 0.5321 0.481 0.4064 0.4724 0.4822 0.4063 0.4076
X3 46.6098 40.6415 53.8072 42.2844 40.3196 40.9759 47.5163 42.0984 42.0909
Xy 11.4509 12.8559 10.0000 10.0000 10.0000 45.7413 56.4759 62.7144 140.3024
Min 9.98E +03 1.071E + 04 1.05E + 04 9.42E + 03 6.45E +03 9.39E + 03 1.07E + 04 6.14E + 03 6.06E + 03
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FiGgure 8: Convergence curves of 9 algorithms in pressure vessel design.

FIGURE 9: Model design.
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TaBLE 11: Experimental results of welded beam design problem.

21

TSO AHO BOA DDAO PSO OSA GSA AISA FCBAISA
X 0.1544 0.1501 0.2578 0.1557 0.166 0.1518 0.2088 0.1658 0.1659
X, 3.3508 2.6955 3.3616 3.7372 8.2326 3.0559 3.8553 7.4115 8.2326
X3 4.9116 6.8373 5.7222 7.0623 9.9971 4.3309 5.7837 9.9936 9.9971
X4 0.1733 0.1687 0.2518 0.1841 0.168 0.1696 0.1879 0.168 0.168
Min 2.9727 2.8871 3.337 2.8895 2.0632 2.677 2.8778 2.0638 2.0632
Welded Beam Design
o
st
ey
Wl X g:&g:%g.v.ﬁ_”
WO
CIliiiIiiiiiiiiiiiiiiiiionzd
WO f 2L e
S 26028003
Tl et
& R e T
wsfl
1OWOF ]
WS F|
. O N VOV A
10% 05 1 15 2 25 3
FEs x10*
—o— FCBAISA —— BOA —4— OSA
—o— AISA —— DDAO TSO
—&— PSO —=— AHO GSA
Figure 10: Convergence curves of 9 algorithms in welded beam design problem.
F
A
D
c Follower
Driver .
FIGURE 11: Model design.
TaBLE 12: Experimental results of gear train design problem.
TSO AHO BOA DDAO PSO OSA GSA AISA FCBAISA
X, 12.0222 12.0000 12.0000 12.37856 12.0000 12.0000 13.2554 12.0000 12.0000
X 12.8303 12.0000 12.0000 12.0000 12.0000 20.0455 12.2594 12.0693 12.3333
X3 51.9823 19.03763 24.0755 29.2456 23.1030 35.1536 43.7907 23.0162 34.3642
Xy 12.8303 20.97001 21.6255 24.4759 18.0335 31.4768 43.5781 23.3093 34.1505
Min 0.0020 3.20E-08 0.0178 6.40E-08 4.14E-08 3.57E-02 6.81E-10 3.09E-10 2.23E-10
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Design of a Gear Train
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FIGURE 12: Convergence curves of 9 algorithms in gear train design problem.

FIGURE 13: Model design.

TaBLE 13: Experimental results of speed reducer design problem.

TSO AHO BOA DDAO PSO OSA GSA AISA FCBAISA
X, 2.6025 3.5012 2.7400 3.5039 2.6000 2.7698 3.5177 2.9963 3.5000
X, 0.7000 0.7000 0.7000 0.7000 0.7000 0.7878 0.7006 0.7000 0.7000
X3 17.0000 17.0000 17.0000 17.0000 17.0000 18.0818 17.0330 17.0000 17.0000
Xy 7.3000 7.3000 7.3000 7.3000 7.3000 7.7211 7.3282 7.3000 7.3000
X 7.8000 7.8000 7.8000 7.8139 7.8000 8.2789 7.8080 7.8000 7.8000
X 3.3492 3.355 3.3543 3.3517 3.3486 8.4332 3.3528 3.3497 3.3502
X7 5.2864 5.2895 5 5.2891 5.2862 5.3459 5.2947 5.2864 5.2865

Min 7.63E +05 3.14E+03 9.43E + 05 3.31E+03 4.03E+05 1.00E + 06 3.53E+03 6.30E + 04 3.00E + 03
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the second length (I,), and the diameter between I, and
I, (d,). This problem consists of 4 linear and 7 nonlinear
inequalities, and the model of this specific problem is as (30),
where x =[x}, X,, X3, X4, X5, X, X7] = [b,m, 2,1},1,,d,,d,].

Min f (x) =0.7854x,x5(3.3333x3 + 14.9334x, - 43.0934)
—1.508x, (xg+x7 ) +7.4777 (x5 +x7) +0.7854( x4 x5 + X5 ),

y1(x)= -1<0,
X1X3X3
397.50
¥, (x)=———5-1<0,
1%2X3
1.930x2
35 (1) ==t 120,
X)XgX3
1.930x?
yu(x)= 4x5—1S0,
Xy X7X3
" \ (745.0x,/,63) +16.90 x 10°
x)= -1<0,
s 110.0x
\/ (745.0x5/x,%5 )" +157.50x 10°
Y6 (x)= -1<0,

3
85.0x;

Xy X3
=—=—-1<0,
1 (="5

s.t. 4

5x,
=—=-1<0,
Vs (x) X,

X1
12x,

Yo (x)= -1<0,

1.50x4+1.90

Y1 (x)=————-1<0,
Xy

1.10x7+1.90

X5

yu (%)= 1<0,

2.60<x,<3.60,0.70<x, <0.80,

17.0<x,<28.0,

7.30<x,<8.30

7.50<x5<8.30,2.90<x,<3.90,

5.0<x,<5.50.
(30)
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design problem.

In Table 13, it can be seen that the optimal solution of
each algorithm in solving the problem of speed reducer
design is 3.00E + 03, and FCBAISA is better than that of
other algorithms obviously. The convergence curve of the
algorithm involved in this paper on speed reducer design
problem is shown in Figure 14.

6. Conclusion

A fast convergence and balanced adolescent identity search
algorithm (FCBAISA) is proposed in this work for nu-
merical and engineering design problems to advance the
quality of AISA. To balance the exploration and exploitation
of FCBAISA better, a layered optimization strategy is pro-
posed. A fast search strategy is proposed to make the al-
gorithm break away from the local optimization and
converge to the optimal value faster. The CFLN is improved
by RSLE to obtain the optimal result effectively. A terminal
disturbance strategy is designed to prevent the algorithm
from local optimization in the later iteration. The CEC2017
benchmark functions, CEC2022 benchmark functions, and
the design problems of engineering are applied to check the
quality of FCBAISA. It is clear that FCBAISA has high
precision, fast convergence speed, strong exploration, and
exploitation ability, and the balance between them is better.
In addition, future research can be carried out from the
following aspects:

(1) Further improvement of FCBAISA, including the
Chebyshev approximation model and other effective
alternative models.
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(2) Trying to apply FCBAISA to the problems of multi-
objective optimization, and considering the combi-
nation of specific practical problems, including
scheduling optimization and engineering problems.
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