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Abstract

The estimation of population allele frequencies using sample data forms a central component of studies in population
genetics. These estimates can be used to test hypotheses on the evolutionary processes governing changes in genetic
variation among populations. However, existing studies frequently do not account for sampling uncertainty in these
estimates, thus compromising their utility. Incorporation of this uncertainty has been hindered by the lack of a method for
constructing confidence intervals containing the population allele frequencies, for the general case of sampling from a finite
diploid population of any size. In this study, we address this important knowledge gap by presenting a rigorous
mathematical method to construct such confidence intervals. For a range of scenarios, the method is used to demonstrate
that for a particular allele, in order to obtain accurate estimates within 0.05 of the population allele frequency with high
probability (§95%), a sample size of w30 is often required. This analysis is augmented by an application of the method to
empirical sample allele frequency data for two populations of the checkerspot butterfly (Melitaea cinxia L.), occupying
meadows in Finland. For each population, the method is used to derive §98:3% confidence intervals for the population
frequencies of three alleles. These intervals are then used to construct two joint §95% confidence regions, one for the set
of three frequencies for each population. These regions are then used to derive a §95% confidence interval for Jost’s D, a
measure of genetic differentiation between the two populations. Overall, the results demonstrate the practical utility of the
method with respect to informing sampling design and accounting for sampling uncertainty in studies of population
genetics, important for scientific hypothesis-testing and also for risk-based natural resource management.
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Introduction

Spatiotemporal patterns of genetic variation among populations

are often used to test hypotheses about processes underlying the

patterns, such as selection, migration and genetic drift (e.g.,

[1,2,3,4,5]). This genetic variation captures differences in genetic

structure among populations, where the genetic structure of a

population is determined by the distribution of alleles among

individuals in the population. The allele distribution of a

population is the result of a range of biological and environmental

processes acting on the population and also on surrounding

populations within the same geographical region, which result in

non-random mixing of gametes among individuals in all popula-

tions. Patterns in allele distributions among populations are

generally assessed by consideration of variations in allele

frequencies (e.g., [6,7,8,9]).

Logistic and ethical constraints mean that in practice, a

population is unlikely to be sampled in its entirety, such that the

population allele frequencies have to be estimated using a subset of

sampled individuals. For diploid organisms in a large population, it

has been established that the frequency of an allele in a sample

provides an unbiased estimate of the frequency in the population

as a whole [10]. Thus, if samples of a given size are repeatedly

taken from a large population, then the mean frequency of an

allele in a sample converges to the population allele frequency as

the number of samples increases. However, many studies only take

a single sample from a population and present or use the resulting

frequencies of alleles in the sample, without accounting for

sampling uncertainty (e.g., [11,12,13,14,15,16,17,18]). Therefore,

these studies implicitly assume that the sample allele frequencies

are close to the population allele frequencies, which is by no means

guaranteed. Interpretation of findings from these studies is

therefore complicated by the potential for large sampling

uncertainty. Ideally, in this single sample case, uncertainty bounds

for the population allele frequencies would be quantified, based on

the sample allele frequencies.
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A recent study by Hale et al. [19] used computer simulations to

draw samples from four diploid populations, with allele frequen-

cies based on four empirical datasets. Subsequently, they used the

sample data to derive the means, variances and ranges of allele

frequencies in samples of varying size, as well as the means,

variances and ranges of indicators that are a function of allele

frequencies (specifically, heterozygosity and FST). Using these

results, Hale et al. [19] concluded that a sample size of 30 is

sufficient to accurately estimate population allele frequencies when

using microsatellites. However, the authors did not quantify

uncertainty bounds for the population allele frequencies using

their sample data, such that their assessment of accuracy lacks a

rigorous quantitative basis. Furthermore, for each sample size,

sample frequencies were calculated using only 100 replicate

samples, which may not give a good approximation of the true

dispersion in the sample frequencies. This highlights a weakness of

using a computational approach that lacks an underlying

mathematical theory. Moreover, Hale et al. [19] did not consider

the situation identified earlier, where one sample is taken and

there is a need to quantify uncertainty of population allele

frequencies using just the sample allele frequencies. For this

situation, earlier studies have derived confidence intervals in order

to capture uncertainty in the population allele frequencies. If a

diploid population is of infinite size and is at Hardy-Weinberg

equilibrium (HWE), then the frequency of an allele in a sample

follows a binomial distribution [10]. Thus, Gillespie [20] proposed

the use of the Wald confidence interval [21]. However, this

interval only performs well for sufficiently large sample sizes – with

small sample sizes, it is too short [22]. For the binomial

distribution, other confidence intervals have been derived that

do perform well for small sample sizes [22,23], notably the

Clopper-Pearson interval that was derived eight decades ago [24].

However, these only apply in the limited cases when the

population is at HWE. Weir [10] proposed a confidence interval

that allows for deviations from HWE, analogous to the Wald

confidence interval. However, like the latter, it is expected to

perform well only for sufficiently large sample sizes [10]. This is

problematic because the accuracy at a particular sample size is

unknown, so ‘‘sufficiently large’’ cannot be rigorously quantified.

Moreover, all the confidence intervals considered only apply to

cases when the population can be assumed to be of infinite size, i.e.

when the population size is much larger than the sample size. This

does not reflect the range of scenarios encountered in empirical

research (e.g., [13,25,26,27]).

In this study, we build on previous work by constructing

confidence intervals for population allele frequencies for the

general case where (i) the population is diploid, finite and can be of

any size; (ii) the sample can take any size less than or equal to that

of the population; and (iii) the population can deviate from HWE

to any extent. These confidence intervals are guaranteed to

contain the population allele frequency with a probability above a

known threshold. The method derived for constructing these

intervals is then used to calculate sample sizes required to achieve

accurate estimates of population allele frequencies, under a range

of scenarios. Here, accuracy is measured as the length of the

confidence intervals. The sample sizes derived serve as a guide for

determination of suitable sample sizes in future population genetic

studies. In particular, we show that a sample size of 30 does not

necessarily give accurate estimates, thus refining the conclusion of

Hale et al. [19]. Lastly, we provide an example of how the method

can be applied to microsatellite data for two populations of the

checkerspot butterfly (Melitaea cinxia L.) [13], to derive confidence

intervals for population allele frequencies and also for Jost’s D, a

measure of genetic differentiation between two populations that is

a function of their population allele frequencies [9]. The data

comes from a study [13] where it is unclear that the populations

can be assumed to be of infinite sizes or at HWE. This example

illustrates how the mathematical theory underlying our method

can be used to quantify sampling uncertainty not only in

population allele frequencies, but also in parameters that are

functions of these frequencies, important for hypothesis-testing and

also for natural resource management.

Overall, this study provides a rigorous mathematical quantifi-

cation of sampling uncertainty in population allele frequencies,

without the typically unrealistic constraints of assuming that a

population has an infinite size and is at HWE. Thus, the results

can be applied to a wide range of studies in population genetics.

Methods

In order to construct confidence intervals for the general case of

taking samples of any size from a diploid population of any size

(larger than or equal to the sample size) and with any degree of

deviation from HWE, the sampling distribution of the allele

frequencies in this general case is first exactly specified. This

distribution is then used to derive formulae specifying confidence

intervals that contain the population allele frequencies with

probability above a known threshold. Using these formulae,

confidence intervals are derived for a range of archetypal

scenarios, which are then used to calculate sample sizes that

permit accurate estimates of population allele frequencies in these

scenarios. In addition, the formulae are applied to a real scenario

where samples are taken from two butterfly populations [13], to

construct confidence intervals for the population allele frequencies

of these two populations. The intervals are then used to derive a

corresponding confidence interval for Jost’s D [9].

Derivation of sampling distribution of allele frequencies
Consider a population of M diploid individuals, from which a

sample of N individuals is randomly drawn (M§N ). At the locus

of interest, there are nw1 alleles, denoted by Ai, i [ 1, 2, . . . ,nf g.
Let the population allele frequencies be denoted by pi, with the

corresponding sample allele frequencies being denoted by pi,N .

Also, let Pij be the frequency of individuals in the population with

alleles Ai and Aj (i, j [ 1, 2, . . . ,nf g), such that MPij is the

number of corresponding individuals in the base population. pi is

related to Pij by the formula pi~Piiz
Pn

j~1, j=i Pij=2
� �

. Here,

Pii is a measure of the homozygosity of individuals in the

population with respect to allele Ai. Pii~pi{
Pn

j~1, j=i Pij=2
� �

,

and thus Piiƒpi. If 0ƒpiƒ0:5, then the minimum value of Pii is

0, since all copies of allele Ai can be distributed among

heterozygotes of allele Ai. However, if piw0:5, then this is not

possible – there must be at least one homozygote of allele Ai. In

this case, the minimum number of homozygotes is realized when

all heterozygotes have a copy of allele Ai, i.e. when

Piiz
Pn

j~1, j=i Pij~1. Rearranging this for
Pn

j~1, j=i Pij and

substituting into Pii~pi{
Pn

j~1; j=i Pij=2
� �

gives the minimum

value of Pii as 2pi{1. Thus, overall, Max 0, 2pi{1f gƒPiiƒpi.

The frequency of allele Ai in the sample of size N is given by

pi,N~Yi,N= 2Nð Þ, where Yi,N is the number of copies of allele Ai

in the sample. Thus, the probability distribution of pi,N is the same

as the probability distribution of Yi,N except with the x-axis scaled

by a factor 1= 2Nð Þ. Denote the probability mass function (pmf) for

Yi,N by P Yi,N~yi,Nð Þ. The range of Yi,N is 0, 2N½ �, so

P Yi,N~yi,Nð Þ~0 for yi,N outside this range. Thus, for the

following calculations, only yi,N [ 0, 2N½ � are considered. Now,

Yi,N~2XiizXi:, where Xi:~
Pn

j~1, j=i Xij and Xij is the number

Confidence Intervals for Allele Frequencies
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of individuals in the sample with alleles Ai and Aj . Xii, Xi: and

Zi~N{Xii{Xi: thus represent the number of individuals in the

sample with two copies, one copy and no copies of allele Ai,

respectively. Xii, Xi: and Zi follow a multivariate hypergeometric

distribution with pmf given by:

P Xii~xii, Xi:~xi:, Zi~zið Þ

~

MPii

xii

 !
M
Pn

j, j=i

Pij

xi:

0
B@

1
CA M{MPii{M

Pn
j, j=i

Pij

zi

0
B@

1
CA

M

N

 ! ,

ð1Þ

where terms on the right-hand side in brackets are binomial

coefficients. Since the number of individuals in the sample must

equal N, xiizxi:zzi~N. P Yi,N~yi,Nð Þ is the sum of

P Xii~xii,Xi:~xi:,Zi~zið Þ for all those biologically feasible

combinations of xii, xi: and zi satisfying yi,N~2xiizxi:. It will

now be shown that this summation can be simplified to the sum of

an expression that depends only on xii and yi,N , over all xii

between lower and upper bounds that only depend on yi,N . This

considerably eases calculation of P Yi,N~yi,Nð Þ. Firstly, the

number of individuals in the sample with two copies, one copy

or no copies of allele Ai cannot exceed the corresponding numbers

in the sampled population. This gives rise to three inequalities:

xiiƒMPii, ð2Þ

xi:ƒM
Xn

j, j=i

Pij , ð3Þ

N{xii{xi:ƒM{MPii{M
Xn

j, j=i

Pij : ð4Þ

Secondly, the number of individuals with two copies, one copy or

no copies of allele Ai in the sample must be non-negative. This

gives rise to three more inequalities:

xii§0, ð5Þ

xi:§0, ð6Þ

N{xii{xi:§0: ð7Þ

Since pi~Piiz
Pn

j~1, j=i Pij=2
� �

and yi,N~2xiizxi:, thenPn
j~1, j=i Pij~2 pi{Piið Þ and xi:~yi,N{2xii. Thus, the inequal-

ities (2)–(7) can be rearranged to obtain the double inequality:

Max
yi,N

2
{MpizMPii, yi,N{N, 0

n o
ƒxiiƒ

Min MPii,
yi,N

2
, M{Nzyi,N{2MpizMPii

n o
:

ð8Þ

It is noted that xi:~yi,N{2xii, which means that xi:§0

(inequality (6)) ensures that xiiƒyi,N=2ƒN , as required. Denote

the upper and lower bounds in (8) by L yi,Nð Þ and U yi,Nð Þ
respectively. Then P Yi,N~yi,Nð Þ can be written as:

P Yi,N~yi,Nð Þ

~
Xfloor U yi,Nð Þ½ �

xii~ceiling L yi,Nð Þ½ �
P Xii~xii, Xi:~xi:, Zi~zið Þ

~
Xfloor U yi,Nð Þ½ �

xii~ceiling L yi,Nð Þ½ �
P

Xii~xii, Xi:~yi,N{2xii,

Zi~Nzxii{yi,N

 !
,

ð9Þ

where zi has been rewritten using zi~N{xii{xi: and

xi:~yi,N{2xii, ceiling a½ � is the smallest integer larger than a,

and floor a½ � is the largest integer smaller than a. The ceiling and

floor functions are introduced to ensure that xii is an integer,

which it must be to have a biological interpretation. P Yi,N~yi,Nð Þ
is equal to P pi,N~yi,N= 2Nð Þð Þ, the pmf for pi,N , and thus defines

the probability distribution of pi,N . Equation (9) can be used to

define the probability distribution of pi,N given only four

parameters: M, pi, Pii and N.

Derivation of confidence intervals for sample allele
frequencies

For given population size (M), population allele frequency (pi),

population frequency of homozygotes with allele Ai (Pii) and

sample size (N), the probability distribution for the sample allele

frequency (pi,N ) can be calculated exactly using equation (9). The

mean value of this distribution is:

E pi,N½ �~E
Yi,N

2N

� �
~

2E Xii½ �zE Xi:½ �
2N

~

2NPiizN
Pn

j~1, j=i

Pij

2N
~Piiz

Xn

j~1, j=i

Pij

2
~pi,

ð10Þ

as in the case of sampling from an infinite diploid population [10].

In equation (10), the expectation E Xij

� �
~NPij has been used,

which follows from the fact that the Xij ’s, with i, j [ 1, 2, . . . ,nf g,
follow a multivariate hypergeometric distribution with parameters

M, N and MPij [28]. In addition, it can be proved that the

variance of pi,N is

s2 pi,N½ �~
M{Nð Þ pi{2p2

i zPii

� �
2 M{1ð ÞN ð11Þ

(see File S1). The variance thus includes a standard finite

correction factor M{Nð Þ= M{1ð Þ that tends to 1 as M??,

as required. Therefore, as M??,

s2 pi,N½ �? pi{2p2
i zPii

� �
= 2Nð Þ, the variance in the case of an

infinite population size [10]. The cumulative distribution function

(cdf) for pi,N is specified by:

P pi,Nƒwð Þ~P pi,Nƒ

yi,N

2N

� 	

~P Yi,Nƒyi,Nð Þ~
Xyi,N

k~0

P Yi,N~kð Þ,
ð12Þ

Confidence Intervals for Allele Frequencies
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where yi,N is an integer in the interval 0, 2N½ �. This cdf can be

calculated using equation (9) and is a function of pi. To construct a

CI for pi given M, N and Pii, consider testing the null hypothesis

H0 : pi~pi,0 against the alternative H1 : pi=pi,0 at significance

level a for an observed value of Yi,N , denoted by ŷyi,N . The null

hypothesis is not rejected if using pi~pi,0, ŷyi,N falls within an

acceptance region defined by Ba~ yi,N,a=2, yi,N,1{ a=2ð Þ
� �

, where

yi,N,a=2 is the largest integer for which P Yi,Nvyi,N,a=2

� �
ƒa=2 and

yi,N,1{ a=2ð Þ is the smallest integer for which

P Yi,Nwyi,N,1{ a=2ð Þ
� �

ƒa=2. Ba can be calculated using equation

(12). One method of constructing a §100 1{að Þ% CI for pi is to

determine the set of values of pi,0 for which the null hypothesis is

not rejected at significance level a, denoted by

Pi,H0,a~ pi,0 : ŷyi,N [ Ba


 �
, and defining the CI as

La, Ua½ �~ Min Pi,H0,a

� 	
, Max Pi,H0,a

� 	h i
ð13Þ

[29]. This hypothesis-testing approach corresponds to the ‘‘test-

method’’ described by Talens [30], who applied it to construct

CI’s for parameters of the univariate hypergeometric distribution.

If Pi,H0,a~1, the empty set, then the acceptance region needs to

be extended to include ŷyi,N for at least one value of pi,0. Thus, in

this case, a is decreased until ŷyi,N is in the acceptance region for at

least one pi,0 value.

The CI specified by equation (13) is not an exact 100 1{að Þ%
CI because the distribution for Yi,N is discrete and because there

may be some pi,0 values between Min Pi,H0,að Þ and Max Pi,H0,að Þ
for which ŷyi,N = a, since P Yi,Nƒyi,Nð Þ is not guaranteed to be a

monotonic function of pi (see equations (9) and (12)). It is noted

that for the probability parameter in a binomial distribution,

Clopper and Pearson [24] derived §100 1{að Þ% CI’s using an

analogous method. Thus, for the case of a large population size

relative to the sample size (MwwN) and HWE, where pi,N

approximately follows a binomial distribution, CI’s for pi derived

using our method would be virtually the same as Clopper-Pearson

CI’s. This can be verified by explicitly calculating and comparing

CI’s using the two methods – for example, if

M~1,000,000wwN~30 and ŷyi,N~10, then both methods give

the CI 0:083, 0:285½ � for pi.

In deriving equation (13), it was assumed that Pii is known.

However, Pii is generally unknown. In this case, a §100 1{að Þ%
confidence region (CR) can be derived for pi and Pii in an

analogous way, by considering the null hypothesis

H ’0 : pi~pi,0, Pii~Pii,0. The CR can be derived by determining

the set of vectors pi,0, Pii,0ð Þ for which the null hypothesis is not

rejected at significance level a. This set is denoted by

Pi,H ’0,a~ pi,0, Pii,0ð Þ : ŷyi,N [ Ba


 �
, where Ba is as defined before.

Using the CR, §100 1{að Þ% CI’s for pi and Pii can be defined as

L’pi ,a
, U ’pi ,a

� �
~ Min Pi,H ’0,a,1

� 	
, Max Pi,H ’0,a,1

� 	h i
, ð14aÞ

and

L’Pii ,a
, U ’Pii ,a

� �
~ Min Pi,H ’0,a,2

� 	
, Max Pi,H ’0,a,2

� 	h i
, ð14bÞ

where Pi,H ’0,a, j is the set of values consisting of the jth elements in

the set of vectors Pi,H ’0,a. In determining Pi,H ’0,a, pi,0 and Pii,0

values over the biologically feasible ranges are tested. Since the

number of copies of allele Ai in the population must be at least the

number found in the sample, ŷyi,N

�
2Mð Þƒpi,0. Also, the number

of copies of all other alleles in the population must be at least the

number found in the sample, 2N{ŷyi,N ; this constrains the

maximum value of pi,0 according to

pi,0ƒ 2M{ 2N{ŷyi,N

� �� ��
2Mð Þ~1{ 2N{ŷyi,N

� ��
2Mð Þ

� �
. For

a given value of pi,0, Max 0, 2pi,0{1f gƒPii,0ƒpi,0, as determined

earlier. If Pi,H ’0,a~1, then the acceptance region is extended to

include ŷyi,N for at least one pair of values of pi,0 and Pii,0, by

decreasing a.

CI’s specified by equation (13) can be calculated given M, N, Pii

and a, whereas those specified by equations (14a) and (14b) can be

calculated given just M, N and a. In this paper, computation of

any CI’s using these equations, incorporating the underlying

formulae specified by equations (1), (8), (9) and (12), was carried

out using the software package Mathematica v5.0 [31]. Supporting

Webpage 1 provides Mathematica code for computation of the CI’s

and can be viewed at http://rpubs.com/kkeenan02/Fung-

Keenan-Mathematica/. However, other software packages such

as MATLAB [32] and R [33] could also be used to implement the

formulae; indeed, an R version of the code is provided on

Supporting Webpage 2 and can be viewed at http://rpubs.com/

kkeenan02/Fung-Keenan-R/. All source code for the composition

of Supporting Webpages 1 and 2, including the raw Mathematica

and R code used, can be accessed at https://github.com/

kkeenan02/Fung-Keenan2013/.

Determining minimum sample sizes for accurate
estimation of population allele frequencies

In studies of population genetics, it is desirable to obtain a

sample allele frequency close to the population allele frequency

with high probability [19], i.e. a short CI of high probability.

Thus, under three representative scenarios, we calculate the

minimum sample sizes required to obtain §95% CI’s with lengths

ƒ0:2 and ƒ0:1 across all possible values of the observed sample

allele frequency, p̂pi,N~ŷyi,N

�
2Nð Þ. These minimum sample sizes

are denoted by Nƒ0:2 and Nƒ0:1 respectively. They are calculated

by starting with N~10, computing CI lengths for all possible

values of p̂pi,N and then taking the maximum value. This is

repeated for increasing N in increments of 10 until the maximum

CI length becomes ƒ0:1. The N value with maximum CI length

closest to 0.2 is then chosen, and then increased or decreased as

necessary to find Nƒ0:2. Nƒ0:1 is derived analogously. Maximum

CI lengths of 0.2 and 0.1 represent small maximum absolute errors

in the estimated allele frequency of 0.1 and 0.05 respectively, if the

estimate is taken as the mid-point of the CI. The first scenario

examined, Scenario 1, is sampling from a population of M~1,000
at HWE. M~1,000 is larger than or on the same order of

magnitude as the upper bound of the range of size estimates for

15/24 (63%) species populations collated by Frankham et al. [25],

covering mammals, birds, insects and plants. Thus, M~1,000 is

taken to represent a large population. Later, M is varied over two

orders of magnitude to consider populations that range from small

to very large. Since there is a HWE, Pii~p2
i . Also, in the sampled

population, the number of homozygotes with allele i, MPii, must

be an integer. This restricts the number of values that pi can take

to 11 equally spaced values in the interval 0, 1½ � (starting from 0).

Scenarios 2 and 3 represent situations where HWE does not

hold, such that Pii=p2
i . In Scenario 2, Pii is assumed to take its

minimum value, which is Max 0, 2pi{1f g, whereas in Scenario 3,

Pii is assumed to take its maximum value, which is pi. In

comparison with Scenario 1, pi can now take a larger number of

values – it can take the 2,001 equally spaced values in the interval

0, 1½ � in Scenario 2 and the 1,001 equally spaced values in the

interval 0, 1½ � in Scenario 3. Since the variance of pi,N is an

Confidence Intervals for Allele Frequencies
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increasing function of Pii (equation (11)), CI’s derived using pi,N

are expected to increase in length with Pii as well. This means that

CI lengths and minimum sample sizes (Nƒ0:2 and Nƒ0:1) derived

for Scenarios 2 and 3 are expected to encompass the entire ranges

of possible values.

In the three scenarios examined, Pii is specified as a function of

pi, such that equation (13) can be used to calculate a CI for pi

given a value of p̂pi,N . Calculation of this CI involves considering all

possible values of pi and determining under which values p̂pi,N falls

within the corresponding acceptance region (as described above).

An alternative scenario, Scenario 4, is that the relationship

between Pii and pi is unknown. In this case, equation (14a) has to

be used to calculate a CI for pi given a value of p̂pi,N , which

involves considering all possible values of pi and Pii. This results in

a considerable increase in computation time; for example, when

sampling N~30 individuals from a population of M~1,000,

2,001 values of pi need to be considered but 1,002,001

combinations of pi and Pii need to be considered, representing

an increase in computational time by two orders of magnitude.

However, for a given value of pi, the maximum value of Pii gives

the highest variance for pi,N and is thus expected to maximize the

length of the acceptance region within which p̂pi,N could fall within.

Thus, CI’s for pi derived under Scenario 4 are expected to closely

match those derived under the case of maximum homozygosity

(Scenario 3). This can be verified by explicit calculation of the CI’s

– for example, given M~100, N~30 and p̂pi,N~15, the CI’s

derived under Scenario 4 and Scenario 3 are 0:14, 0:4½ � and

0:15, 0:39½ �, representing a difference in length of only 0.02.

Similar results hold for p̂pi,N~10 and 5. Therefore, results from

Scenario 3 are used to approximate those for Scenario 4, obviating

the need for long computational runtimes to explore all possible

combinations of pi and Pii.

Lastly, from equation (11), the variance of pi,N is an increasing

function of M. Thus, CI lengths for pi are expected to increase

with M, which would result in increases in Nƒ0:2 and Nƒ0:1. To

test this explicitly, for a population at HWE and with N~30,

maximum lengths for the §95% CI for pi (across all values of p̂pi,N )

are calculated for M~100, 250, 500, 750, 1,000, 2,500, 5,000,

7,500 and 10,000. This range corresponds to populations that are

small to very large [25].

Application to an empirical data set for checkerspot
butterflies

To demonstrate how the theory developed can be used in

practice, it is applied to microsatellite data for samples from two

populations of the checkerspot butterfly (Melitaea cinxia L.)

occupying meadows on the Åland Islands in Finland [13].

Specifically, for the CINX1 locus, §100 1{2að Þ% CI’s are

calculated for the frequencies of alleles A, B and C for the Prästö

and Finström populations, using the corresponding sample allele

frequencies (Table 1 of Palo et al. [13]). For each population, a CI

is not calculated for the population frequency of the fourth and

final allele D, because this is fixed by the population frequencies of

the first three alleles. To achieve consistency with the notation

used in our study, henceforth, alleles A, B, C and D are referred to

as alleles A1, A2, A3 and A4 respectively. The sample size for the

Prästö population is N1~53, whereas that for the Finström

population is N2~74 [13]. pi,N1
and qi,N2

, i [ 1,2,3,4f g, are used

to denote the sample allele frequencies of Ai in the Prästö and

Finström populations respectively. Similarly, pi and qi are used to

denote the population allele frequencies of Ai in the two

populations, respectively. The two populations consist of two

and seven subpopulations respectively. Thus, technically, the two

populations can be referred to as metapopulations, although this

terminology is not used in our study for clarity. The subpopula-

tions form part of a total of about 536 subpopulations on the

Åland Islands, with an estimated total size ranging from 35,000 to

at least 200,000 [13]. Thus, the size of each subpopulation is

assumed to be (35,000z200,000)=2½ �=536~219, such that the

Prästö and Finström populations are assumed to have a size of

M1~2|219~438 and M2~7|219~1533 respectively. The

observed sample allele frequencies in the two populations, denoted

by p̂pi,N1
and q̂qi,N2

respectively, are taken directly from [13]. These

are used to calculate the observed number of copies of allele Ai in

each population, denoted by ŷyi,N1
and ẑzi,N2

respectively, using the

formulae ŷyi,N1
~2N1p̂pi,N1

and ẑzi,N2
~2N2q̂qi,N2

. Due to rounding

error in p̂pi,N1
and q̂qi,N2

values from [13], ŷyi,N1
and ẑzi,N2

had to be

rounded to the nearest integer. Since the true homozygosity of

each allele in each population is unknown [13], conservative CI’s

are calculated assuming Pii takes its maximum value of pi (this is

expected to maximize the lengths of the CI’s, as explained in the

previous section). In addition, a~0:025=3 is chosen, such that a

§98:3% CI is derived for each of the three population allele

frequencies in each of the two populations. The reason for this

choice of a is because for each population, using the Bonferroni

Inequality [34], the cubic region defined by the three CI’s can be

taken as a §100 1{2bð Þ% confidence region (CR) for the three

population allele frequencies, where 3a§b. The choice of

a~0:025=3 allows §95% CR’s to be derived for each set of

three population allele frequencies in the two populations.

To demonstrate how the theory developed in this paper can be

used to derive CI’s for genetic indicators that are a function of the

population allele frequencies, the §95% CR’s are used to

calculate a §95% CI for Jost’s D for the CINX1 locus and the

Prästö and Finström butterfly populations. Jost’s D is a measure of

genetic distance between populations [9]. For the case of two

populations, it is given by

DJost~2 1{
JT

JS

 �� �
, ð15Þ

where, using the notation in this example,
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A lower limit to a §95% CI for DJost can be derived by

minimizing the function in (15) given the constraints that the six

population allele frequencies are contained within the two

corresponding §95% CR’s, and the two constraints

1{
P3

i~1 pi~p4§0 and 1{
P3

i~1 qi~q4§0. This lower limit

is denoted by LD. Similarly, the upper limit to a §95% CI for

DJost can be derived by maximizing the function in (15) under the

Confidence Intervals for Allele Frequencies
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same constraints. This is denoted by UD. In this study, the

‘‘Minimize’’ and ‘‘Maximize’’ functions in Mathematica v5.0 [31]

are used to compute LD and UD, but corresponding functions may

be used in other software packages, such as the ‘‘solnp’’ function in

the ‘‘Rsolnp’’ R package. A §95% CI for DJost can then be

defined as the interval LD, UD½ �. Supporting Webpage 1 provides

Mathematica code that can be used to calculate LD, UD½ � for the

butterfly case study examined (http://rpubs.com/kkeenan02/

Fung-Keenan-Mathematica/). Corresponding R code is presented

on Supporting Webpage 2 (http://rpubs.com/kkeenan02/Fung-

Keenan-R/).

Results

Maximum length of §95% confidence interval with
increasing sample size

For Scenario 1, where the sampled diploid population of size

M~1,000 was at HWE, the maximum length of the §95% CI

for the population frequency of allele Ai, pi, considering all

possible observed values of the sample allele frequency, p̂pi,N ,

decreased non-linearly with sample size N (Figure 1). The

minimum N required to achieve a maximum length ƒ0:2,

Nƒ0:2, was 22, whereas the minimum N required to achieve a

length ƒ0:1, Nƒ0:1, was 49 (Figure 1).

For given N and p̂pi,N , the CI for pi consists of all possible values

of pi for which p̂pi,N lies in the corresponding acceptance region, as

described in Methods. This acceptance region is expected to

increase with the variance of pi,N , s2 pi,N½ �. At HWE, the frequency

of homozygotes of allele Ai, Pii, is equal to p2
i ; thus, according to

equation (11), s2 pi,N½ � takes its highest values at intermediate

values of pi. As a result, intermediate values of p̂pi,N are likely to fall

within the acceptance regions of more values of pi, such that the

corresponding CI lengths are generally longer. Simulation results

for Scenario 1 were broadly in agreement with these theoretical

expectations (Figure 2).

In Scenario 2, where the population was no longer at HWE but

attained its lowest Pii, the maximum CI length also decreased non-

linearly with increasing N (Figure 1). Compared with Scenario 1,

Nƒ0:2 was slightly larger and Nƒ0:1 was larger by about a factor of

two, taking values of 26 and 94 respectively (Figure 1). This is

contrary to expectations that minimum homozygosity would give

smaller Nƒ0:2 and Nƒ0:1 (see Methods). The reason is that although

s2 pi,N½ � is smaller for given N and pi compared with the case of

HWE, which would be expected to result in fewer pi values for

which a given p̂pi,N falls within the corresponding acceptance

regions and hence a shorter CI, there are more possible values of

pi (2,001 compared with 11 – see Methods), which increased the

number of pi values for which p̂pi,N falls within the corresponding

acceptance regions. For Scenario 2, Pii~Max 0, 2pi{1f g, such

that s2 pi,N½ � attains its highest values at pi values close to 0.25 and

0.75 (equation (11)). Thus, for given N, values of p̂pi,N near 0.25 and

0.75 are expected to generally exhibit the longest CI lengths.

Simulation results for Scenario 2 were broadly in agreement with

these theoretical expectations (Figure 3).

For the last scenario, Scenario 3, the population attained its

highest Pii, representing the opposite extreme to Scenario 2. As for

the previous two scenarios, the maximum CI length decreased

non-linearly with increasing N (Figure 1), but this time, Nƒ0:2 and

Nƒ0:1 took values of 94 and 285 respectively. These values were

approximately four and six times as large as the corresponding

values in Scenario 1 (Figure 1). In Scenario 3, Pii~pi, and

Figure 1. Change in maximum length of $95% confidence
interval with increasing sample size. Graph showing how the
maximum length of the §95% confidence interval (CI) for the
population frequency of an allele Ai (pi) changes with increasing
sample size N, when sampling from a diploid population of size
M~1,000. For a given N, the maximum CI length was derived by
calculating CI lengths for all possible values of the observed sample
allele frequency and then taking the maximum length. The three curves
correspond to three scenarios where the population is (1) at Hardy-
Weinberg equilibrium (HWE), (2) attains its lowest homozygosity value
with respect to Ai , and (3) attains its highest homozygosity value with
respect to Ai . For each curve, the two filled circles represent the
minimum N values required for the maximum CI length to reach values
of ƒ0:2 and ƒ0:1. For visual guidance, the two dashed horizontal lines
mark maximum CI lengths of 0.2 and 0.1. The exact values of N tested
are described in Methods, and equation (13) was used to calculate the CI
lengths.
doi:10.1371/journal.pone.0085925.g001

Figure 2. Change in length of §95% confidence interval across
different observed values, under Hardy-Weinberg equilibrium.
For a sample of size N taken from a population of size M~1,000 at
Hardy-Weinberg equilibrium, graph showing the length of the §95%
confidence interval (CI) for the population frequency of an allele Ai (pi)
across all possible observed values of the sample allele frequency (pi,N ).
The three curves correspond to N~10, 30 and 50. Equation (13) was
used to calculate the length of each CI.
doi:10.1371/journal.pone.0085925.g002
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equation (11) shows that intermediate values of pi give the highest

values of s2 pi,N½ �. Therefore, as in Scenario 1, intermediate values

of p̂pi,N are expected to generally exhibit the longest CI lengths for

given N. Again, simulation results were consistent with these

expectations (Figure 4).

Maximum length of §95% confidence interval with
increasing population size

When taking a sample of size N~30 from a diploid population

at HWE, the maximum length of the §95% CI for pi, across all

p̂pi,N , increased with population size M (Figure 5). As M was

increased from a small value of 100 to 1,000, the maximum CI

length remained the same at 0.2 (this is possible because there is

nothing to prevent different values of M giving the same maximum

CI length, using equation (13)). The maximum CI length increased

when M was increased from 1,000 to a large value of 2,500, but

only by 0.04. Thereafter, the length remained constant up to a

very large value of M~7,500, and only increased by a small

amount of 0.02 with a further increase in M to 10,000. Thus,

simulation results confirm the theoretical expectation that CI

length increases with M (as explained in Methods – this expectation

arises because s2 pi,N½ � increases with M, according to equation

(11)). However, the increase in the CI length was modest as M was

increased over two orders of magnitude.

§95% confidence interval for Jost’s D between two
checkerspot butterfly populations

For the Prästö checkerspot butterfly population, the §98:3%

CI’s for the population frequencies for three of the four alleles at

the CINX1 locus were computed using equation (13) and data from

Palo et al. [13], as described in Methods. The three alleles are

denoted by A1, A2 and A3 respectively, with the population

frequencies denoted by p1, p2 and p3 respectively. The three

corresponding §98:3% CI’s derived were 0:002, 0:080½ �,

0:598, 0:872½ � and 0:114, 0:381½ � respectively. Using the same

methodology, for the Finström population, the §98:3% CI’s for

the population frequencies of A1, A2 and A3 were calculated

as 0:003, 0:109½ �, 0:714, 0:914½ � and 0:003, 0:109½ � respectively.

Figure 3. Change in length of §95% confidence interval across
different observed values, under minimum homozygosity. For a
sample of size N taken from a population of size M~1,000 with the
minimum homozygosity possible for an allele Ai , graph showing the
length of the §95% confidence interval (CI) for the population
frequency of Ai (pi) across all possible observed values of the sample
allele frequency (pi,N ). The three curves correspond to N~10, 30 and
100. Equation (13) was used to calculate the length of each CI.
doi:10.1371/journal.pone.0085925.g003

Figure 4. Change in length of §95% confidence interval across
different observed values, under maximum homozygosity. For
a sample of size N taken from a population of size M~1,000 with the
maximum homozygosity possible for an allele Ai , graph showing the
length of the §95% confidence interval (CI) for the population
frequency of Ai (pi) across all possible observed values of the sample
allele frequency (pi,N ). The four curves correspond to N~10, 30, 100
and 200. Equation (13) was used to calculate the length of each CI.
doi:10.1371/journal.pone.0085925.g004

Figure 5. Change in maximum length of §95% confidence
interval with increasing population size. Graph showing how the
maximum length of the §95% confidence interval (CI) for the
population frequency of an allele Ai (pi) changes with increasing
population size M, when taking samples of size N~30. The population
is at Hardy-Weinberg equilibrium. For a given M, the maximum CI
length was derived by calculating CI lengths for all possible values of
the observed sample allele frequency and then taking the maximum
length. M values of 100, 250, 500, 750, 1,000, 2,500, 5,000, 7,500 and
10,000 were tested, as indicated by the filled circles.
doi:10.1371/journal.pone.0085925.g005
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The three §98:3% CI’s for the Prästö population were used to

form a cubic region, which corresponds to a §95% CR for A1, A2

and A3 [34]. In the same way, the three §98:3% CI’s for the

Finström population were used to form a §95% CR for A1, A2

and A3. Within these two CR’s, the maximum and minimum

values of DJost (DJost is given by equation (15)) were calculated and

used to derive a §95% CI for DJost, as described in Methods. This

CI for DJost was derived as 2:34|10{5, 0:186
� �

. If DJost was

calculated simply using the sample allele frequencies and equation

(15), then only one value would have been obtained: 0.043.

Discussion

In scientific studies that use sample data to estimate unknown

population parameters, the sampling uncertainty in the estimates

needs to be quantified in order to make reliable inferences on

population processes captured by the parameters. This forms an

essential part of scientific hypothesis-testing. Therefore, in studies

of population genetics, it is essential to quantify the sampling

uncertainty of key population parameters used to infer past and

present evolutionary processes. These include allele frequencies,

which are often used to quantify genetic variation among

populations, thereby allowing hypotheses on processes driving this

variation to be tested (e.g., [1,2,3,4,5]). However, many studies do

not include sampling uncertainty for allele frequencies, instead

presenting and/or using single point estimates based on one

sample per population (e.g., [11,12,13,14,15,16,17,18]). Thus, it is

not possible to assess the accuracy of any inferences from these

studies. This hinders not only the advance of scientific knowledge

but also decision-making based on this knowledge, such as for

sustainable management and conservation of natural resources. In

this context, the work presented in this paper is valuable in that it

provides a method of quantifying sampling uncertainty in allele

frequencies for diploid populations, in the form of confidence

intervals (CI’s) containing true values with probability equal to or

greater than a desired threshold.

The method presented pertains to the general case of a locus

with n alleles, with a sample of size N taken from a population of

size M and any degree of homozygosity with respect to the n

alleles. In this case, the method allows construction of a CI for the

population frequency of each allele, which can then be combined

to create a joint confidence region (CR) for all the population allele

frequencies at a given locus. It is noted that if more than one locus

is considered simultaneously, then a joint CR for all population

allele frequencies at all loci can be calculated by combining CI’s in

an analogous way. For the subcase of an infinite population size

(M??) and a large sample size of N§30, Weir [10] had

proposed an approximate 100 1{2að Þ% CI for the population

allele frequency of an allele Ai, pi. This is

pi,N{z1{aŝs pi,N½ �, pi,N{zaŝs pi,N½ �½ �, where pi,N is the sample allele

frequency; za satisfies W zað Þ~a, with W being the cumulative

distribution function (cdf) of the standard Normal distribution; and

ŝs pi,N½ � is an estimate of the standard deviation of pi,N using sample

data. ŝs pi,N½ � is specified by equation (11) with pi,N replacing pi and

Pii,N , the sample frequency of homozygotes with allele Ai,

replacing Pii, the corresponding population frequency of homo-

zygotes. However, the accuracy of this CI depends both on how

close ŝs pi,N½ � is to the true standard deviation s pi,N½ � (specified by

equation (11)) and how close the cdf of pi,N is to a Normal

distribution with the same mean and variance. This accuracy has

not been quantified [10] and thus, it is not known whether the CI

actually contains pi with a probability of at least 100 1{2að Þ,
rendering its use problematic. In this study, we have rectified this

problem by constructing a CI for pi with probability coverage of at

least 100 1{2að Þ, for the more general case where the population

size can take any value larger than or equal to the sample size.

The method we derived was used to show that the sampling

uncertainty in pi, measured as the maximum length of the §95%

CI for pi across all possible values of the observed sample allele

frequency p̂pi,N , decreased non-linearly with N when sampling from

a large population (M~1,000) under three archetypal scenarios.

These three scenarios represent the cases where the population (1)

is at Hardy-Weinberg equilibrium (HWE), (2) has the lowest value

of Pii and (3) has the highest value of Pii. As expected from theory,

for any given N, the maximum CI lengths for Scenario 3 were

always greater than corresponding lengths in Scenarios 1 and 2.

However, the maximum CI lengths for Scenario 2 was unexpect-

edly greater than that in Scenario 1 for some values of N, reflecting

the greater possible number of values pi can take in a finite

population with minimum homozygosity compared to one at

HWE. This illustrates how the finite size of a population can give

opposite trends to those obtained under an assumption of infinite

size. According to theory and simulations, Scenario 3 gives CI

lengths that closely approximate those in the case where Pii is

unknown (see Methods). Thus, if Pii is unknown, CI lengths derived

under Scenario 3 should be used. This was the approach used in

the application of our method to sample data for two butterfly

populations, discussed further below. On the other hand, if there is

evidence that the population is at HWE, then the shorter CI’s

derived under Scenario 1 could be used.

Under the three scenarios examined, the non-linear decreases in

sampling uncertainty with increasing N are consistent with results

from the simulation study of Hale et al. [19], who found that the

average difference between pi,N and pi also exhibited non-linear

decreases with N. However, Hale et al. [19] did not use their

simulation results to quantify sampling uncertainty for the realistic

situation where only one sample is taken from a population; this

situation was considered in our study. Furthermore, as mentioned

in the Introduction, for given N, they only used 100 samples to

numerically construct the distribution for pi,N , resulting in an

incomplete distribution that may not closely reflect the true

distribution. This highlights a weakness of a simulation-based

approach without a rigorous mathematical underpinning, which is

present in our approach. Hale et al. [19] concluded that N = 25–

30 is sufficient to give accurate estimates of pi, but this conclusion

has to be interpreted in light of the limitations identified. Our

results refine this conclusion by showing that across the three

scenarios examined, N = 49–285 is required to ensure that, with a

high probability of §0:95, an estimate for pi can be derived from

any one sample that is within 0.05 of the true value; this

corresponds to a CI of length ƒ0:1. To ensure that the estimate is

within 0.1 rather than 0.05, corresponding to a CI of length ƒ0:2,

our results show that N = 22–94 is required. Thus, N~30 is not

guaranteed to give ‘‘accurate’’ estimates of pi under all or most

scenarios, and N values up to 10 times larger could be required.

Decreasing the population size M from 1,000 would help to

decrease sampling uncertainty, but results showed that decreasing

M over two orders of magnitude from 10,000 to 100 only resulted

in modest decreases in the maximum CI length of ƒ0:06, with no

decrease when M was decreased from 1,000 to 100. Thus, the

overall conclusion is that N~30 is often insufficient to guarantee

accurate estimates of pi, in the sense that pi is within 0.05 or 0.1 of

the estimate. Considering that alleles at highly polymorphic loci,

such as microsatellites, often occur at population frequencies of

v0:05 [35], it might be desirable to derive CI’s for pi that are of

length v0:1. Thus, sample sizes even larger than the values found

in our simulations might be required under some circumstances.
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The application of our method to empirical data for two

populations of the checkerspot butterfly [13] demonstrated how

the underlying theory can be applied to construct joint §95%

CR’s for the population frequencies of multiple alleles at a single

locus. These CR’s were then used to construct a §95% CI for

Jost’s D, which measures genetic differentiation between the two

populations. This illustrates how our method can be used to

quantify sampling uncertainty in genetic indicators that are a

function of population allele frequencies, thus facilitating hypoth-

esis-testing and also risk-based natural resource management. In

the example considered, the single point estimate of Jost’s D using

the sample allele frequencies was about four times lower than the

upper bound of its §95% CI. Thus, use of the single point

estimate without accounting for sampling uncertainty could lead to

misleading conclusions. The effectiveness of any management

measures based on such conclusions would be compromised,

hindering the achievement of objectives related to conservation or

sustainable use. Our example therefore highlights the practical

utility of the method that we have derived.

In conclusion, we have presented a rigorous mathematical

method for quantifying sampling uncertainty in estimates of

population allele frequencies, for a general case that has hitherto

not been analyzed. In addition, we have demonstrated its practical

application in informing sampling design and determining

uncertainty in genetic indicators. Thus, the method derived

advances both theory and practice, with broad implications for a

range of disciplines, including: conservation genetics, evolutionary

genetics, genetic epidemiology, genome wide association studies

(GWAS), forensics and medical genetics. In particular, the method

provides exact answers to the question of how many individuals

need to be sampled from a population in order to achieve a given

level of accuracy in estimates of population allele frequencies. This

is a question that has rarely been studied before [19], despite its

important practical implications. Previous studies have derived

sample sizes required to sample, with high probability, at least one

copy of all alleles at a locus above a given frequency [35,36,37],

but these do not correspond to sample sizes required to achieve

accurate estimates of population allele frequencies. Derivation of

the latter requires explicit quantification of sampling uncertainty,

as we have done in this study.

Possible future extensions
The CI’s and CR’s constructed using our method are

conservative in the sense that they contain the true values with a

probability equal to or greater than a desired threshold. This

conservative property is useful in hypothesis-testing if there is a

need to decrease the probability of obtaining a false positive below

a certain threshold. However, researchers would ideally like to

construct CI’s and CR’s containing true values with a known

probability, not just with probability at or above a known

threshold. Therefore, future research could attempt to tighten

the intervals and regions that we have derived, ideally until they

cover a known probability. For example, Cai and Krishnamoorthy

[23] devised a method (using their ‘‘Combined Test’’ approach)

that was shown to give shorter CI’s for the probability parameters

of both the binomial and univariate hypergeometric distributions,

when compared with a hypothesis-testing approach analogous to

the one used in this paper. If their method could be extended to

the population allele frequency parameter for the more complex

distribution used in this paper (equation (9)), based on a

multivariate hypergeometric distribution (equation (1)), then this

might result in tighter CI’s for population allele frequencies when

sampling from a finite diploid population.

In addition, the CI’s derived in our paper were designed to

quantify the uncertainty in population allele frequencies that arises

from taking a random sample of a finite diploid population, which

can exhibit any degree of relatedness. The ‘‘random’’ refers to

equal probability of choosing individuals that may be of any type,

which does not imply that once an individual of a particular type

has been sampled, the next individual sampled is equally likely to

belong to any of the types (i.e., does not imply individuals in the

population or sample are unrelated). Relatedness among individ-

uals in the population is implicitly included within the population

frequencies of the different genotypes, and is thus accounted for

when calculating the sampling distribution for the population

frequency of an allele Ai, as specified by equation (1). However,

this representation does not give an explicit quantification of the

degree of relatedness among individuals in the population, for

example using kinship coefficients. DeGiorgio and Rosenberg [38]

used such coefficients to derive an unbiased estimator of

heterozygosity (H~1{
Pn

i~1 p2
i , for a locus with n alleles) in

the case of sampling from a population of diploid individuals that

could be related, and DeGiorgio et al. [39] extended these results

to the case of individuals with arbitrary ploidy. In their

calculations, the number of copies of allele Ai in each sampled

individual k was treated as a random variable and the covariances

of these variables were then related to the kinship coefficients. This

is different to calculations in our paper, where the number of

sampled individuals with alleles Ai and Aj was treated as a random

variable (see Methods). The method in this paper might be revised

by considering the number of copies of allele Ai for each sampled

individual instead, following [38,39]. This could allow explicit

quantification of relatedness in the context of deriving CI’s for the

population allele frequencies.

Supporting Information

File S1 Derivation of the variance of the sample allele
frequency.

(PDF)
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Allele frequencies and population data for 11 Y-chromosome STRs in samples
from Eastern Slovakia. Forensic Sci Int Genet 5: e53–e62.

19. Hale ML, Burg TM, Steeves TE (2012) Sampling for microsatellite-based
population genetic studies: 25 to 30 individuals per population is enough to

accurately estimate allele frequencies. PLoS ONE 7(9): e45170.
20. Gillespie JH (2004) Population genetics: a concise guide, second edition.

Baltimore, USA, The John Hopkins University Press. 217 p.
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