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This study analyzed the changes in metallothionein-like proteins (MTLPs) and Energy Reserves (ERs) in hepatopancreas and
abdominal muscle of the white prawn Penaeus vannamei. Realistic metal concentration exposure for 10 days to Ni and Pb in
solution revealed that juvenile prawns partially induce MTLP in hepatopancreas after Pb exposure. Ni was distributed equally
between soluble and insoluble fractions, while Pb was present only in the insoluble fraction, suggesting different detoxification
strategy. No changes in lipids and glycogen concentration were detected under these experimental conditions in both tissues
analyzed. MTLP could not be considered as a suitable indicator for lead exposure in hepatopancreas.

1. Introduction

Penaeid prawns are important subjects of mariculture
and coastal fisheries activities throughout the tropics and
subtropics [1–3]. Traditionally, prawn farms located near
the coast used directly coastal seawater to rear the prawns
without additional processes. Shrimp culture is therefore
potentially affected by anthropogenic activities including
metal contamination. Specifically in coastal Mexican waters,
a great number of basic metal industries represent the
mainly heavy metal (cadmium, lead, nickel, chromium, etc.)
source [4–9]. Penaeid prawns have revealed great capacity
to accumulate and take up metals from solution, either
essential or not essential elements and yet survive in these
polluted environments [10–14]. Consequently, metals are
subsequently potentially transferred to man through the
food chain. Thus, it is of great concern to investigate detox-
ificatory processes involved in prawns exposed to metals. It
is well known that the induction of metallothionein which
is a cystein-rich protein and has detoxifying properties,
occurs in aquatic invertebrates after in situ or laboratory

metal exposure (for review see Amiard et al. [15] and
literature cited therein). Moreover, physiological markers
reflecting the energetics of an organism may contribute to
the understanding of the mode of the toxicant [16–18].
The “Metabolic cost” hypothesis suggests that toxic stress
induces metabolic changes which may lead to a depletion
of its energy reserves resulting in adverse effects on growth
and reproduction [19]. Comprehension of the mechanisms
related to the sublethal effects caused by toxic metals upon
shrimp metabolism would help to develop sensitive and
diagnostic tools (biomarkers) with a predictable capacity in
assessing the toxic effects, thus contributing to better coastal
seawater management and sustainable aquaculture.

This study is part of a wider investigation of the
regulation and accumulation of the trace metals nickel and
lead in a penaeid prawn Penaeus vannamei [20]; metals
previously detected in coastal Mexican waters [4–8]. Nickel
has occasionally been interpreted as an essential metal [21,
22], probably as a consequence of its ability to be substituted
for other divalent metal ions, particularly zinc, or as a part of
an enzymatic structure [23, 24].
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This paper specifically investigates both metallothionein-
like proteins and energy reserve levels in the hepatopancreas
and abdominal muscle of Penaeus vannamei, after sublethal
exposure of the prawns to dissolved nickel and lead.

2. Material and Methods

2.1. Experimental Design. Juveniles of Penaeus vannamei
(between 1–3.0 cm total length; mean dry weight 11.0 ±
8.0 mg; [25]) were obtained from cultures at Aquapacific S.A
de C.V., Mazatlan, Sinaloa, Mexico. No distinction between
genders was as yet discernible.

Prawns were maintained in artificial sea water (Instant
Ocean (IO), Aquarium Systems) at 25 salinity (pH 7.8),
12 : 12 light/dark periods and 25◦C as previously described
[13, 14]. Animals were fed every two days with commercial
flakes (Tetramin) for 15 minutes maximum, before water
changes. The use of artificial seawater in all experiments
provided physicochemical stability and replicability for trace
metal uptake tests [26].

The dissolved metal concentrations used in laboratory
exposure of prawns are environmentally realistic for contam-
inated Mexican coasts [27, 28].

The experimental design involved nine separate exper-
imental groups containing ten prawns each: controls (not
metal exposed; three groups), prawns exposed to 55.5 μg L−1

nickel (two experimental groups), 191 μg L−1 lead (two
experimental groups), and same concentration of nickel/lead
mixture (two experimental groups) in IO at 25 salinity
and 25◦C. The hepatopancreas and abdominal muscle were
removed from one control group at the beginning of the
experiment, as described by Nunez-Nogueira and Rainbow
[13]. Prawns from the remaining two control and metal-
treated groups were dissected after 10 days of exposure.

3. Metal and Metallothionein-Like
Proteins Analyses

Samples destined for biochemical analysis were treated as
described by Nunez-Nogueira et al. [29]. Briefly, samples
were transferred into plastic vials to be immediately frozen
in liquid nitrogen for a few minutes. After freezing, samples
were freeze-dried overnight and their dry weight measured.
Then, samples were homogenized in a buffer solution
(20 mM TRIS, 10−5 mM β-mercaptoethanol, 150 mM NaCl
solution adjusted to pH 8.6). The soluble and insoluble
fractions were separated by centrifugation at 25,074 g for
55 minutes at 4◦C (Biofuge 28 RS, Heraeus Sepatech). The
cytosolic heat-stable compounds including metallothionein
were isolated by centrifugation of the soluble fraction
(12000 g for 10 minutes at 4◦C) after heat-treatment (75◦C
for 15 minutes). In the heat-denaturated cytosol, the amount
of MT was determined by differential pulse polarography
(DPP) according to Thompson and Cosson [30] and Olaf-
son and Olsson [31]. A MDE 150 Stand Polarographic
(Radiometer Copenhagen) Tracelab 50, controlled by the
computer software Tracemaster 5 through a Polarographic
analyser POL 150 was used. The temperature of the cell was

maintained at 4◦C. The method of standard addition was
used for calibration with rabbit liver MT (SIGMA Chemical
Co., St Louis, MO, lot. 20k7000; M-7641 code) in absence
of a shrimp MT standard. Polarographic determination in
heat-denaturated cytosol is an analytical procedure based
on several characteristics of MTs, but it does not allow,
with certainty, the assertion that the target molecule is a
true MT unless purification and sequencing are carried
out. Strictly, therefore, what has been measured is the
concentration of proteins with metallothionein properties,
that is, metallothionein-like proteins (MTLP).

Metal analysis was carried out in the soluble and
insoluble fractions. Nalgene bottles were used to store all
reagents. All glass labware was soaked in 10% HCl, rinsed
three times with deionized water and dried in a desiccator
protected from atmospheric dust. The insoluble and soluble
fractions were heated (75◦C, 12 h) with suprapure HNO3

acid (Carlo Erba). After digestion, metal levels in these
acid solutions were determined after dilution with deionized
water by flame AAS using the Zeeman effect (Shimatzu 8600-
AA spectrophotometer). The analytical method has been
described previously by Amiard et al. [32].

Standard addition analyses were performed in an
isomedium and concentrations of each element were 25 mg
metal mL−1 for AAS. The analytical methods were validated
by external intercalibrations as previously described Nunez-
Nogueira et al. [29] and use of reference material Tort-
2 (Lobster hepatopancreas) with more than 90% recovery.
Total metal concentrations were recalculated from summa-
tion of quantities of trace elements in soluble and insoluble
fractions determined previously, by combine means proce-
dure [33]. The results were expressed in μg·g−1 dry weight of
the organ for Ni and ng·g−1 in case of Pb, respectively.

4. Energy Reserves Analyses

Hepatopancreas and abdominal muscle samples were
homogenized with a porcelain mortar and pestle at −2◦C.
The powder obtained was homogenized in a motorized
grinder with 1.5 mL citrate buffer (pH 5.0) for glycogen
and lipid analyses. Total lipids were determined by the
sulfophosphovanillin reaction, according to Frings et al.
[34], while glycogen concentration were determined in two
aliquots of the homogenate, using enzymatic digestion by
amyloglucosidase, according to Carr and Neff [35]. Olive
oil and glycogen from oysters (Sigma type III) were used as
standards for each method, respectively.

4.1. Statistical Analysis. Students t-test (P < .05) were
performed for protein, lipids, glycogen, and metal concen-
tration comparisons. Tests were developed for small samples
according to Williams [33], and carried out in STATISTICA
5.1 for windows (StatSoft Inc.).

5. Results

5.1. Metallothionein-Like Protein Concentrations. The MTLP
concentrations in hepatopancreas and abdominal muscle
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of juveniles of Penaeus vannamei are illustrated in Table 1.
MTLP concentrations were higher in hepatopancreas than in
abdominal muscle in all experimental organisms (control, Ni
exposed, Pb exposed, Ni+Pb exposed). In hepatopancreas,
the difference in MTLPs concentrations between the control
and Ni-treated shrimps were not significant, while a signif-
icant increase in MTLP concentrations was observed in Pb-
treated and metal mixture-treated organisms versus controls.
The MTLP concentration ranged from 6.83 to 31.04 mg g−1

in controls, 9.46 to 62.04 in Ni-treated, 31.79 to 121.85 in Pb-
treated, and 36.11 to 94.83 mg g−1 in metal mixture-treated,
respectively. In abdominal muscle, a significant increase in
MTLP concentrations was observed in Ni-treated and Pb-
treated prawns in comparison with controls whereas no
differences in MTLP concentrations were detected in metal
mixture treated organisms versus controls (apparently due
to the presence of two muscle samples (out of ten) with
higher MTLP concentrations within the Pb-treated prawns,
suggesting noninfluence of Ni and/or Pb in MTLP induction
in muscle, even when an apparent difference was detected
in one metal treated groups). The MTLP concentration in
muscle tissue ranged from 0.30 to 0.83 in controls, 0.30 to
0.99 in Ni-treated, 0.54 to 1.54 in Pb-treated, and 0.51 to
0.60 mg g−1 in metal mixture-treated, respectively.

5.2. Metal Concentrations. Ni and Pb concentrations (total,
soluble, insoluble) in the hepatopancreas and abdominal
muscle of Penaeus vannamei are indicated in Tables 2 and
3, respectively. Ni concentrations were significantly higher
(P < .05) in the hepatopancreas versus the abdominal
muscle of prawns, Pb was found in major quantities in
abdominal muscle. The measured total Ni concentration in
hepatopancreas ranged from 3.67 to 21.37 μg g−1 (controls),
1.98 to 11.86 (Ni-treated), 1.11 to 22.84 (Pb-treated), and
3.86 to 56.23 μg g−1 (mixture-treated), respectively. Due to
a great individual variability, no significant differences were
observed among groups, including Ni-treated. In abdominal
muscle, Ni concentration ranged from 0.02 to 0.03 μg g−1

in each group and not differences against controls were
observed (Table 2). The distribution of Ni among the soluble
and insoluble fractions in the hepatopancreas and the
abdominal muscle of prawns are shown in Figures 1(a) and
1(b), respectively. In hepatopancreas, this metal was nearly
equally distributed between soluble and insoluble fractions
(Figure 1(a)) whereas in the abdominal muscle (Figure 1(b)),
the soluble fraction was more important than the insoluble
fraction.

Lead was detected only in the insoluble fraction of
both tissues (Table 3). The mean Pb concentrations in all
groups were below 0.17 mg Kg−1 in abdominal muscle and
0.003 mg Kg−1 in hepatopancreas. A slight increase (not
significant) was observed in the hepatopancreas in prawns
exposed to this metal, either alone or in a mixture.

5.3. Energy Reserves Analyses. The concentration of lipids
and glycogen, determined in hepatopancreas and abdom-
inal muscle are shown in Figures 2 and 3, respectively.
Lipid concentration in abdominal muscle ranged from
1.08 to 16.45 mg g−1 dw (controls) and from 0.86 to
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Figure 1: Relationship between soluble (S) or insoluble (P) fraction
against total Ni (S+P) in the hepatopancreas and abdominal muscle
of juveniles of Penaeus vannamei (n = 31) after 10 days of exposure
to 55.5 mg Ni L−1 and 191 mg Pb L−1 or both in a mixture (MM) at
25◦C and 15 ups, respectively.

18.30 mg g−1 (metal-treated). In hepatopancreas, lipid con-
centration ranged from 1.85 to 48.95 mg g−1 dw (controls)
and from 6.53 to 88.66 mg g−1 (metal-treated). No significant
differences were observed between controls and treated
prawns in the case of lipids. The range of glycogen was from
0.51 to 23.60 mg g−1 (controls) and 1.60 to 15.05 mg g−1

(metal-treated) in abdominal muscle, while it was from
4.72 to 8.89 mg g−1 (controls) and 1.07 to 11.33 mg g−1

(metal-treated) in hepatopancreas, respectively. Glycogen
concentration in abdominal muscle from Pb-treated prawns
was the only one significantly (P < .05) different from
controls. In this case, muscle showed an increase in glyco-
gen.

6. Discussion

Different studies have shown the presence of heavy metals,
including Ni and Pb in Mexican coastal waters [4–6].
For example, coastal zones in Tabasco and Veracruz States
(Gulf of Mexico) have shown lead concentration in water
between 65 to 210 μg L−1, while others like Cr, Hg, and Cd
between 0.5 and 15 μg L−1 [27]. These concentrations can
be above the national recommended level (local legislation),
as have been observed in the Mexican Pacific coast [28].
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Figure 2: Lipid concentration (mg g−1; mean ± sd) in hepatopan-
creas (Hp) and abdominal muscle (Am) of Penaeus vannamei after
10 days of exposure.

The Pacific white prawn Penaeus vannamei spends part of
its life cycle in coastal or estuarine areas, making it suitable
for metal exposure. This species showed capacity to induce
metallothioneins by metal exposure [36, 37] and accumulate
metals [12, 25]. Total Ni concentrations found here were
in good agreement with previous studies that show Ni
regulation in decapod crustaceans [38, 39], including P.
vannamei [20]. Nickel was found almost equally distributed
between the soluble and insoluble fraction (Table 2). These
concentrations are within values previously described in
Penaeid prawns (including P. vannamei) [40, 41] for these
tissues. There was no significant increase in total Pb concen-
tration as well. The reason of this lack of increase compared
to controls must be related to the fact that both metals
are regulated or partially regulated (in case of lead as a
nonessential metal) by this prawn. Previous studies have
shown that Ni can be regulated by decapods crustacean
[39, 42] providing a capacity to maintain a minimal trace
level concentration in their bodies. In case of Pb, Vogt,
and Quinitio [43] suggested that this non-essential metal is
eliminated by forming insoluble-lead rich deposits that are
excreted after lysosome autolysis, process that can include
MT content during protein turnover [44] (see below). Due
to that metal exposures do not exceed the LC-50 for 96
hours in both cases for the experimental conditions here
tested, and are far below these values (60.54 mg L−1 for Ni
and 6.22 mg L−1 for Pb, resp.), suggests that such a trace level
of exposures is not enough to reach the threshold level of
regulation in case of Penaeus vannamei without significant
accumulation.

According to the results obtained here, MTLP appear to
be induced by Pb in hepatopancreas under the experimental
conditions tested (Table 1). Prawns exposed only to Ni
in solution did not show a significant increase in tissue
concentration, while prawns treated with Pb either alone or
in a mixture with Ni, almost double the amount of MTLPs
observed in controls and Ni-treated groups (Table 1).

Most of the lead was detected in the insoluble fraction
of the hepatopancreatic samples (Table 1), suggesting a
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Figure 3: Glycogen concentration (mg g−1; mean ± sd) in hep-
atopancreas (Hp) and abdominal muscle (Am) of Penaeus van-
namei after 10 days of treatment. ∗Significantly different from
control (P < .05).

nonsoluble lead-rich deposit. Some authors have suggested
that MT’s induction is an intermediate step before insoluble
deposits are formed [45, 46]. Lead-insoluble deposits or
granules have been observed in terrestrial and aquatic
invertebrates [47–51]. Rainbow [52] highlighted that isopods
accumulated metals in detoxified granules (non-soluble)
with rapid elimination of lead, compared to other metals
(e.g., cadmium). Complementary to Vogt and Quinitio [43],
our results suggest that lead is mainly stored and detoxified
within granules, instead to MTLP’s, perhaps at the antennary
gland as in Penaeus monodon, and excreted as an apocrine
secretion in the urine [49, 50], not only at high-lead level
of exposure, as was proved in P. monodon. In this way,
lead appears to be treated as some essential metals, in
respect of quelating cytosolic molecules. This difference in
detoxification between essential and non-essential metals
was already observed in P. vannamei [37] and Penaeus
indicus, where MTLPs appear to be the first detoxification
strategy involved in non-essential metals exposure, while
essential metals are regulated in cytoplasm by another
method (e.g., insoluble deposits [29]). It is also considered
that MTLPs increase slightly with time and doses as a result
of a constant turned over [53]. In the abdominal muscle,
slight increase in MTLP concentration was observed in Ni-
and Pb-treated, but not in a mixture (Table 1). No significant
relationship (not shown) between soluble Ni and MTLP was
observed. Comparing the total metal concentration between
controls and treated groups in muscle, no significant increase
was detected, suggesting that these increases in MTLP could
be related to other factors, like normal homeostasis of other
essential metals (e.g., Zn or Cu) and inflammation process
caused during experiment procedure, rather than metal
exposure [15, 54, 55]. This idea is also supported by the
lack of MTLP induction in muscle in metal mixture-treated
group (Table 1).

It has been proved, that longer period of exposure and
higher metal concentrations induced MTLPs in crustaceans
and aquatic or terrestrial invertebrates [36, 56–58]. Our
results obtained here suggest that it is necessary to carry out
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Table 1: MTLP concentration and energy reserves (mean ± standard deviation) in control and metal-treated in abdominal muscle and
hepatopancreas from P. vannamei.

Group MTLP (mg g−1) Energy reserves (mg g−1)

Abdominal Muscle (n = 10) Hepatopancreas (n = 10) Abdominal Muscle (n = 6) Hepatopancreas (n = 6)

Lipids Glycogen Lipids Glycogen

Control 0.51± 0.17 29.44± 16.49 8.10± 6.77 5.22± 3.34 20.07± 14.33 7.04± 1.74

Ni-treated 0.74± 0.22∗ 37.09± 15.36 5.36± 5.56 7.29± 5.04 30.45± 22.14 4.77± 2.05

Pb-treated 0.93± 0.51∗ 61.70± 34.59∗ 8.05± 7.26 9.67± 1.34∗ 38.79± 29.10 6.57± 3.74

Mixture-treated 0.56± 0.04 62.36± 20.06∗ — — — —
∗Significantly different from respective control (Student t-test; P < .05).

Table 2: Nickel concentration (μg g−1) in abdominal muscle and hepatopancreas from P. vannamei, at the soluble and insoluble fraction.

Tissue Group Total Soluble Insoluble

Mean SD Mean SD Mean SD

Abdominal muscle

Control 0.30 0.19 0.23 0.18 0.10 0.02

Ni-treated 0.13 0.04 0.07 0.04 0.08 0.03

Pb-treated 0.08 0.01 N. D.∗ N. D. 0.08 0.02

Mixture-treated 0.08 0.01 N. D. N. D. 0.08 0.01

Hepatopancreas

Control 6.41 3.65 2.98 2.27 3.43 2.86

Ni-treated 6.12 3.47 4.17 3.28 1.95 1.18

Pb-treated 8.82 6.84 7.32 5.10 2.97 2.56

Mixture-treated 23.09 16.44 13.65 11.10 11.14 11.12
∗Not detected.

bioassays with different metal concentrations near (below)
the LC50, to identify the threshold level for MTLP induction
for these metals in this species. A recent work in our lab,
revealed that using the following metal concentrations: 15.6,
31.3, 62.5, 125 and 250 mg L−1 for Ni and 4.68, 5.88, and
7.41 mg L−1 for Pb, for 96 hours of exposure, are higher than
the environmentally realistic metal concentrations tested
(55.5 μg L−1 for Ni and 191.2 μg L−1 for Pb, resp.), and
far below the lethal doses obtained, in good agreement
with our results, where the trace level of exposure only
inducing minimal or no detectable changes in the metal body
concentrations.

It is widely recognized that both Ni and Pb share
chemical properties and features with class B and Borderline
metals, like copper, zinc, arsenic, cadmium, and mercury
[59, 60]. Within these metals, cadmium, copper, mercury,
zinc, and arsenic have been identified as metallothionein
inductors [56, 57, 61–64]. Due to these, two possibilities
emerge for MTLP induction by Ni and Pb. The first involves
zinc/copper substitution by these metals in the active sites
of the cystein-rich proteins (metal-clusters) or secondly by
direct generation of metal element responses (MERs) inside
the cells. In the first case, nickel or lead compete against
zinc for the active clusters sites of the MT or generate an
exchange Ni/Pb versus Zn, inducing and increase in the zinc
intracellular concentration and its bioavailability, promoting
an homeostatic response by increasing the amount of MTs.
This phenomenon has been observed in other invertebrates
[56, 63] and vertebrates [65, 66], and metal substitution
in metallothioneins has been registered in different cases

[56, 58, 64], for example, cadmium in crustaceans [57]. In
the case of MERs production, the MTLP induction might be
related to free-radicals generation and/or oxidative damage
that activate a metal transcription factor capable to interact
with the promotor region of the MT gene by a positive
feedback [64]. These results are in good agreement with
previous nickel and lead reports as MT inductors, supporting
that this inductive capacity is present not only in in vitro tests
[63, 66].

One interesting observation relay on the relationship
observed between the amount of MTLPs concentration in
hepatopancreas of controls and the whole body weight,
which almost reaches 3% (Table 3). Metallothioneins are
considered as homeostatic proteins, widely present in aquatic
and terrestrial invertebrates either from contaminated and
noncontaminated sites [56, 61, 67–69]. An explanation
could be related to a reduction in the tissue weight, due
to lower quality food used during captivity, or stressful
conditions during acclimation, producing a minor difference
between tissue mass and MTLP content. Weight is a factor
proved that affect the MT concentration in soft tissues of
aquatic invertebrates [67, 68], however, this appears to be
scarcely possible due to the fact that mean weight of the
hepatopancreas was between 8 and 9 mg (dry weight) in
all experimental groups, including controls, representing
nearly 6% of the whole body weight, in good agreement
to the proportion established in healthy decapods [70].
Another more suitable explanation depends on the previous
exposure to the metals. The hepatopancreas of P. vannamei
showed traces of Pb and relatively amounts of Ni in
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Table 3: Lead concentration (mg Kg−1) in abdominal muscle and hepatopancreas from P. vannamei, according to the soluble and insoluble
fraction.

Tissue Group Soluble Insoluble

Mean SD Mean SD

Abdominal muscle

Control N. D. N. D. 0.16 0.03

Ni-treated N. D. N. D. 0.17 0.07

Pb-treated N. D. N. D. 0.14 0.06

Mixture-treated N. D. N. D. 0.15 0.04

Hepatopancreas

Control N. D. N. D. 0.002 0.001

Ni-treated N. D. N. D. 0.005 0.002

Pb-treated N. D. N. D. 0.008 0.007

Mixture-treated N. D. N. D. 0.014 0.009
∗Not detected.

controls (0.002 and 6.41 μg g−1, resp.), which might be
triggering the defensive and regulatory mechanisms of MTs,
explaining why the MTLP concentration in this group almost
reaches 3% of the tissue weight, highlighting that previous
metal exposures increase the original amount of MTLPs
[61].

Higher concentrations of energy reserves, mainly lipids,
and MTLPs in the hepatopancreas are in good agreement
with its function of main organ for metabolic reserves
and metal-binding proteins [71]. Energy reserves are of
importance considering (among others) its use in detoxi-
fication processes [72–74]. In this respect, the concentra-
tion of lipids (Figure 2) and glycogen (Figure 3) did not
change in the hepatopancreas. In abdominal muscle, a
slight increase in the lipid and glycogen fraction occurred,
suggesting a possible effect of Pb on these reserves, but no
correlation was observed with metal concentration in the
tissue. Toxic Pb exposures have been considered a cause for
a decrease in metabolic rates in postlarvaes of P. indicus
(according to Satyavathi [75] and Chinni and Yallapragada
[73]), causing perhaps the higher glycogen concentration
observed in the abdominal muscle, as a result of lower
degradation rates by glycogen phosphorylase and an increase
in the carbohydrate synthesis by the glycogen synthase [76].
However, the low Pb concentration detected in the muscle,
suggested that other stressful factors could be involved, and
not necessarily related to the metal presence in the tissue.
Previous studies in prawns and other crustaceans, have
shown that under some particular stressful conditions (e.g.,
salinity and metal conditions [55]), the energy budget can
be modified in opposite direction. In some cases, energy
production can be altered by metals like mercury and zinc
by increasing the lactate dehydrogenase activity, enzyme
involved in energy production, as was observed in the
crab Carcinus maenas [77]. The fact that no significant
changes were observed in the hepatopancreas, which showed
to be the main target organ for Pb, suggests that the
concentration of metal in solution tested in this study
is not sufficient to compromise the amount of energy
available in these tissues, and it is enough to cover the
detoxification process trigger under the stress simulated in
the hepatopancreas [74], or involves alternative mechanisms

to mitigate the adverse effect [73]. It is possible that
higher metal concentrations, near lethal concentrations and
longer exposure periods, could induce significant changes
in the energy reserve, as has been observed in P. indicus
exposed to Pb [73], but further studies are required in P.
vannamei.

7. Conclusions

This study shows the first results of MTLP quantification
and energy reserves in the estuarine prawn P. vannamei
exposed in the laboratory to Ni and Pb. It is assumed that
the MTLP induction in the hepatopancreas is caused by
metal stress (presence of Pb and Ni) and did not influence
the energy metabolism. This protein induction appears
to be related either to the detoxification process of this
non-essential metal (Pb) and by essential metal regulation
(Ni). In case of Ni, the MTLP concentration could be
considered as the basal level for cellular homeostasis of the
essential metal. The experimental conditions tested do not
modify the energy budget present in both tissues at the
sublethal exposure tested. MTLP concentrations could not
be considered as a biomarker, at least in the hepatopan-
creas of P. vannamei, for the realistic metal concentration
tested here, in environmental risk studies. Further studies
involving different metal concentrations (just below the
lethal level) and exposure times will help to define the
threshold level for MTLPs and energy reserves changes in this
species.
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