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Abstract

Recent advances in genome-wide technologies have enabled anal-
yses using small cell numbers of even single cells. However, obtain-
ing tissue epigenomes with cell-type resolution from large organs
and tissues still remains challenging, especially when the available
material is limited. Here, we present a ChIL-based approach for
analyzing the diverse cellular dynamics at the tissue level using
high-depth epigenomic data. “ChIL for tissues” allows the analysis
of a single tissue section and can reproducibly generate epige-
nomic profiles from several tissue types, based on the distribution
of target epigenomic states, tissue morphology, and number of
cells. The proposed method enabled the independent evaluation of
changes in cell populations and gene activation in cells from
regenerating skeletal muscle tissues, using a statistical model of
RNA polymerase II distribution on gene loci. Thus, the integrative
analyses performed using ChIL can elucidate in vivo cell-type
dynamics of tissues.
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Introduction

Tissues consist of terminally differentiated cells formed from stem

cells, followed by cell-type conversion and functional arrangement

of cell types to the specified spatial localization. At present, the

composition of the cells playing different functions and the mecha-

nism by which each type is formed have been elucidated. This has

allowed understanding the biological function of each tissue and the

pathogenesis and developmental failure of diseases. Tissue composi-

tion can be determined using known cell-type markers. Immunostain-

ing for cell surface antigens and other cell-type markers enables visual

examination that determines the number and localization of cells and

tissue morphology. Determining the cell types and the size of a cell

population (i.e. number of cells) in tissues can be achieved by single-

cell (sc)RNA-seq, which is based on the transcriptomic differences of

individual cells (Schaum et al, 2018). Unsupervised clustering (Blon-

del et al, 2008) of the gene expression profiles allowed the identifi-

cation of the cell types, including those previously unknown.

Epigenomic analyses are widely performed at the tissue level,

such as in the Encyclopedia of DNA Elements (ENCODE), the

National Institutes of Health Roadmap Epigenomics Project, and

International Human Epigenome Consortium (IHEC) projects that

utilize ChIP-seq for bulk-level tissues. Several studies have reported

the comprehensive identification of functional elements in genomes,

such as promoters, enhancers, and the binding sites of transcription

factors and their regulatory relationships that characterize tissues

(Shen et al, 2012; Roadmap Epigenomics Consortium et al, 2015;

Stunnenberg & Hirst, 2016). However, in epigenomic analyses at

tissue-level, imbalance sampling cannot be avoided because tissues

are mixtures of diverse cell types. Particularly, when the number of

target cells (e.g., stem cells) is limited, they are masked by the infor-

mation from the cells constituting the majority in the tissue. Further-

more, in ChIP-seq, the genome coverage per cell is limited (Rotem

et al, 2015); i.e., information on cells present in very small amounts

in the bulk tissue is lost. Therefore, it is necessary to collect a large

amount of target cells that meet the requirements of ChIP-seq. As

such, after defining the target cell types and markers, the sectioning

of narrower area, dissection, or cell sorting is utilized. Recently,

new methods have been developed for analyzing a small number of

cells with higher genome coverage at the single-cell level, including

our ChIL method as well as others (Skene et al, 2018; Ai et al, 2019;

Carter et al, 2019; Harada et al, 2019; Kaya-Okur et al, 2019; Ku

et al, 2019; Wang et al, 2019; Handa et al, 2020). In addition,
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isolating cells potentially affect the transcriptome of the cells owing

to the physical dissociation of the tissues. Several tissue analysis

methods that do not involve enzymatic digestion have also been

proposed (Fanelli et al, 2010, 2011; Cejas et al, 2016; Amatori et al,

2018; Zhong et al, 2019; Font-Tello et al, 2020). However, obtaining

epigenomic information from a limited number of cells using ChIP-

seq-based technology remains a challenge. To understand the biol-

ogy of all cell types, the use of whole-tissue analysis with single-cell

technologies is ideal, but very costly.

Several transcriptomic analysis approaches that combine the

advantages of bulk RNA-seq and scRNA-seq, and can analyze and

identify numerous cells at once, have been proposed. For example,

the changes in the gene expression of cell types in bulk RNA-seq pro-

files during embryogenesis have been interpreted using single-cell

RNA-seq data collected separately (He et al, 2020). The estimation of

the cell-type composition of bulk tissue RNA-seq based on single-cell

RNA-seq has also been reported (Newman et al, 2019). Because data

from different platforms complement each other, a data integration

method has also been proposed, particularly the embedding of single-

cell RNA-seq into seqFISH+ (Eng et al, 2019) data to virtually recon-

struct whole gene expression data using spatial information (Stuart

et al, 2019; Abdelaal et al, 2020). In addition, a computational

approach for epigenomic analysis to decompose DNA methylation

states into cell types has been suggested (Rahmani et al, 2019).

However, to date, a universal solution for the cell-type decomposition

of tissue epigenomes has not yet been established.

Here, we propose a framework that integrates ChIL into the anal-

ysis of tissue slices and uses single, very small, and thin tissue

sections. The obtained bulk tissue epigenome data showed dynamic

changes in both the number and cell type, and computational

modeling was thus required. We first optimized ChIL for highly

sensitive genome-wide analysis using a single thin section, as well

as tissue visualization using immunostaining. ChIL is proposed to

enable epigenomic analysis at the single-cell level, and the acquired

thin-section ChIL data are expected to be the sum of the high-depth

single-cell epigenomes. Using three different types of tissues, we

confirmed the adequate sensitivity, specificity, and reproducibility

of ChIL in identifying enhancers, transcription factors, and tran-

scriptionally activated genes in whole tissues. Thus, we built a

statistical model that evaluates the changes in the distribution of

RNA Polymerase II at the gene loci and provides a robust, cell-type

resolution transcriptional regulatory analysis for large changes in

population size.

Results

ChIL-seq enabled spatial epigenomics with single tissue section

Various cell types exist in tissues, each of which exhibits a unique

localization pattern. The transcriptomic and epigenomic pattern of

these cells may be affected by the enzymatic isolation process.

Therefore, we focused on the use of tissue sections that are free

from enzymatic treatment biases for epigenomic analysis and devel-

oped an experimental procedure using a single, very small, and thin

tissue sections. We here optimized the ChIL for tissue (Fig 1A),

based on our previously reported sc-epigenomic analysis tools

(Harada et al, 2019; Handa et al, 2020).

Since the reports on analysis using microtissue sections are

limited, and all of them require multiple tissue slices to obtain the

required cell number (Fanelli et al, 2010, 2011; Cejas et al, 2016;

Amatori et al, 2018; Zhong et al, 2019; Font-Tello et al, 2020;

Table 1). Low-input and single-cell-level epigenomic analyses have

been developed, such as CUT&Run (Skene & Henikoff, 2017) and

MOW-ChIP (Cao et al, 2015), and spatial (preprint: Deng et al,

2021) and single-cell-level (Bartosovic et al, 2021) epigenomic anal-

yses have been applied to tissue analysis. However, the dissociation

process to obtain a single cell requires a large number of starting

cells. Therefore, it is currently difficult to analyze a small amount of

starting cells such as those in human clinical samples. The dissocia-

tion process may cause a stress-induced bias in gene expression of

the tissue (Machado et al, 2021; Miyawaki-Kuwakado et al, 2021).

For this reason, epigenomic analysis using tissue sections has been

widely used.

We therefore focused on preparing frozen, unfixed tissue

sections to equalize the fixation conditions. On plates, unfixed tissue

thin sections are fixed with paraformaldehyde then permeabilized,

followed by blocking. Immunostaining is then performed by react-

ing with primary antibodies against the target molecules on chro-

matin. Then, a fluorescent-labeled ChIL-probe attached with

secondary antibodies was used to obtain the tissue localization of

the target by imaging at the subcellular level. Subsequently, Tn5

transposase inserts an artificial sequence containing a T7 promoter

into the genomic region near the target. In vitro transcription of the

genome sequence near the target protein, starting from the T7

promoter, was performed, and the reverse-transcribed DNA was

sequenced using a next-generation sequencer. Compared with

conventional epigenomic analysis methods for FFPE and fresh-

frozen tissue slices, this method enabled uniform fixation conditions

for the analysis of micro-thin slices. Therefore, using the highly effi-

cient ChIL method, we attempted to analyze tissues with an input

size of 3 mm × 3 mm × 10 lm. Thus, we designed ChIL for tissue

as a high-precision method for analyzing the epigenetic information

of a group of cells on a tissue section of the target, following the

spatial distribution of the specific epigenetic status.

To evaluate the designed ChIL experimental procedure for tissue,

the levels of the enhancer marker of histone modification H3K27ac

and the recruitment of RNA Polymerase II (PolII), an indicator of

transcription, were detected in three different tissues: liver, heart

(left ventricle), and testis. Most of the cells were hepatocytes,

comprising 70–80% of the liver. The H3K27ac signal visualized by

the ChIL-probe was uniformly distributed across cells on the

sections. Subcellularly, the colocalization of H3K27ac and PolII in

euchromatin regions (Hoechst-negative) was observed (Fig 1B). In

the testis, which consists of cells at multiple differentiation stages,

the PolII signal was strongly distributed and localized in cells with

high transcriptional activity, especially near the outer periphery of

the seminiferous tubule (Sassone-Corsi, 2002; Fig 1C), a region

where cells in the early stages of sperm differentiation are located

(Fig 1C). Meanwhile, the heart was co-stained using laminin and

the ChIL probe to distinguish the cell boundary regions and visual-

ize the basement membrane (Fig 1D). S5P signal showed a localiza-

tion to the low Hoechst-dense region of the cell nucleus in which

transcription may active, suggesting that immunostaining with ChIL

probe was a valid histological staining method at the subcellular

level (Fig 1B–D, Appendix Fig S1).
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To validate the feasibility of ChIL for sensitive and accurate

epigenomic analysis, we performed ChIL-seq using a single thin

section containing 1,000–10,000 cells (Table 2), which was

generally assumed as a low number of cells in culture (Harada et al,

2019; Handa et al, 2020). The number of cells used was less than

that of conventional epigenomic methods used especially for tissue
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Figure 1. Epigenomic profiling using a single tissue section.

A Schematic diagram of the ChIL protocol for tissue.
B–D Immunofluorescent images of mouse liver (B), testis (C) and heart (D). H3K27ac, PolII-S5P, and laminin were stained with specific primary antibodies and visualized

using fluorescent-labeled anti-mouse ChIL-probe (red: H3K27ac and PolIIS5P) and anti-rabbit IgG (green: laminin). DNA was counterstained with Hoechst 33342.
Scale Bar: 20 µm (left images), 10 µm (right images).

E Genome browser images of ChIL-seq for H3K27ac and PolII-S5P and bulk tissue RNA-seq data at the Alb locus in liver tissues.
F Library complexity of ChIL data. Poisson represents an ideal case of the uniform probability of obtaining reads from the mouse genome, whereas preseq refers to the future/past

predictions of a species discovery curve of sequenced reads using Preseq (Daley & Smith, 2013). Black circle indicates the read number we sequenced for this prediction.
G Breakdown of mapped reads at the annotated genomic regions. Gene body: 3’-UTR, exon, intron, 5’-UTR; Others: ncRNA, miRNA, snoRNA, and pseudogenes. The

proportions of the annotated region on the mouse genome are shown as “Genome” at the bottom lane.
H Genome-wide correlation at 10 kbp bins. Hierarchical clustering of Pearson’s correlation coefficient of log-transformed ChIL-seq counts is shown.
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analysis (Table 1). Furthermore, the genome-wide analysis was

performed by ChIL reaction on single sections that showed in

Fig 1B–D. In the representative visualized epigenomic data in liver

(Fig 1E), the accumulation of H3K27ac and PolII at the Alb locus, a

hepatocyte marker, was observed. The former showed an activated

upstream enhancer region, whereas the latter was highly transcrip-

tional activity at the locus. The transcription of Alb was also con-

firmed using RNA-seq with different serial slices. These results

indicate that ChIL enables the simultaneous acquisition of both the

tissue distribution of the epigenomic status and the genome-wide

epigenomic data using a single tissue section containing a small

number of cells (103–104 cells in 10 lm2 area).

Next, to evaluate the genome-wide distribution of the signals

obtained using the ChIL procedure proposed above, we examined

the specificity of the signal localization among different tissues and

antibodies and the reproducibility of signal localization of the same

tissue and antibody. First, to estimate the appropriate number of

reads for ChIL-seq with tissues, we obtained 480 M reads from PolII

ChIL-seq in muscle tissue and evaluated the library complexity

(Daley & Smith, 2013) (i.e., the prediction curve of usable reads).

As seen in Fig 1F, the number of total usable reads was starting to

move away from the black line at approximately 107, indicating a

decreasing percentage of usable reads. Therefore, we determined

that approximately 107 reads is a good cost-balanced number of the

required reads in the case wherein the number of cells per section is

< 104. To obtain a ChIL signal with sufficiently high signal-to-noise

ratio, we acquired an average of approximately 14 M reads (Dataset

EV1), which is comparable to the number of reads in the ENCODE

tissue ChIP-seq (10 M–20 M) (Shen et al, 2012).

With this number of reads, the ChIL-seq data from the liver,

heart, and testis were obtained, and the genome-wide localization of

each data set is shown in Fig 1G. In all tissues and H3K27ac and

PolII S5P antibodies, signals were concentrated around the coding

Table 1. Epigenomic analysis methods on tissue sections

Method Tissue Target Sample Vol. Author Journal Year

PAT-ChIP Spleen Histone modification 10 lm ⨉ 4 sections Fanelli et al PNAS 2010

Nat Protoc 2011

FiT-seq Seminoma Histone modification 10 lm ⨉ 10 sections Cejas et al Nat Med 2016

Breast cancer

Bladder cancer

CRC

EPAT-ChIP Breast cancer Histone modification 10 lm ⨉ 10 sections Amatori et al Clin Epigenetics 2018

Chrom-EX PE Liver Histone modification
Polymerase

20 lm ⨉ 2 sections Zhong et al BMC Genomics 2019

Spleen

FiTAc-seq Seminoma Histone modification 10 lm ⨉ 2–4 sections Font-Tello et al Nat Protoc 2020

Breast cancer

Bladder cancer

Melanoma

PNETs

ChIL for tissue Liver Histone modification
Transcription factor
Polymerase

10 lm ⨉
(3 mm ⨉ 3 mm)
⨉ 1 section

Maehara et al This study

Heart

Testis

Skeletal muscle

scCUT&Tag for tissue
(dissociation, nucleus
isolation, and
microfluidic device)

Mouse brain Histone modifications 150–250 K cells, or < 500 K
nuclei extracted from
a frozen section

Bartosovic et al Nature
Biotechnology

2021

hsrChST-seq
barcoding
and CUT&Tag)

Mouse embryos (50 µm2) Histone modifications One section Deng et al BioRxiv 2021

Brain region of an E11
mouse embryo (20 µm2)

Olfactory bulbs (20 µm2)

Table 2. Cell numbers in the tissue sections used in this study

Tissue section Cell count (rep.#1–3) Average

Heart H3K27ac 12,297 14,210 9,090 11,866

Heart PolII-S5P 12,155 13,755 8,847 11,586

Liver H3K27ac 14,999 7,458 11,551 11,336

Liver PolII-S5P 14,177 14,112 16,330 14,873

Testis H3K27ac 17,085 16,723 16,931 16,913

Testis PolII-S5P 20,542 17,426 13,634 17,201

TA muscle PolII-S5P 4,104 3,723 4,421 4,083
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regions (promoters and gene body) compared with the no-antibody

(herein, No Ab; without primary antibody) controls (53–59% and

41–48%, respectively). The PolII S5P antibody that we used detects

both S5P alone and S5PS2P in the C-terminal domain (CTD) of PolII

(Odawara et al, 2011). PolII is known to switch from promoter-

proximal pausing state to elongation state by phosphorylation of

Ser2 in addition to Ser5 in the C-terminal domain (CTD) (Komarnit-

sky, 2000). In Appendix Fig S2, we compared the proportion of

mapped reads in the same genomic region in Fig 1G and found that

the S5P was a higher proportion than that in the S2PS5P in the gene

promoters. These results suggest that ChIL with S5P and S5PS2P

antibodies reflect the state of transcription in response to CTD phos-

phorylation of PolII. The results showed that the genomic sequences

were selectively extracted from the transcriptionally activated

regions of the genome. In Fig 1H, we describe the correlation matrix

of the signal levels on the whole genome to confirm the high repro-

ducibility of the replicates. The dendrogram shows the hierarchical

structure of the highest correlation among the replicates (Liver-

H3K2ac: 0.90, Liver PolII: 0.90, Heart-H3K27ac: 0.87, Heart PolII:

0.92, Testis-H3K27ac: 0.91, Testis PolII: 0.94 in average of tripli-

cates), and the correlation within the same tissue (e.g., Liver PolII

vs. Liver-H3K27ac: 0.87; Heart-H3K27ac vs. Heart PolII: 0.88; and

Testis-H3K27ac vs. Testis PolII: 0.88; the list of all correlation coeffi-

cients are summarized in Dataset EV2). These results suggest that

ChIL-seq can capture the epigenomic differences between different

tissues and is technically reproducible.

Identification of regulatory factors in the formation of
tissue-specific enhancers

We next assessed the ability of ChIL for low-input epigenomic anal-

ysis of tissues. First, we evaluated the agreement of the ChIL-seq

peaks with the reference ChIP-seq peaks as we performed in previ-

ous reports (Harada et al, 2019; Handa et al, 2020). ChIP-seq data

from ENCODE Bing Ren’s data (Shen et al, 2012) were used as the

gold standard reference for ChIP-seq peaks in tissues (Appendix Fig

S3A and B). Recall is coverage of the reference ChIP-seq peaks, and

precision is the proportion of true positives in query ChIL-seq peaks.

Recall was 58–60% for the heart, 62–64% for the liver, and 30–50%

for the testis, and precision was 52–56% for the heart, 65–67% for

the liver, and 36–46% for the testis. We also calculated the Jaccard

index that is an integrated score of both recall and precision (heart:

38–40%; liver: 46–49%; testis: 20–29%). Although it was difficult to

make a direct comparison of the values because of the different

experimental conditions and cell types used, we compared the

performance of ChIL-seq with that of other methods for tissue

epigenome analysis (Table 1). FiTAc-seq (Font-Tello et al, 2020) is

an improved version of FiT-seq for histone acetylation and is a

state-of-the-art method for the epigenomic analysis of FFPE tissue

sections. We evaluated the concordance of FiTAc-seq with ENCODE

liver ChIP-seq (Appendix Fig S3C). FiTAc-seq showed very high

concordance with ENCODE ChIP-seq data (Recall: 70%, Precision

75%, AUC: 0.96–0.97), even though it was performed on FFPE.

PAT-ChIP of spleen H3K4me3, a similar tissue epigenomic analysis

method, showed high agreement with ENCODE tissue ChIP-seq data

(AUC: ~0.9; Appendix Fig S3D). Moreover, our ChIL-seq obtained

from a relatively small number of cells (one section; Table 1) was

also highly comparable with FiTAc-seq data for the same tissue and

histone modifications (AUC: 0.94–0.95). Additionally, in accordance

with the ENCODE standard for ATAC-seq peaks (acceptable for

FRiP > 0.2, recommended for > 0.3), the liver and heart were met

these criteria. Conversely, the testis tended to have relatively low

agreement with the reference ChIP-seq peaks. This may be because

of the more diverse composition of cells in testis tissue, especially

compared with liver tissue that mostly consists of homogeneous

hepatocytes.

Next, we performed ChIL using thinly sectioned tissues from the

liver, heart, and testis, and the identified enhancers were compared

by matching references (Shen et al, 2012; Fig 2A). According to the

odds ratio (i.e., specificity, the detailed definition is described in

Materials and Method), each H3K27ac ChIL-seq signal preferentially

captured the corresponding tissues-specific enhancer (Liver: 33.5,

Heart: 27.1, Testis: 4.1; the other odd ratios are listed in Dataset

EV4). Therefore, we successfully detected tissue-specific enhancers

using ChIL-seq with lower input compared to the previous reports

that utilized 500 µg chromatin equivalent to 107 � 108 cells.

We also examined the enrichment of the H3K27ac signal on

representative tissue-specific enhancers, including the liver, heart,

and testis. We focused on the enhancer region of Rxra genes (Joo

et al, 2019) specifically expressed in liver tissues, Gnat3 cardiac

muscle-specific gene retinoic acid receptor, and Eps8 expressed in

the blood–testis barrier (BTB; Lie et al, 2009). H3K27ac signal

enrichments on each tissue-specific enhancer were observed on the

IGV screen shot (Fig 2B). In contrast, all Actb-expressing tissues

showed the ubiquitous enrichment of H3K27ac.

We further evaluated the enrichment of the regulatory sequence

in extracted enhancers using ChIL based on the enrichment of the

TF-binding motif (only the top scoring motifs are shown in Fig 2C;

the scores of the other motifs and the number of covered motifs by

peaks are listed in Dataset EV5 and Dataset EV6). The enrichment of

known liver-specific TF-binding motifs, Rxra, Hnf4a, Nr2f6, and

others was observed in the H3K27ac ChIL-seq data obtained from

the liver. These data are consistent with the liver-specific regulatory

sequences registered as open chromatin regions detected using

ATAC-seq with mouse liver tissues in the database (Liu et al, 2019).

Meanwhile, the H3K27ac signal obtained from the heart showed

relatively higher enrichment at Klf12 than others; Sox5 and andro-

gen receptor (AR) binding motifs were enriched in the testis-

H3K27ac signal, which was consistent with previous studies report-

ing that AR binds to the androgen responsible element (ARE) on

regulatory sequences with histone acetyltransferase to regulate gene

expression (Shang et al, 2002; Stelloo et al, 2018). These data

support that H3K27ac ChIL-seq can identify cis-regulatory elements

following the extraction of tissue-specific enhancers.

Figure 2C shows the similarity between the testis and heart in

the chromVAR analysis, and Fig 1H shows the similarity between

the liver and heart. The difference appeared to be attributable to the

chromVAR method of evaluating only signals around peaks. To test

this hypothesis, we evaluated signal correlations of ChIL H3K27ac

by restricting the signals on peaks (the union of the peaks in the

three tissues; Appendix Fig S4A and B). As expected, the signals of

the heart and testis showed similarity to the chromVAR results. This

result was also reproduced using the genome-wide 10 K bins with

strong signals (count per million [CPM] > 20 in any tissue). In the

liver data, for example, the bins satisfying CPM > 20 account for

about 2% of the genome, but for nearly 20% of the total reads
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(Appendix Fig S4C). Therefore, the liver data show a high accumu-

lation of signal in the peak region. In contrast, testis data showed

that bins satisfying CPM > 20 accounted for less than 1% of all bins

and contained 2–3% of total reads. The majority (98–99%) of the

genomic regions with CPM ≤ 20 signals are considered to be the

main source of genome-wide correlation. This suggests that assess-

ing the peak regions can help cope with the low S/N testis data.

These results also suggest that we need to be aware of the difference

between genome-wide correlations, which include potential back-

ground signals, and signal correlations on peaks.

Because the enrichment of the ChIL-seq signal should reflect the

quantitative H3K27ac levels as demonstrated by the identification of

super-enhancers (SEs) using ChIP-seq, we next quantitatively deter-

mined the H3K27ac level based on the read counts. Then, SE forma-

tion upon TF binding on the extracted cis-regulatory elements was

evaluated. First, we listed the highly enriched regions of the
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H3K27ac ChIL-seq signal as SE(Lov�en et al, 2013; Whyte et al,

2013) from each liver, heart, and testis data set. The labeled genes

in Fig 2D are representative protein-coding genes near the identified

top ranked SEs, which have the highest read counts in peaks (see

Appendix Fig S4D for all replicates). In the liver, known hepatocyte

marker genes, Alb, and albumin family, Gc, are also detected in

motif-enrichment analysis performed in Fig 2C. In addition, the core

transcription factor Hnf4a (Watt et al, 2003), which activates the

genes by itself, was included in the top rank (1.6–3.5%). Further-

more, the SEs featuring each tissue were identified. In the heart (left

ventricle), Ablim1 expressed in the left ventricle and involved in

left–right axis formation (Stevens et al, 2010) was detected, whereas

in the testis, SEs were identified in the vicinity of Crem, which is

involved in spermatogenesis (Blendy et al, 1996).

Finally, to validate the function of the SEs identified in the liver

using this method, we performed ChIL targeting Hnf4a, which

showed a high specificity score (deviation-Z) in liver SEs. Hnf4a is

known to be an important nuclear receptor during hepatocyte dif-

ferentiation (DeLaForest et al, 2011) and has been shown to contri-

bute to SE formation as a core transcription factor, along with RXRa
(Joo et al, 2019). Immunostaining with the ChIL Probe showed that

the HNF4a was distributed throughout most cells in the liver tissue

and detected in the open chromatin region of the nucleus in each

cell (Fig 2E). A pronounced accumulation of Hnf4a signals in the

SEs in the region was observed (Fig 2F, see Appendix Fig S5A for

the motif enrichment analysis on Hnf4a peaks). We next evaluated

the selective binding of Hnf4a to the genes in the liver SEs (Fig 2G;

Appendix Fig S5B and C for the replicates). Using the gene sets of

SEs and typical enhancers neighboring genes obtained in Fig 2D,

gene sets enrichment analysis (GSEA; Subramanian et al, 2005)

demonstrated that the hits of the ChIL-Hnf4a peaks against liver

enhancers scored as high as 0.72 in the enrichment score (Fig 2G,

top). Particularly, Hnf4a was bound to 76.4–78.8% of the SEs

(Fig 2G bottom). In contrast, in the negative controls of the heart-

and testis-specific SEs, the number of SEs bound by Hnf4a was

approximately 0.5 in the enrichment score and the percentage of

Hnf4a bound to the heart- and testis-specific SEs was at a random

chance level (24.4–34.2%).

In summary, the data from ChIL H3K27ac demonstrated that the

regulatory candidate transcription factor Hnf4a obtained from the

cis-element refinement selectively binds to the liver-specific SE

region of the Hnf4a locus. Hnf4a could be validated to provide posi-

tive feedback that binds to the SE region of its own Hnf4a locus.

Our data indicated that ChIL is useful for the regulatory analysis of

enhancers, including transcription factors and SEs, using low

number of cells.

PolIIChIL-seq peaks detected the majority of active genes
in tissue

Transcriptome information is obtained by evaluating the binding

position of PolII using epigenomic analysis. Here, we detected the

active genes based on the binding of PolII on the genome using

ChIL. In Fig 3A, we plotted the cumulative number of consumed

reads of the detected genes in RNA-seq and PolII ChIL-seq in the

order of their read counts. Due to the wide dynamic range of RNA-

seq data, high copy-number mitochondrial-derived RNAs (e.g.,

mitochondrial ribosomal RNAs) and highly expressed genes that

characterize each tissue (Alb in liver, Myh6 in the heart, Prm1 in

testes), consumed 80% reads on a small fraction of highly expressed

genes (Liver 5%, Heart 1%, Testis 11%). The identification of

weakly expressed genes and rare populations in bulk tissue RNA-

seq is generally hard to obtain because the top 10% genes spends

80% of its reads in even at the single-cell level (Liu et al, 2014; Van

den Berge et al, 2019).

In contrast, ChIL-PolII did not exhibit an exponential increase in

the number of consumed reads required to detect gene expression

from RNA-seq. It also efficiently detected more genes as the number

of reads increased. We further calculated the expected number of

detected genes in the subsamples of reads (RNA-seq and PolII S5P

ChIL-seq) based on Heck et al (1975). In the case of ChIL-seq, a

gene was considered detected if the read count was > 0 in the gene

region � 1 kb. As a result, the number of detected genes of both

ChIL-seq and RNA-seq was close to each other at 1 × 104–106 reads,

and thereafter in all tissues, showed higher numbers in PolII S5P

ChIL-seq (Appendix Fig S6A). These results indicate that PolII S5P

ChIL-seq detects more genes than RNA-seq when the number of

reads is more than 1 × 105. The dynamic range of RNA-seq depends

on the product of the cell number and the concentration of RNA in

each gene, whereas that of the PolII signals, in essence, depends on

the product of the presence or absence of gene expression (0, 1, or

2) and the cell number. The results are consistent with the fact that

highly and ubiquitously expressed genes occupy a high number of

reads in the RNA-seq data. The result suggested that fewer reads are

required for gene expression profiling using PolII S5P ChIL-seq than

RNA-seq.

◀ Figure 2. Upstream factor identification through enhancer analysis using ChIL-seq.

A Tissue specificity of identified enhancers by H3K27ac ChIL-seq. The odds ratios of hits in the reference tissue-specific enhancer list identified by bulk-tissue ChIP-seq
data (Shen et al, 2012) are shown. Odds is defined in the Materials and Methods. The cells enclosed by black squares indicate the maximal odds ratios (i.e., maximal
specificity) for each row.

B The IGV tracks of H3K27ac ChIL-seq at identified tissue-specific enhancers of Rxra, Gnat3, Eps8, and a house-keeping gene of Actb loci are shown with the replicates.
C Specific motif enrichment analysis was conducted using chromVAR (Schep et al, 2017). Hierarchical clustering of deviation-Z scores of three replicates of each tissue

is shown.
D Super-enhancer identification. Tissue-specific enhancers are identified, so that they are listed more than twice (twice: blue, all: red) in the top 5% in all enhancer

candidates and are not in the SEs of other tissues. Gray shades indicate the top 5% of tag count in enhancer candidates.
E Immunofluorescent images of mouse liver sections. Tissues were stained with anti-Hnf4ɑ antibody and visualized by a fluorescent-labeled anti-mouse ChIL probe.

DNA was counterstained with Hoechst 33342. Scale bar: 200 µm (top), 10 µm (bottom).
F Hnf4ɑ binds to the SE at Alb gene loci.
G Gene set enrichment analysis of Hnf4ɑ-bound genes (top), and their rate of Hnf4ɑ-bound genes in sliding windows of 100 genes (bottom).
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Thus, the genes were divided into five groups based on their

expression levels from RNA-seq, and the correlation of each PolII

S5P ChIL-seq signal with their expression levels was examined

(Fig 3B). In the high-expression group in all tissues, the intensity of

the PolII signal in the TSS was highly correlated with its expression

level. In the 75th–100th percentile group, a high accumulation of

PolII in the gene body region was also detected, suggesting a move-

ment of PolII to the locus upon transcriptional activation. Here, we

showed that PolII S5P ChIL-seq demonstrated a preference for

capturing highly expressed genes in tissues. Subsequently, we

assessed the overlap between RNA-seq-confirmed genes (TPM > 0)

and PolII S5P ChIL-seq peaks. The ChIL-seq peaks captured approxi-

mately 30% (Testis slightly lower, approximately 20%) of the active

genes (TPM > 0), whereas false positives were almost absent

(Fig 3C). In addition, ChIL-seq peaks stably detected approximately

40–50% of the genes expressed in RNA-seq, independent of the

TPM threshold for defining the expressed genes in RNA-seq

(Appendix Fig S6B). These results suggest that the peak region is
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Figure 3. PolII ChIL-seq detect active genes in tissue.

A Dynamic ranges of bulk-tissue RNA-seq and PolII S5P ChIL-seq. The cumulative proportion in total mapped reads at genes (red: ChIL-seq, blue: RNA-seq) were
compared. Genes are ordered by the read counts on the exons for RNA-seq and on � 750 bp from TSS for ChIL-seq, respectively.

B Signal intensities of ChIL-seq correlated with the expression levels of genes. The lines indicate the average CPM of each expression group at TSS. The expression
groups were assigned with respect to the expression levels (TPM) of genes.

C Coverage of expressed genes by PolII S5P ChIL-seq peaks. The stacked bar chart shows the proportions of detected genes in the RNA-seq only (RNA-seq: blue), PolII
S5P ChIL-seq only (ChIL: red), and both (Common: green).

D Higher expression levels at PolII S5P ChIL-seq peaks. The expression levels of all expressed genes (TPM > 0) are shown.
E The tissue-specific genes identified by PolII S5P ChIL-seq. The IGV tracks of all replicates of PolII S5P ChIL-seq are shown at each specific gene (Trf, Myh6, and Meig for

the liver, heart, and testis, respectively). Actb is also shown as the ubiquitously expressed gene in the three tissues.
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likely to capture genes with high expression because the region with

high signal counts was judged to be the peak region (Sun et al,

2011). In all tissues, the expression levels of the genes in Common

were higher than those that in RNA-seq group as expected (Fig 3D).

Figure 3E shows an IGV screenshot of the PolII S5P ChIL-seq.

The accumulation was detected at the Trf (transferrin) locus in the

liver, Myh6 (cardiac myosin) in the heart, and Meig1 (a meiosis-

expressed gene) in the testes. These are considered representatives

of genes specifically expressed in each tissue. At the Actb locus, a

house-keeping gene, the PolII signal was accumulated in all tissues,

indicating active transcription. In these highly transcriptionally

active genes, a wide distribution of PolII signals was detected on the

gene body, suggesting that the PolII binding distribution patterns

would enable an in-depth profiling of the transcriptional programs

in tissues.

Modeling PolII traveling reveals transcriptional dynamics in the
rapid change of cell population in skeletal muscle regeneration

We demonstrated that enhancers and transcriptional activity states

can be detected with high sensitivity, specificity, and reproducibility

at the whole-tissue level by the optimized ChIL for tissues. Then,

PolII S5P ChIL-seq data in Fig 3 suggested that, in addition to

amount of the signal at the gene loci, evaluation of the distribution

or its elongation across the entire locus would improve the analysis

of the transcriptional activation in various cells in tissue. We thus

conceived a concept the statistical modeling of PolII S5P ChIL-seq

data for the epigenomic analysis of heterogeneous tissues.

We used skeletal muscle regeneration as a model case, wherein

numerous cell types dynamically change their composition, particu-

larly that of the mouse tibialis anterior (TA) muscle after cardiotoxin

(CTX)-induced injury. During regeneration, migrating immune cells

are dominated the tissue 2–3 days after muscle injury (Tidball,

2005). During this time, the activation of muscle satellite cells

(MuSCs), which are responsible for skeletal muscle regeneration,

leads to the regenerated muscle fibers observed on day 14. We thus

established a model to analyze the gene expression dynamics in

each cell type from day 0 (pre-injured period) and until day 14. ChIL

obtained data from five biological replicates using the tissue sections

of TA muscles at five time points on days 0, 3, 5, 7, and 14 after the

CTX-induced muscle injury. As shown in Fig 4A (Appendix Fig S7A

for the entire time-course), the basal lamina separating the muscle

fibers observed on day 0 was destroyed post-injury. The destruction

of the cells on the third day can be seen in the image of laminin co-

stained with the ChIL probe. Furthermore, the fluorescence image of

the ChIL probe suggests the presence of multiple cell types, such as

the activated MuSCs, muscle progenitor cells that have started to

differentiate, and migrating immune cells associated with the

inflammatory response. On day 14, the structure of the muscle

fibers possessing central nuclei were observed, thus indicating

regenerated muscles.

First, we visualized the distribution of the PolII signal by IGV for

representative genes in skeletal muscle and immune cells. Changes

in PolII distribution are observed at the locus for Acta1 (which is

highly expressed in skeletal muscle) and Cd68 (a surface marker of

macrophages; Fig 4B). The Cd68 locus showed an overall increase

in the PolII signal from day 0 to day 3, whereas Acta1 showed an

overall decrease. These results indicate the rapid increase in

immune cells and the decrease in skeletal muscle cells during the

early stages of injury (days 2–3) as shown in Fig 4C (Appendix Fig

S7B for detail). In Acta1, however, the PolII signal is more concen-

trated near the transcriptional end site (TES) than the transcriptional

start site (TSS). We thus hypothesized that the shape of the PolII

distribution contains information on both the population size of

cells and the regulatory state of a gene known as the pause/release

of the PolII (Muse et al, 2007; Zeitlinger et al, 2007). Therefore, we

established a model for two cases (or their combination) as shown

in Fig 4D: one in which a specific gene of resident cells is activated

by the induction of muscle regeneration (i), and the other in which

the height of the already activated PolII signal increases due to an

increase in the number of cells (e.g., migrated immune cells from

outside the tissue) (ii). The traveling ratio (TR) is often used to eval-

uate the degree of PolII pause/release, as in Bartman et al (2019),

providing a brief description of the geometry of the distribution of

the PolII in the gene loci in terms of the ratio of the signal levels

between TSS and TES. Furthermore, we modeled the estimation of

TR as a form of Poisson regression with an offset term (see details

in Materials and Methods). For each locus, the signal level CPM of

PolII at the TSS is exp(b0), and that of TES is exp(b1) times the TSS

level exp(b0), i.e., exp(b0 + b1). To explain the model intuitively,

we further demonstrated our TR modeling with artificial data

(Appendix Fig S7C–E). The model transformed a pair of (TSS and

TES) count values at each locus into TSS and TR (TES/TSS). By fit-

ting the PolII count data to this model, the TSS and TR provide the

interpretation of the cell population size with an active gene and the

degree of transcription activation of the genes. Furthermore,

between-sample normalization by employing the offset term of the

total number of reads maintains the information of the sample size

of count data (i.e., a large count is more reliable than small counts).

The statistical model therefore allows us to evaluate the confidence

intervals for TR and perform statistical tests for changes in varying

conditions and time points.

Figure 4E shows the estimated values of the mean PolII levels at

TSS and TR, along with the confidence intervals. We then compared

the tissue-wide expression levels of the corresponding genes

(Fig 4F). Surprisingly, the tissues-wide expression of Acta1 and

Cd68 was synchronized with the pattern of the PolII TSS-level,

whereas the transcription factor myogenin (Myog) expressed in

muscle progenitor cells at the differentiation stage has a synchro-

nized pattern to TR. These results suggest that the tissue bulk RNA-

seq reflects a product of the cell number and the amount of gene

expression.

Therefore, to distinguish the transcriptional activation indicated

by the TR, and the population size indicated by the TSS-level as

inferred in Fig 4E and F, we analyzed the changes in the TSS-levels

and TR at day 3 (Fig 4G and Appendix Fig S7F). Each set of genes

was associated with each “single” cell type, the definition of which

is based on the scRNA-seq analysis of injured muscle by De Micheli

et al (2020). The population size of the cells that express the skeletal

muscle-related genes (Fig 4G, right) was decreased after injury,

whereas the changes in TR revealed the active transcription of the

genes. Meanwhile, in the group of genes associated with immune

cells, TSS level was increased, while TR was less altered (Fig 4G,

left), which can be interpreted as an increase in the population of

cells already possessing active gene loci (i.e., migration). This inter-

pretation is consistent with the dynamic population changes in
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muscle regeneration clearly revealed by recent studies using scRNA-

seq (Dell’Orso et al, 2019; De Micheli et al, 2020; Oprescu et al,

2020). In summary, the statistical model of PolII ChIL-seq allowed

us to evaluate the transcriptional activity of genes associated with

specific cell types, independent of increased population of

immune cells, and decreased skeletal muscle cells during muscle

regeneration.

Next, we identified the uncharacterized dynamics in muscle

regeneration from days 0–14 using the other cell-type markers

defined by De Micheli et al (2020). First, to assess changes in the

number of cells in the tissue after muscle injury, we created a

heatmap that showed the changes in the TSS level of all 83 genes

used in this cell-type annotation (Appendix Fig S7G). In particular,

the number of cells in macrophages showed an increasing trend in

response to inflammation, and myeloid progenitors and FAP

showed a slightly elevated trend. Conversely, the numbers of cells

in Schwann, mesenchymal progenitor/smooth muscle cells, MuSCs

and progenitors, and mature SKMs were decreased from the prein-

jury level, whereas many genes showed an increasing TR trend. We

next selected 66 genes among the markers that changed the TR

(FDR < 0.1) at any time point compared with day 0. The changes in

the TR and TSS level of these genes are shown as a heatmap

(Fig 4H) to visualize the trends in the transcriptional activation of

each gene, as well as the increase or decrease in the number of cells

that harbor the activated genes. From the log2TSS, which indicates

the cell number, we confirmed that mature skeletal muscles (SKMs)

decreased once after injury (white to blue); however, most genes

were activated at day 3 and returned to the original population size

(white) at day 14. Many of the cell types, such as mesenchymal

progenitors/SMCs, myeloid progenitors, and resident macrophages/

APCs, transiently increased in number after injury but returned to

their pre-injured levels on day 14, indicating association with

inflammatory responses (Ada2, Rgs2, Coro1a, Lyz2, C1qa; Naito

et al, 2012; Oprescu et al, 2020). Meanwhile, Myl1, a gene that was

transiently increased after injury, Tnnc2, and Acta1, showed the

same TR pattern, suggesting that these genes also function in regen-

eration and not only in muscle fiber formation (Wang et al, 2015).

Next, we describe the muscle regeneration process by classifying

gene groups according to the pattern of TR changes over time. The

clusters C1-5 were assigned according to their peaks (highest point)

of TR in the time-course of regeneration, the tissue-wide dynamics

were appeared in Fig 4I, suggesting transcriptional regulation in

muscle regeneration. The C1 exhibits the highest TR at day 0 and

thus indicates a down regulated biological process after the injury.

The proliferation of the immune cell was repressed, and the major

participants are the resident macrophages and APCs and myeloid

progenitors. The C2, which has peak at day 3, districted the activa-

tion of myogenesis mainly orchestrated by MuSC, muscle progeni-

tors and also by neural cells, which is consistent with previous

reports (Wosczyna & Rando, 2018). The C3, which has peak day 5,

does not show strong enrichment. The C4 contained muscle contrac-

tion, ion transport and action potential related GO terms, which

suggests the regenerated muscle was formed at day 7. The C5 (day

14) showed the activation of angiogenesis in the late stage of regen-

eration (Latroche et al, 2017). Here, the statistical modeling that

combined PolII-mediated transcriptional elongation and population

size changes achieved by our ChIL provides a strategy for under-

standing the process of muscle regeneration that is organized by

diverse cell types in tissue.

The definition of TR used in this study (TES/TSS) does not

consider the information from gene body (GB) regions

(Appendix Fig S8A). We therefore evaluated the effect of changing

the definition of TR. We first evaluated Pearson correlation coeffi-

cients between our TR and the TR that used GB (TRGB). Days 0, 3,

5, 7, and 14 were 0.39, 0.30, 0.32, 0.33, and 0.39, respectively

(Appendix Fig S8B). Both TRs showed positive correlations, but

TRGB showed a rather mild change in TR, whereas our definition of

TR (TES/TSS) showed a relatively pronounced change in TR on day

3 (Appendix Fig S8C). To verify this observation, we tested the TR

changes of day 0 vs. day 3 after muscle injury. As a result, we found

no significant (FDR < 0.1) changes in TRGB, except for Dnajb1

(Appendix Fig S8D). This indicates that TR estimation using the TES

region is favorable for statistical evaluation of changes in the tran-

scriptional state.

The above validation shows that the TR statistical model can be

used to analyze epigenomic state changes that are less affected by

changes in cell population size in the tissue. Moreover, ChIL-seq

has the advantage that multiple epigenomic analyses can be

◀ Figure 4. Statistical modeling of the traveling ratio reveals the independent dynamics between population and transcriptional regulation in regenerating
skeletal muscle tissues.

A Immunofluorescent images of the mouse tibialis anterior muscle on the indicated days after CTX treatment. The images of anti-mouse ChIL probe for PolII-S5P (red)
and anti-rabbit IgG for laminin (green) are shown. Scale bar: 20 µm. Refer to Appendix Fig S6A for more frequent time points.

B PolII S5P ChIL-seq signal of the marker genes of mature skeletal muscle (Acta1) and macrophages (Cd68).
C Proportion of sequenced reads (%UMI) occupied by the representative cell types in muscle regeneration. The single-cell data (GSE143437) by De Micheli et al (2020)

was re-analyzed. See Appendix Fig S6B for the detailed cell-type annotations.
D Extraction of independent dynamics of the population and transcriptional regulation. Change in PolII distribution at the gene loci: a gene (blue) was transcriptionally

activated (red nuclei) following the stimuli, while population size was unchanged. Change in the height of PolII distribution: a type of cells (yellow) was grown after
the stimuli, while the transcriptional activity was maintained.

E Estimated mean (95% confidence interval) of TR and the CPM of PolII S5P ChIL-seq at TSS. Representative genes of mature skeletal muscle cells and immune cells are
shown.

F Bulk-tissue expression levels (TPM) of the representative genes.
G Different activities of two major cell types in muscle regeneration. Scatter plots of log2FC of day 3 vs. day 0 of TR (x-axis) and the TSS-level (y-axis) are shown:

immune cell marker genes (left); myogenic genes: right. Colors indicate significance in TR and TSS levels based on |log2FC| > 1 (twofold) and FDR < 0.1.
H Activities of major cell types in muscle regeneration. The colors of the heatmap show the log2FC to day 0 (uninjured) of TR and TSS levels. Representative genes with

significant changes in TR are shown.
I The dynamics of the biological process in muscle regeneration and the participating cell types. Genes were assigned to five groups (C1-5) based on highest time point

of TR. OR indicates the specificity of participation to the biological processes.
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performed on the same tissue using serial sections. As an applica-

tion of this advantage, we evaluated the H3K27ac data using the

same statistical model as used for TR (Appendix Fig S9A). In the

case of H3K27ac, TR is not a measure of transcriptional elongation

but an indicator of changes in the distribution of histone modifi-

cations at a locus, as defined by TES/TSS. As we show in the muscle

injury Pol II data, an increased signal around the TSS with increased

immune cells was observed, together with a decreased signal in the

skeletal muscle and muscle progenitor cells. Next, we searched for

genes in which histone acetylation is actively involved in transcrip-

tional regulation (Stasevich et al, 2014) to relate the biological

significance to the measure of distributional change (TES/TSS) at

the locus. For each time point, we clustered each Pol II and

H3K27ac data using the TES/TSS index estimated from five repli-

cates (Appendix Fig S9B). We obtained four clusters with correlated

signal distribution changes. By calculating the cross-correlation

between them (H3K27ac vs. PolII), we identified 3-i as the largest

cluster among those whose signal distribution changes were

synchronized between H3K27ac and PolII. Cluster 3-i contained

many genes expressed in epithelial and skeletal muscle and skeletal

muscle progenitor cells (Appendix Fig S9C and D). We also identi-

fied cluster 1-ii, in which H3K27ac and PolII were synchronized but

showed a different temporal pattern than cluster 3-i. Cluster 1-ii

contained genes representative of immune cells. These results

suggest the active involvement of chromatin in gene activation

during muscle regeneration and demonstrate the advantages of

ChIL-seq for performing epigenomic analysis in the same tissue with

multiple types of epigenomes.

Application to transcriptional profiling in human cancer tissue

To demonstrate that ChIL is effective to analyze small amounts of

tissue, we performed the analysis on human clinical samples in

which the cell composition is diverse among individuals and a large

number of cells is difficult to obtain. For each stage of cancer

progression (I, IIA, IIIB, and IIIC) and one normal ductal sample,

five samples were analyzed by PolII ChIL-seq and RNA-seq. In addi-

tion to well-known markers for breast cancer (ER, PR, HER2), XBP1,

which has been suggested to be upregulated in breast cancer tissues,

is shown as a representative example of a significant change in TR

(Fig 5A).

We first confirmed whether the characteristics of the gene

expression in breast cancer were identified by PolII ChIL similarly to

RNA-seq. Gene set enrichment analysis was performed on the top

1,000-fold changes to normal tissue in the TSS level and TPM. The

CGP (chemical and genetic perturbations) gene set in MsigDB

(Liberzon et al, 2011) was used and terms that satisfied Benjamini–

Hochberg (BH) FDR < 0.1 are shown in Fig 5B. As a result, we

detected substantial gene sets that are associated with breast cancer

(e.g., BREAST_CANCER and BREAST_CARCINOMA). Additionally,

TPM and TSS were in good agreement (92/117) for the same term

with the direction of the normalized enrichment score (NES). These

results suggest that PolII ChIL-seq is effective for gene expression

profiling in cancer tissues.

Both ChIL-seq PolII and RNA-seq indicated expression of ER, PR,

and HER2, which suggested that all of them were HER2-positive

subtypes of breast cancer (Fig 5C). The marked expression of the

ESR1 gene at stage I, which was comparable with that of EEF1A1

(housekeeping gene), may be due to the majority of breast cancer

tissues being composed of ER-positive cells. Similarly, except for the

decreased level at TSS in the stage IIIC sample, the high accumula-

tion of PolII around the TSS of ER can be interpreted as ER-positive

cells are the majority in the tissues.

The sample from stage IIIB had relatively low accumulation of

PolII in TSS at the ERBB2 locus, but the gene expression level was

comparable with other breast cancer tissues. In fact, the sample at

stage IIIB was diagnosed to be occupied by a tumor at 30% in the

frozen tissue block, which was relatively lower than the other

cancer samples (refer to catalog from Origene). This result suggests

the existence of a certain number of cells with higher transcriptional

activity in the ERBB2 locus of the tissue section at stage IIIB. Simi-

larly, XBP1 expression appeared to be maintained by high transcrip-

tional activity, which promotes triple-negative breast cancer (Chen

et al, 2014) and is a candidate therapeutic target in high Myc-

expressing breast cancer (Zhao et al, 2018). These results demon-

strate the potential application of epigenomic analysis of pathologi-

cal samples by ChIL, such as evaluating the malignancy of tissue.

Discussion

Here, we established a high-precision method for tissue epigenomic

analysis using single, thin section samples. We proposed a method

for elaborate transcriptional profiling that reflects diverse and

unknown cellular compositions in tissues by integrating the statisti-

cal model of the traveling ratio with highly sensitive epigenomic

analysis of ChIL-seq. RNA-seq can only provide information on an

increase or decrease of the total amount of RNA in tissue sections.

Conversely, our method provides two types of information simulta-

neously: the increase or decrease of the cell population in the tissue

and the transcriptional activation of genes at high sensitivity.

In this analysis, we utilized single-cell analysis transcriptomic

data as a reference of cell-type annotation. The efficient combina-

tion of existing single-cell analysis data and bulk but high-depth

ChIL-seq data may lead to future approaches to analyze large

numbers of individuals at the whole-cell level.

We demonstrated that the transcriptional regulation of each cell

type can be analyzed independently, even in situations with large-

scale variations in tissue cell-type composition, as in the case of

muscle regeneration. PolII ChIL-seq by itself can also provide a qual-

itative assessment of the changes in cell population size. Although

we did not identify the cell types in the tissues nor estimated their

compositional ratios, our framework that combined scRNA-seq and

epigenomic analysis provides solid guidance for future tissue analy-

sis. Using time series data from a skeletal muscle injury model, we

demonstrated that our methodology is useful to assess the heteroge-

neous population size and transcriptional activity of cell types in

tissues. We could also associate marker genes with a particular cell

type. As is widely conducted in the field of gene expression analysis,

ChIL-seq enables comprehensive screening of transcriptional state

changes of all genes. Furthermore, in the analysis of breast cancer

tissues, we showed the potential application of detecting transcrip-

tional activity of a minor cell population, which tends to be unclear

in RNA-seq.

The traveling ratio (or pausing index), a concise measure of RNA

polymerase II dynamics, which was originally introduced in the
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ChIP-chip as a measure of the degree of transcriptional elongation

(Muse et al, 2007; Zeitlinger et al, 2007); and used in GRO-seq (Core

et al, 2008) and ChIP-seq (Rahl et al, 2010). We found that the

shape of the distribution of PolII at the genomic locus, as revealed

by epigenomic analysis, is indeed a useful indicator of the transcrip-

tional activity of a gene, and that the RNA-seq of bulk tissue is the

sum of all transcripts of all cells and is always affected by the popu-

lation size. TR was previously evaluated by the ratio of the signal

around the gene body to the promoter. However, we found that

using the TES/TSS ratio, which has the same definition as the analy-

sis of Bartman et al (2019), is more sensitive for the statistical test

of the traveling ratio.

The statistical modeling of TR provides analogous advantages in

the analysis of differentially expressed genes, such as the screening

of genes with altered transcriptional states and calculation of confi-

dence intervals for TR. Here, we used a simplified model in which

the PolII signal at a single locus is the product of the size of the

active population and the degree of activity (traveling ratio).
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chr17:39,680,439-39,736,306 chr6:151,419,223-152,335,207 chr6:73,511,208-73,525,519

10kb 200kb 3kb 2kb
2

2

0

2

2

2

3

3

0

3

3

3

8

8

0

8

8

8

2

2

0

2

2

SYNE1

Normal

Stage I

Stage IIA

Stage IIIB

Stage IIIC

PolII S5P ChIL-seqA
chr22:28,789,041-28,806,090

XBP1

TSSTES TSSTESTSS TES

-2 0 2

S
ta

ge

TSS TES

log10TPM

ESR1

PGR

ERBB2

XBP1

EEF1A1

log2TSSlog2TR

N
I

IIA
IIIB
IIIC

log10TPMlog2TSSlog2TR

B C

LI
M

_M
A

M
M

A
R

Y
_S

T
E

M
_C

E
LL

_U
P

S
M

ID
_B

R
E

A
S

T
_C

A
N

C
E

R
_L

U
M

IN
A

L_
B

_D
N

C
H

A
R

A
F

E
_B

R
E

A
S

T
_C

A
N

C
E

R
_L

U
M

IN
A

L_
V

S
_B

A
S

A
L_

D
N

C
H

A
R

A
F

E
_B

R
E

A
S

T
_C

A
N

C
E

R
_L

U
M

IN
A

L_
V

S
_M

E
S

E
N

C
H

Y
M

A
L_

D
N

S
M

ID
_B

R
E

A
S

T
_C

A
N

C
E

R
_R

E
LA

P
S

E
_I

N
_B

O
N

E
_D

N
LI

N
D

G
R

E
N

_B
LA

D
D

E
R

_C
A

N
C

E
R

_C
LU

S
T

E
R

_2
B

B
R

U
IN

S
_U

V
C

_R
E

S
P

O
N

S
E

_L
A

T
E

M
A

N
A

LO
_H

Y
P

O
X

IA
_U

P
S

C
H

A
E

F
F

E
R

_P
R

O
S

T
A

T
E

_D
E

V
E

LO
P

M
E

N
T

_6
H

R
_U

P
E

N
K

_U
V

_R
E

S
P

O
N

S
E

_E
P

ID
E

R
M

IS
_D

N
G

R
A

E
S

S
M

A
N

N
_A

P
O

P
T

O
S

IS
_B

Y
_D

O
X

O
R

U
B

IC
IN

_D
N

S
C

H
U

E
T

Z
_B

R
E

A
S

T
_C

A
N

C
E

R
_D

U
C

T
A

L_
IN

V
A

S
IV

E
_U

P
K

IM
_M

Y
C

_A
M

P
LI

F
IC

A
T

IO
N

_T
A

R
G

E
T

S
_U

P
LA

S
T

O
W

S
K

A
_N

E
U

R
O

B
LA

S
T

O
M

A
_C

O
P

Y
_N

U
M

B
E

R
_D

N
K

R
IG

E
_R

E
S

P
O

N
S

E
_T

O
_T

O
S

E
D

O
S

T
A

T
_2

4H
R

_D
N

N
IK

O
LS

K
Y

_B
R

E
A

S
T

_C
A

N
C

E
R

_1
7Q

21
_Q

25
_A

M
P

LI
C

O
N

S
P

IE
LM

A
N

_L
Y

M
P

H
O

B
LA

S
T

_E
U

R
O

P
E

A
N

_V
S

_A
S

IA
N

_D
N

M
A

R
S

O
N

_B
O

U
N

D
_B

Y
_F

O
X

P
3_

U
N

S
T

IM
U

LA
T

E
D

C
O

LD
R

E
N

_G
E

F
IT

IN
IB

_R
E

S
IS

T
A

N
C

E
_D

N
H

O
LL

E
R

N
_E

M
T

_B
R

E
A

S
T

_T
U

M
O

R
_D

N
M

IK
K

E
LS

E
N

_M
E

F
_I

C
P

_W
IT

H
_H

3K
27

M
E

3
H

U
P

E
R

_B
R

E
A

S
T

_B
A

S
A

L_
V

S
_L

U
M

IN
A

L_
D

N
N

IK
O

LS
K

Y
_B

R
E

A
S

T
_C

A
N

C
E

R
_8

Q
23

_Q
24

_A
M

P
LI

C
O

N
LI

M
_M

A
M

M
A

R
Y

_S
T

E
M

_C
E

LL
_D

N
G

O
Z

G
IT

_E
S

R
1_

T
A

R
G

E
T

S
_D

N
Y

E
G

N
A

S
U

B
R

A
M

A
N

IA
N

_P
R

O
S

T
A

T
E

_C
A

N
C

E
R

S
M

ID
_B

R
E

A
S

T
_C

A
N

C
E

R
_R

E
LA

P
S

E
_I

N
_B

R
A

IN
_D

N
S

M
ID

_B
R

E
A

S
T

_C
A

N
C

E
R

_L
U

M
IN

A
L_

B
_U

P
S

M
ID

_B
R

E
A

S
T

_C
A

N
C

E
R

_R
E

LA
P

S
E

_I
N

_B
O

N
E

_U
P

C
H

A
R

A
F

E
_B

R
E

A
S

T
_C

A
N

C
E

R
_L

U
M

IN
A

L_
V

S
_B

A
S

A
L_

U
P

N
IK

O
LS

K
Y

_B
R

E
A

S
T

_C
A

N
C

E
R

_7
Q

21
_Q

22
_A

M
P

LI
C

O
N

S
M

ID
_B

R
E

A
S

T
_C

A
N

C
E

R
_B

A
S

A
L_

D
N

C
H

A
R

A
F

E
_B

R
E

A
S

T
_C

A
N

C
E

R
_L

U
M

IN
A

L_
V

S
_M

E
S

E
N

C
H

Y
M

A
L_

U
P

D
O

A
N

E
_B

R
E

A
S

T
_C

A
N

C
E

R
_E

S
R

1_
U

P
LI

E
N

_B
R

E
A

S
T

_C
A

R
C

IN
O

M
A

_M
E

T
A

P
LA

S
T

IC
_V

S
_D

U
C

T
A

L_
D

N

N
E

S

I

IIA

IIIB

IIIC

S
ta

ge

0.0
2.5

-2.5
-5.0

0.0
2.5

-2.5
-5.0

0.0
2.5

-2.5
-5.0

0.0
2.5

-2.5
-5.0

log2TSSlog10TPM

0 2 4 0 2 3

N
I

IIA
IIIB
IIIC

N
I

IIA
IIIB
IIIC

N
I

IIA
IIIB
IIIC

N
I

IIA
IIIB
IIIC

Figure 5. PolII ChIL dissects the transcriptional activity of genes in breast cancer tissue.

A IGV screen shots of PolII S5P ChIL signals are shown for representative genes in breast cancer tissues. For each lane, individual samples were selected from each
progressive stage of breast cancer.

B Gene set enrichment analysis of the CGP (chemical and genetic perturbations) gene set in MsigDB. The dots indicate the estimated NES using log2FC to the normal
samples in TSS level and TPM. Terms that satisfy BH FDR < 0.1 are shown. P-values were estimated by the adaptive multi-level split Monte Carlo scheme
implemented in the fgsea (Korotkevich et al, 2016) R package.

C Expression, TSS level, and TR of genes. EEF1A1 is shown as a control housekeeping gene. The horizontal dotted line indicates the median level of all genes. Error bars
indicate 95% confidence intervals for each estimate indicated by dots (N = 1 for each).
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Alternatively, a more realistic model with different transcriptional

activities for different cell types and within the same cell type may

be possible as proposed in the bulk data decomposition methods

(Newman et al, 2019; Rahmani et al, 2019; Zaitsev et al, 2019).

Despite our simplified assumption, our established model success-

fully determined transcriptional activities by cell type within a

tissue. In addition, PolII ChIL-seq data can be modeled using a simple

Poisson distribution rather than a negative binomial distribution,

which involves a complex dispersion parameter estimation. Further-

more, the use of CPM normalization with offset terms as a natural

way of handling replicates made the model easier to apply, interpret,

and use for tissue epigenome profiling. Our proposed statistical

modeling of the traveling ratio can be carried out using a generalized

linear model with an offset term in any statistics software. It requires

input data of read counts for TSS and TES and the total number of

reads and does not require any specialized analysis software. An

implementation example in R is shown in our Github page.

Conventional ChIP-seq has a limited genome coverage of cell

owing to the efficiency of immunoprecipitation. In contrast, the orig-

inal version of ChIL-seq achieves a higher genome coverage of at

least 90% for histone modifications at the single-cell level. Accord-

ingly, the acquired data were assumed to be a sum of the deeply

profiled cells. Thus, we believe that the acquisition of such high-

depth epigenome data will continue to be necessary for the model-

ing compositions of tissues as shown in our framework. These high-

depth data are expected to be provided not only by ChIL-seq, but

also by other single-cell epigenomic analysis methods; thus, other

methods can be integrated to our analysis framework.

ChIL-seq showed great potential to replace ChIP-seq, which has

been the standard method of epigenomic analysis for tissues. In this

paper, the high reproducibility of ChIL for tissue, both technically

and biologically, was demonstrated. Furthermore, ChIL-seq

achieved comparable performance while using fewer cells than

ChIP-seq (~1/10,000 of required cell), and parameters, such as fixa-

tion conditions, can be monitored based on the quality of immunos-

taining images. These advantages can reduce cost. In addition, by

combining visualization and genome-wide analysis the spatial char-

acteristic can be profiled and linked with the genome-wide charac-

teristics of epigenomes as shown in the massive wave of PolII in the

testis. For more advanced applications, by leveraging the pairing of

serial thin sections of the same mouse, the correlation between

spatial and genome-wide patterns of heterologous proteins, such as

histone modifications and transcription factors, may be reliably esti-

mated. We believe our proposed method is a useful tool for tissue

epigenomic analysis, together with recent scRNA-seq and

microscopy-based spatial transcriptomics.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or Source
Identifier or
Catalog number

Experimental Models

C57BL/6N (M. musculus) Japan SLC, Inc. C57BL/6NCrSlc

Frozen OCT-embedded Tissue Block (cancer
stage: normal) (H. sapiens)

OriGene #CB509696

Frozen OCT-embedded Tissue Block (cancer
stage: stageIIA) (H. sapiens)

OriGene #CB648009

Frozen OCT-embedded Tissue Block (cancer
stage: stageIIIB) (H. sapiens)

OriGene #CB615985

Frozen OCT-embedded Tissue Block (cancer
stage: stageIIIC) (H. sapiens)

OriGene #CB552569

Frozen OCT-embedded Tissue Block (cancer
stage: stageI) (H. sapiens)

OriGene #CB651675

Antibodies

mouse anti-H3K27ac Kimura H et al (2008) 9E2H10, RRID:AB_2819244

mouse anti-Rpb1 S2P CTD (S2PS5P) Stasevich TJ et al (2014) PC26, RRID:AB_2819246

rat anti-RNA polymerase II S5P Odawara et al (2011) 1H4B6

rabbit anti-Laminin Sigma-Ardrich #L9393

rabbit anti-HNf4a Cell Signaling Technology #3113, RRID:AB_2295208,C11F12

Oligonucleotides and sequence-based reagents

MEDS-B

5’ - GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG - 3’ Harada A et al (2019)

5’ Ph - CTGTCTCTTATACACATCT - 3’

* annealed at 10 lM, as described in ChIL DNA, stored at 4°C
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Reagents and Tools table (continued)

Reagent/Resource Reference or Source
Identifier or
Catalog number

Read2 primer (12 lM)

5’- GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNNNNNN �3’ Harada A et al (2019),
Handa T et al (2020)

UDI primers (ChIL custom primers
for PCR amplification, 10 lM)

Fw: AATGATACGGCGACCACCGAGATCTACAC-8 bp
index-TCGTCGGCAGCGTCAGATGTG

Harada A et al (2019),
Handa T et al (2020)

Rv: CAAGCAGAAGACGGCATACGAGAT-8 bp
index-GTCTCGTGGGCTCGGAGATGT

Chemicals, enzymes and other reagents

PBS Nacalai Tesque #27575-31

Cardiotoxin LATOXAN #L8102

16% Paraformaldehyde Electron Microscopy
Sciences

#15710-S

ibidi µ-Plate 96-well TC (ibiTreat) ibidi #b89626

MAS coated micro cover glass Matsunami MAS coated cover glass(0.13-0.17 mm),
special ordered, used as slide glass

ULTRA PAP PEN S Bio Medical Science #BC-PAPPEN-S

TritonX-100 Roche #11332481001

VECTOR M.O.M. Immunodetection Kit Vector Laboratories #BMK-2202

Blocking ONE Nacalai Tesque #03953

Isopentane Nacalai Tesque #26404-75

ChIL probe (mouse, rat, rabbit) Harada A et al (2019),
Handa T et al (2020)

0.5 mg/ml

2× Tn5 dialysis buffer Harada A et al (2019),
Handa T et al (2020)

100 mM HEPES-KOH (pH7.2), 200 mM
NaCl, 0.2 mM EDTA, 20% Glycerol, 0.2%
TritonX-100, 2 mM DTT

Tn5 Picelli et al (2014)
(in-house prepared)

0.833 mg/ml

5× TAPS-DMF Harada A et al (2019),
Handa T et al (2020)

50 mM TAPS-NaOH (pH8.5), 25 mM MgCl2,
50% DMF (N,N-dimethylformamide)

T4 DNA Ligase NEB #M0202L

T4 DNA Polymerase NEB #M0203L

Thermo T7 RNA Polymerase TOYOBO #TRL-252

ATP, GTP, CTP, UTP (100 mM) Thermo Scientific #R0441, #R0451, #R0461, #R0471

Recombinant RNase Inhibitor TaKaRa #2313A

Recombinant DNase I (RNase-free) TaKaRa #2270A

RNaseA Nacalai Tesque #30100-31

SMARTScribe Reverse Transcriptase TaKaRa #639538

10× Lysis buffer TaKaRa #635013

Advantage® UltraPure PCR Deoxynucleotide
Mix (10 mM each dNTP)

TaKaRa #639125

SeqAmp DNA Polymerase TaKaRa #638504

AMPure XP BECKMAN #A63881

RNAClean XP BECKMAN #A66514

Elution buffer (EB) Qiagen #19086

Hoechst 33342 solution (1 mg/ml) Nacalai Tesque #19172-51

DNA Clean & Concentrator-5 ZYMO #D4014
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Reagents and Tools table (continued)

Reagent/Resource Reference or Source
Identifier or
Catalog number

SMART-Seq® Stranded Kit TaKaRa #634444

DNA Clean & Concentrator Kit (DCC-5) ZYMO RESEARCH #D4014

Direct-Zol RNA kit ZYMO RESEARCH #R2063

Software

trim galore (version 0.6.2) https://www.bioinformatics.babraham.
ac.uk/projects/trim_galore/

salmon (version 1.5.1) Patro R et al (2017)

bowtie2 (version 2.3.5.1) Langmead and Salzberg (2012)

samtools (verison 1.9) Li H et al (2009)

deeptools (version 3.4.1) Ram�ırez F et al (2016)

preseq (version 2.0.3) Daley T and Smith AD (2013)

chromVAR (version 1.14.0) Schep A N (2017)

MACS2 (version 2.2.7.1) Zhang Y et al (2008)

agplus (version 1.0) Maehara K and Ohkawa Y (2015)

Other

Illumina HiSeq 1500 Illumina

Illumina NovaSeq 6000 Illumina

KEYENCE BZ-X710 KEYENCE

Methods and Protocols

Ethical statement
All animal procedures were conducted in accordance with the

Guidelines for the Care and Use of Laboratory Animals and were

approved by the Institutional Animal Care and Use Committee

(IACUC) at Kyushu University. The study protocol was approved

(number: 579-04) by the institutional review board for clinical

research (IRB) of Kyushu University.

Tissue preparation
Eight-week-old C57BL/6N mice were used as replicates for this

study. The liver, left ventricle, and testis were prepared from male,

and tibialis anterior (TA) muscles were from female mice. Tissues

were freshly frozen using isopentane chilled with LN2 and stored at

�80°C. Muscle regeneration studies were performed as previously

reported, except for the injection of CTX into the TA muscle (Ono

et al, 2011). Injured and intact TA muscles were sampled from five

mice at day 0, 3, 5, 7, and 14 after CTX injury. The day 0 indicates a

needle-injured control. The frozen tissue blocks of breast cancer

tissue were purchased from OriGene.

Tissue ChIL experiments
Modifications to the original ChIL protocol for tissue analysis are

underlined.

Tips) Maintain the humidity of tissue sections during the experi-

ment.

Day 1: Tissue section preparation. Dissect tissue and snap freeze

using LN2-chilled isopentane without fixation. Store the tissue in a

� 80°C freezer until use. Cryosection the tissue at 10-lm thick-

nesses. Mount the sections on an Ibidi 96-well plate (ibidi #b89626)

or glass slide (Matsunami, MAS coated 0.13–0.17 mm thickness,

special ordered). Pap pens (BMS #BC-PAPPEN-S) were used to

segregate reagents on a glass slide to avoid cross-contamination

between mounted tissues and hold reagents.

Day 2: Immunostaining. Wash the section quickly with a suffi-

cient volume of PBS (Nacalai Tesque #27575-31). After removing

the PBS, add 100 ll of 4% paraformaldehyde (Electron Microscopy

Sciences #15710-S) and 0.3% Triton X-100 (Roche #11332481001)

in PBS. Incubate at RT for 5 min. After removing the paraformalde-

hyde, wash the cells with 200 ll of 0.3% Triton X-100 in PBS twice.

After removing the PBS, add 100 ll of 0.3% Triton X-100/PBS. Incu-

bate at RT for 5 min. After removing the Triton X-100, wash the

cells with 200 ll PBS twice. After removing the PBS, add 100 ll of
Blocking One (Nacalai Tesque #03953). Incubate at RT for 20 min.

For mouse/rat antibody-stained sections, additional blocking is

performed by incubating with 100 µl M.O.M. IgG (Vector Laborato-

ries #BMK-2202) in PBS for 1 h. After removing the blocking

reagent, wash the section with 200 ll PBS. After removing the PBS,

add 100 ll primary antibody (1 lg/ml) in M.O.M. protein concen-

trate/PBS. Incubate at 4°C overnight. Antibodies used in this study

are listed in the Reagents and tools table.

Day 3: ChIL probe staining. After removing the primary antibody,

wash the cells with 200 ll PBS three times. After removing the PBS,

add 100 ll ChIL probe (5 lg/ml) in ice-cold MOM protein concen-

trate and 0.5 M NaCl in PBS. Incubate at 4°C overnight.

Day 4: ChIL reaction for library construction. After removing the

ChIL probe, wash the cells with 200 ll PBS three times. Nuclear

counterstaining is performed with Hoechst� 33342, followed by

imaging all sections under a KEYENCE BZ-X710. After removing the

PBS, prebuffer sections with 100 ll of 1× Tn5 dialysis buffer and

add 100 ll in-house Tn5 (0.2 ll/well) in 1× Tn5 dialysis buffer.
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Incubate at RT for 1 h. Remove Tn5 and add 100 ll of MEDS-B

(10 lM, 0.2 ll/well) in 1× Tn5 dialysis buffer. Incubate at RT up to

1 h. After removing the solution, wash the sections with 200 ll
PBS. After removing the PBS, wash the sections with 100 ll of 1×
Tn5 dialysis buffer. After removing the buffer, add 100 ll of 1×

TAPS-DMF buffer. Incubate at 37°C for 1 h. After removing the

buffer, add 100 ll of 0.2% SDS. Incubate at RT for 10 min. After

removing the SDS, wash the cells with 200 ll PBS three times. After

removing the PBS, wash the sections with 100 ll of 1× T4 DNA

Ligase buffer. Prepare a fill-in solution as follows: nuclease-free

water (88.5 ll), 10× T4 DNA Ligase buffer (10 ll), dNTP mix

(0.5 ll, 10 mM each), T4 DNA ligase (0.5 ll) (TaKaRa #M0202L),

and T4 DNA Polymerase (0.5 ll) (TaKaRa #M0203L) in 100 ll each
well. After removing the buffer, add 100 ll of fill-in solution. Incu-

bate at RT for 2 h. After removing the supernatant, add 100 ll of
0.2% SDS. Incubate at RT for 10 min. After removing the SDS, wash

the sections with 200 ll PBS three times. After removing the PBS,

wash the sections with 100 ll of 1× T7 RNA Polymerase buffer in

0.05% Tween-20/nuclease-free water. Prepare an in situ transcrip-

tion solution as follows: 0.05% Tween-20/nuclease-free water

(69.4 ll), 10× T7 RNA Polymerase buffer (8 ll), 100 mM NTPs

(0.5 ll each), 40 U/ml RNase Inhibitor (0.5 ll) (TaKaRa #2313A),

and T7 RNA Polymerase (0.1 ll, 100 U/well) (TOYOBO #TRL-252)

in 80 ll each well. After removing the buffer, add 80 ll of in situ

transcription solution. Seal the wells with parafilm or use a humidi-

fied chamber. Incubate at 37°C overnight.

Day 5: Library preparation. aRNA was purified using an

RNAClean XP (BECKMAN #A66514) in accordance with the manu-

facturer’s instructions. The following SMART-seq v4 library

construction step is the same as the original ChIL (Harada et al,

2019; Handa et al, 2020) except for a smaller number of PCR cycles

(15 cycles) at the library amplification. Library purification. Column

purification (ZYMO #D4014) was performed to remove small by-

products (< 100 bp). The following bead purification and validation

steps are the same as the original ChIL protocol (recover 200–

700 bp DNA fragments).

Deep sequencing
Libraries were sequenced on Hiseq1500 and NovaSeq 6000 (Illu-

mina). Reads were aligned to the GRCm38 and GRCh38 reference

genome using Bowtie2 (Langmead & Salzberg, 2012) with the default

option. Duplicated reads were discarded using Samtools (rmdup).

The uniquely mapped reads were used for further analysis.

Quality assessments of ChIL-seq data
The matrix of read counts on the equally sized (10 kb) windows on

the mouse genome was generated using deepTools (Ram�ırez et al,

2016) (version. 3.4.1) with the command: multiBamSummary bins -

bs 10000 --ignoreDuplicates. Pearson correlation coefficients were

calculated using the log-transformed read count (with +0.5 pseudo-

counts). The breakdown of mapped reads at the genomic regions

was calculated using HOMER (annotatePeaks.pl). The library

complexity was evaluated by Preseq (Daley & Smith, 2013) (ds.rSAC

in the preseqR package). The theoretical case assumed uniform

probabilities of obtaining reads from the mouse genome (i.e., a

common expected value of the Poisson distribution). The expected

number of detected genes in sub-samples was estimated by Preseq

(preseqR.interpolate.rSAC).

RNA-seq analysis
Total RNA was extracted from the cryosections (up to five serial

sections) using Direct-Zol kit (Zymo #R2063). The total of 10 ng

RNA was extracted for library preparation using a SMART-Seq

Stranded Kit (Takara #634444) according to the manufacturer’s

instructions. Libraries were sequenced on Hiseq1500 and NovaSeq

6000 (Illumina). Gene expression quantification was performed

using Salmon (Patro et al, 2017) quant with the default option.

Tissue-specific enhancer analysis
Peaks of H3K27ac ChIL-seq were called using MACS2 (Zhang et al,

2008) with the option: callpeak --call-summits --nomodel --nolambda

-q 0.05. Tissue specificities of the peaks were evaluated using the

odds ratio in the known tissue-specific enhancer lists (Shen et al,

2012). The odds ratio is defined as (p/(1-p))/(q/(1-q)), where p is

the proportion of hits in the target tissue and q is the proportion of

hits to the other tissues in the enhancer lists. ChromVAR (Schep

et al, 2017) analysis was performed using consensus peaks of each

tissue. The consensus peaks were constructed by taking the inter-

section of the peaks of three biological replicates. Typical and

super-enhancer candidates were called using HOMER (Heinz et al,

2010) finePeaks with the option: -style super -superSlope �1000

-gsize 3e9. The pre-ranked GSEA (Subramanian et al, 2005) was

performed using tag (read) count-ordered enhancer peaks. Then,

the peaks were marked by a binary indicator overlapping with

Hnf4a ChIL-seq peaks (called by MACS2 as described above with

the option: -q 1e-5).

Transcriptional activation analysis by PolII S5P ChIL-seq
Aggregation plots of the gene expression percentile groups were

created using agplus (Maehara & Ohkawa, 2015). The gene groups

were divided according to the TPM of the bulk RNA-seq analysis of

each tissue (liver, heart, and testis).

Statistical modeling of traveling ratio
The read counts of PolII S5P ChIL-seq at the TSS region (�750 to

+750 bp) and TES region (0 to +1,500 bp) at all mouse transcripts

were fitted to the following Poisson regression model. For each

gene, we assume that the read count yij of the i-th replicate at site j

(TSS or TES) follows the Poisson distribution, where the mean

parameter kij satisfies the relation: kij/Mi = exp(b0 + b1sij). The

offset term Mi is the total reads (in millions) of the replicate i, and sij
is the indicator variable that the read count yij is either TSS (sij = 0)

or TES (sij = 1). Since the offsetting is equivalent to the CPM

normalization of the mean count, exp(b0) and exp(b1) can be

referred to as the mean CPM at TSS and the magnification factor of

TES to TSS (i.e., the traveling ratio) of the gene, respectively. In R,

the glm function can be used to fit the model as follows: glm(y~site,-

family = poisson,offset = log(total/1e6),data = tbl), where y is the

read count yij, site is sij, and total is the number of total reads Mi.

For more detail, please see our demonstrations in github (Data

availability section). The model evaluates variance and can thus

estimate the confidence intervals of the traveling ratio by utilizing

all replicates (5 in our case) that have different total sequenced

reads. We assumed that the contrasts X � Y (e.g., fold-changes of

TR between day 3 and day 0) follow a Gaussian distribution, and

the variance was calculated from VX + VY (variances of X and Y)

under the independence assumption of X and Y. P-values were
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estimated from the model, and multiple test correction was

performed using the Benjamini–Hochberg procedure in the selected

genes of interest.

Data availability

The datasets and computer code produced in this study are available

in the following databases.

• RNA-seq and ChIL-seq data: Gene Expression Omnibus (GEO)

database under accession code GSE159024 (https://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE159024).

• Statistical modeling of tissue ChIL-seq: Github (https://github.

com/kazumits/tissueChIL).

Expanded View for this article is available online.
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