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Abstract

Background: Human-like H3N2 influenza viruses have repeatedly been transmitted to domestic pigs in different regions of
the world, but it is still uncertain whether any of these variants could become established in pig populations. The fact that
different subtypes of influenza viruses have been detected in pigs makes them an ideal candidate for the genesis of a
possible reassortant virus with both human and avian origins. However, the determination of whether pigs can act as a
‘‘mixing vessel’’ for a possible future pandemic virus is still pending an answer. This prompted us to gather the
epidemiological information and investigate the genetic evolution of swine influenza viruses in Jilin, China.

Methods: Nasopharyngeal swabs were collected from pigs with respiratory illness in Jilin province, China from July 2007 to
October 2008. All samples were screened for influenza A viruses. Three H3N2 swine influenza virus isolates were analyzed
genetically and phylogenetically.

Results: Influenza surveillance of pigs in Jilin province, China revealed that H3N2 influenza viruses were regularly detected
from domestic pigs during 2007 to 2008. Phylogenetic analysis revealed that two distinguishable groups of H3N2 influenza
viruses were present in pigs: the wholly contemporary human-like H3N2 viruses (represented by the Moscow/10/99-like
sublineage) and double-reassortant viruses containing genes from contemporary human H3N2 viruses and avian H5 viruses,
both co-circulating in pig populations.

Conclusions: The present study reports for the first time the coexistence of wholly human-like H3N2 viruses and double-
reassortant viruses that have emerged in pigs in Jilin, China. It provides updated information on the role of pigs in
interspecies transmission and genetic reassortment of influenza viruses.
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Introduction

The pig is considered to be an important host of influenza A

viruses as it might be associated with the generation of human

pandemic influenza strains [1]. Historically, two human pandemic

viruses, H1N1 in 1918 and H3N2 in 1968, were almost

simultaneously detected both in humans and pigs [2,3]. Although

the pandemic H3N2 virus was initially detected in humans and the

full genome of the 1918 H1N1 pandemic virus was recently

decoded [4], it is still unknown whether these viruses were first

introduced into humans or into pigs before they became human

pandemic strains.

Currently, H1N1, H1N2 and H3N2 influenza subtype viruses

co-circulate in pigs widely throughout the world. All of these

viruses were the result of either interspecies transmission or

reassortment events [5–7]. The Sydney-like H3N2 variants from

pigs in the U.S.A. in 1998 were double and triple reassortants

containing viral genes of human, swine and avian origin [8]. This

highlights the complex and dynamic influenza ecology in pig

populations.

Here we present the results of the genetic and phylogenetic

characterization of swine H3N2 influenza viruses isolated from

2007 to 2008 in Jilin province of China. Genetic analysis showed

that wholly contemporary human-like H3N2 viruses and double-

reassortant viruses containing genes from contemporary human

(PB2, PB1, PA, HA, NP, and NA) and avian H5 (M and NS)

viruses were co-circulating in pig populations. This is the first

description of an instance of reassortment between mammal
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H3N2 and avian H5 influenza viruses. The coexistence of entirely

contemporary human-like viruses and double-reassortant viruses

provides further evidence that pigs serve as intermediate hosts or

mixing vessels. This emphasizes the importance of reinforcing

swine influenza virus surveillance.

Results

HA1 amino acid analysis
To investigate all of the detailed genetic characteristics, we

compared the deduced amino acid sequences of the hemagglutinin

1 (HA1) gene from the three swine H3N2 isolates against the

representatives of five lineages (avian, European swine, earliest

human, early human and contemporary human) available in

GenBank. For the five lineages, the three H3N2 isolates showed a

close relationship to HA1 genes from the contemporary human

lineage with a sequence similarity of 94.8,97.6% to Moscow/10/

99, while there was 80.9,87.2% similarity compared with the

representatives of four other lineages (Dk/Hong Kong/7/75

(ABB88256.1), Sw/Italy/1461/96 (CAC40048.1), Hong Kong/1/

68 (ACU79871.1), Port Chalmers/1/73 (AAC78096.1), and

Victoria/3/75 (CAA24270.1)).

Analysis of amino acid variations of the proposed antigenic sites

[9–11], receptor-binding sites [12], and potential glycosylation sites

was conducted and variations are shown in Figure 1. The HA1

domain of HA, the major antigenic protein of influenza A viruses,

contains all the antigenic sites of HA and is under continual

immune-driven selection. For H3N2 viruses, the antigenic sites

A,E have been described [9–11]. All variations were accumulated

at the antigenic sites A and B, while C, D and E were relatively

conserved for the contemporary human-like H3N2 lineage.

Concerning the three swine H3N2 isolates, two or four amino acid

substitutions were observed at the major antigenic sites (A and B) of

the HA1 molecule compared with Moscow/10/99, the represen-

tative for contemporary human lineage (Figure 1 and 2).

Amino acids at the receptor-binding sites of the HA1 protein are

associated with the differences in the receptor-binding specificity

[13]. All of the H3N2 viruses had relatively conserved receptor-

binding sites at Y98, G134, S136, W153, H183, Y195, and R224.

Eight obvious mutations (A/S131T, T135G, H155T/Y, Q156K,

K/Q158G, D190E, S193N, I/V194L) occurred between the

contemporary human lineage and other lineages; these mutations

were unique to the contemporary human lineage. Residues

responsible for the sialic acid-a2,6-galactose (SAa2,6Gal) of

H3N2 are L226 and S228 [14]. The viruses of avian lineage

had Q at position 226, while the viruses of European swine,

earliest human, and early human lineages had L, and the viruses of

contemporary human lineage had I/V. The viruses of avian

lineage had G at position 228, with other four lineages being S. In

this study, all of the swine H3N2 isolates contained V instead of L

at position 226.

It has been considered that carbohydrate side chains might

affect receptor-binding capacity and antigenicity [11,15,16].

Analysis of potential glycosylation sites in the HAs of the three

H3N2 isolates revealed eight common sites (N8, 22, 38, 63, 122,

133, 165 and 285, respectively) with the NXT/S motif (in which X

Figure 1. Alignment of the HA1 amino acid sequences of three swine H3N2 influenza virus isolates and the representatives of five
H3N2 lineages. The underlined residues represent the antigenic sites (lowercase letters indicate discrete antigenic sites), residues in green
represent the potential glycosylation sites, and residues in yellow shade denote the receptor-binding sites.
doi:10.1371/journal.pone.0012591.g001
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may be any amino acid except aspartic acid and proline).

Furthermore, as shown in Figure 1, both Sw/Jilin/5/07 and

Sw/Jilin/19/07 possessed an additional glycosylation site at

position 126, and Sw/Jilin/5/07 acquired another one at position

246.

Phylogenetic analysis
Phylogenetic analysis and identification of antigenically different

strains are necessary to monitor the evolution of influenza virus.

The phylogenetic relationships among swine H3N2 viruses

prevalent in Jilin province compared to the selected reference

strains available in the GenBank were estimated from the

nucleotide sequences of each viral gene. The phylograms for all

genes are shown in Figures 3a,3h.

Phylogenetic analysis of H3 HAs showed that H3N2 viruses

could be segregated into five distinct lineages, including avian

strains, European swine strains, earliest human strains, early

human strains, and contemporary human strains (Figure 3a). The

swine viruses of earliest human lineage seemed to be derived from

the human strain A/Hong Kong/1/68. The early-human-derived

swine viruses were closely related to A/Victoria/75-like viruses.

The swine viruses of European swine lineage were probably

derived from European H3N2 swine influenza viruses, for which

the HA genes originated from A/Victoria/3/75. The contempo-

rary human lineage included three sublineages (represented by

Sydney/97-like, New York/99-like and Moscow/99-like viruses).

The HAs of the three swine H3N2 virus isolates tested in this study

clustered into the Moscow/99-like virus sublineage.

The phylogeny of the NA and internal genes of H3N2 viruses

paralleled to that of the HA genes, in which five different lineages

were defined. The NA, PB2, PB1, PA, and NP genes of the three

isolates in this study belonged to the contemporary human lineage.

Additionally, in the NA tree, Sw/Jilin/37/08 was equally closely

related to the early and contemporary H3 strains as well as an

intermediate swine virus between the early lineage and the

contemporary human lineage. In the M and NS trees, Sw/Jilin/5/

07 and Sw/Jilin/19/07 still clustered in the contemporary human

lineage, whereas Sw/Jilin/37/08 was incorporated into the avian

lineage (Figures 3b,3h).

The results of the published data in GenBank revealed that in

recent years H3N2 influenza viruses were cocirculating with H5

influenza viruses, raising the possibility of genetic exchange

between these viruses. The evolutionary trees revealed that the

M gene of Sw/Jilin/37/08 formed a sublineage with H5N3 viruses

Figure 2. Cartoon diagram representing the amino acid changes at the HA1 molecule of H3 subtype influenza viruses. RBD: receptor-
binding domain. A, B and C: major antigenic sites at the HA molecules. Yellow color: conserved amino acids and red color: changed amino acids. (|)
Sw/Jilin/5/07 vs. Moscow/10/99, (||) Sw/Jilin/19/07 vs. Moscow/10/99, (|||) Sw/Jilin/37/08 vs. Moscow/10/99.
doi:10.1371/journal.pone.0012591.g002
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(A/Dk/Altai/1285/1991, A/Dk/Primorie/2633/2001, A/Ana-

splatyrhynchos/Altai/1285/1991, and A/Migratory Dk/Jiangxi/

13487/2005 (Figure 3g)). The NS gene of Sw/Jilin/37/08 had a

close relationship with A/Mallard/Italy/4223-2/2006 (H5N2)

and A/Dk/Primorie/2633/2001 (H5N3) (Figure 3h).

Discussion

The rapid evolution of influenza viruses occurs both clonally

and non-clonally through a variety of genetic mechanisms and

selection pressure. Three mechanisms on the non-clonal evolution

of influenza viruses have been proposed: (i) relatively frequent

reassortment among gene segments of multiple host types, (ii)

possibly but rarely non-homologous recombination, in which short

regions of sequence are transferred among different segments, and

(iii) controversial and extremely rare homologous recombination

within segments [17]. Reassortment, therefore, plays an important

role in the non-clonal evolution of the influenza viruses.

Infection of pigs with H1, H3, H5 and H9 subtype influenza

viruses has occurred frequently on multiple occasions [5,18–23].

As pigs can serve as intermediate hosts or mixing vessels for the

reassortment of human and avian influenza viruses, swine

influenza infections have been the focus of increasing attention.

It often appeared that multiple reassortments occurred among the

same subtype or different subtypes of human, swine and avian

viruses in pig populations. The best examples are the swine H1N2

isolates and the pandemic novel H1N1 influenza virus that

emerged in the human population. Peiris et al [24] were the first to

confirm that cocirculation of contemporary human H3N2 viruses

and avian H9N2 in pigs had occurred in southeastern China. Xu

et al [25] reported that the avian H9N2 viruses caused pig disease

and death in clinics, and deduced that it probably originated from

a reassortant of avian H5 influenza virus and H9N2 viruses. All of

these situations indicated that the cocirculation of H1, H3, H5 and

H9 viruses in pigs would provide an opportunity for genetic

reassortment, leading to the emergence of viruses with pandemic

potential. Avian influenza viruses, especially when avian H5

subtype viruses reassorted with suitable surface glycoproteins, can

infect humans [26]. Yu et al [27] described the coexistence of

wholly human-like H3N2 viruses, double-reassortant and triple-

reassortant H3N2 viruses in pigs in China from 1970 to 2006.

However, reassortment was not found between mammal H3N2

viruses and avian H5 viruses. From July 2007 to October 2008, we

collected 279 nasopharyngeal swabs from pigs diagnosed with

respiratory tract illness on different pig farms in Jilin province. The

H3N2 influenza virus infections in the pigs were diagnosed by

virus isolation. The results showed that one Moscow/10/99-like

reassortant isolate, A/swine/Jilin/37/2008, contained avian H5-

like M and NS genes, suggesting that after introduction to pigs,

avian H5 viruses further reassorted with contemporary human-like

H3N2 viruses. To our knowledge, such reassortment between

mammal H3N2 viruses and avian H5 viruses has not been

described in existing publications.

A comparison of the amino acid sequences of the HA1 region

of our isolates with the representatives of avian lineage (Dk/Hong

Kong/7/75), European swine lineage (Sw/Italy/1461/96), ear-

liest human lineage (Hong Kong/1/68), early human lineage

(Victoria/3/75 and Port Chalmers/1/73), and contemporary

human lineage (Sydney/5/97, New York/185/99, and Moscow/

10/99) showed that the three H3N2 swine isolates were more

closely related to Moscow/10/99 (94.8,97.6% amino acid

similarity), indicating that the HAs of them seemed to be derived

from those of the contemporary human lineage. Phylogenetic

analysis of the HAs also suggested that the three H3N2 isolates

had been introduced into pigs at several points in time from the

human side.

The comparison of antigenic sites of HA1 regions revealed

evolution by antigenic drift of their HA genes. Codons under

positive selection were associated with antigenic site A and B [28].

Sw/Jilin/19/07 had two variations at the antigenic sites A and B,

while Sw/Jilin/5/07 and Sw/Jilin/37/08 accumulated four

variations at the antigenic sites A and B. The gradual mutations

of HA might generate new antigenic strains. Wilson and Cox [29]

proposed that a drift variant with $4 amino acid changes at $2

out of 5 antigenic sites would be of epidemiologic importance. It

has been also observed that new antigenic variations are created

either when $2 variations occur in antigenic sites or when one

variation occurs in an antigenic site and one in a sialic acid

receptor-binding site [30].

Although the molecular basis of host-range restrictions is not

completely defined, the compatibility between the HA protein of the

virus and its corresponding receptor, sialic acid, on the host cell is

thought to contribute in part to the infection of the virus in a specific

host [31,32]. Pigs, unlike humans, seem to be readily infected by

most, if not all, mammalian and avian influenza viruses. The

susceptibility of pigs to both mammalian and avian viruses is due to

the presence of receptors for both lineages of virus in the pig trachea

[33]. For H3N2 viruses, residues 226 and 228 on the receptor-

binding domain of the HA1 molecule were shown to play a critical

role in determining receptor specificity [14,34,35]. The three H3N2

isolates possess V226 and S228, which are the same as those of both

turkey and swine triple reassortants. While L/I226 and S228 are

usually expressed in human viruses [36], Q226 and G228 are

usually found in avian viruses [14]. V, L and I are neutral non-polar

amino acids, and substitutions between them most likely maintain

the hydrophobic interactions and the proper 3D conformation at

the binding domain [37].

Carbohydrate side chains are important for the structure and

stability of glycoproteins [38,39]. Changes in carbohydrate side

chains are an important mechanism in the structural variation

underlying antigenic drift. In this study, the three swine H3N2

isolates had eight to ten glycosylation sites, although all of them

may not be used. Of these sites, positions 122, 133, and 246 were

unique to the contemporary human lineage. In addition, the

lineages of European swine, earliest human, early human, and

contemporary human had more glycosylation sites than the avian

lineage. The addition of new carbohydrate side chains to HA may

have provided the viruses with the ability to evade antibody

pressure by changing the antigenicity and by having an increased

ability to prevail. For instance, human virus variants which

cocirculated in the epidemic area with a higher number of

glycosylation sites appeared to prevail at the end of the outbreak

[40]. Conclusively, molecular analysis of the hemagglutinin gene

showed that the 2007–2008 H3N2 influenza viruses circulating in

swine populations in Jilin province accumulate variations at the

antigenic sites A and B, receptor-binding sites, as well as

glycosylation sites.

Phylogenies of the whole genome of the swine H3N2 influenza

viruses in Jilin province, China during 2007 to 2008 provided

evidence of the persistence of both the contemporary human

lineage and the avian lineage in pig populations. These results also

revealed multiple interspecies transmissions of influenza viruses

from human and avian to pig and subsequent reassortment events,

particularly together with the participation of internal genes from

the avian H5 lineage in this region. This is the first report on

reassortment between mammal H3N2 and avian H5 viruses.

Experimental infection suggested that introduction of certain

H5 viral segments into circulating human H3N2 viruses may

Swine H3N2 Influenza Viruses
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increase their virulence for mice and perhaps other mammalian

species [41]. Further research is needed to determine whether Sw/

Jilin/37/08 has higher virulence than Sw/Jilin/5/07 and Sw/

Jilin/19/07. The principal evolutionary mechanism of influenza

virus is by antigenic drift, creating small progressive antigenic

changes in the hemagglutinin and neuraminidase surface antigens

[42]. However, genetic reassortment readily occurs between

influenza viruses and may also contribute to the evolution of

new strains. Therefore Sw/Jilin/37/08 may represent a potential

threat in the emergence of new human viruses.

There have been numerous descriptions of human infection

with swine influenza viruses [5]. The swine populations have

become a reservoir of a much more diverse array of influenza

viruses. The replicative gene constellation of H3N2 viruses has the

capacity to reassort among avian, swine and human viruses. This

means that activity in swine virus reservoirs is of concern for

human health. The above study provides additional evidence for

continuing interspecies transmission and reassortment events

occurring in pigs, which naturally increased the possibility of pigs

as an important host for the emergence of novel reassortants with

genes adapted for replication in pigs or even humans. The

coexistence of reassortant viruses, especially reassortants of H3 and

H5 viruses, emphasizes that genetic reassortment is an important

factor in the evolution of H3N2 viruses and a formal surveillance

system is needed for swine and avian influenza. It is only through

such a system that cross-interspecies transmission and novel

reassortment events will be identified in a timely fashion.

Materials and Methods

Viruses
A total of 279 nasopharyngeal swabs were collected in Jilin

province, China from July 2007 to October 2008. The initial

isolation of the viruses was performed in Madin-Darby canine

kidney (MDCK) cells. The viruses were grown in Eagle minimal

essential medium (GIBCO/BRL) supplemented with 5% fetal

bovine serum (GIBCO/BRL), penicillin-streptomycin (GIBCO/

BRL), amphotericin B (Fungizone; GIBCO/BRL) and tolylsulfo-

nyl phenylalanyl chloromethyl ketone-treated trypsin (1 mg/ml;

Worthington Biochemical Corporation, Lakewood, N.J.). Subtype

identification of these viruses were determined by standard

hemagglutination inhibition tests and neuraminidase inhibition

tests with a panel of reference antisera recommended by the

World Health Organization (http://www.who.Int/csr/resources/

publications/en/#influenza). Viral fluids were harvested for

MDCK-passaged viruses and used as stock for sequence analysis.

The three H3N2 virus isolates obtained in this study were named

as follows: A/swine/Jilin/5/2007 (Sw/Jilin/5/07), A/swine/Jilin/

19/2007 (Sw/Jilin/19/07), and A/swine/Jilin/37/2008 (Sw/

Jilin/37/08).

Gene sequencing and phylogenetic analysis
Viral RNA was extracted using Trizol reagents (GIBCO/BRL)

and reverse transcription was performed using oligonucleotide

influenza universal primer Uni12: 59-AGC AAA AGC AGG-39

[43]. After reverse transcription, PCR was done as described by

Shu [44] using primers (Table 1) specific for each of the eight

RNA segments. PCR products were purified with the QIA quick

PCR purification kit (Qiagen). The purified PCR products were

then partially sequenced using an Amersham ET Dye terminator

kit and analyzed with an ABI 3730 DNA sequencer (Perkin-Elmer

Appllied Biosystems, Foster City, CA, USA).

Assembly of sequences, translation of nucleotide sequences into

protein sequences, and initial multiple sequence alignments were

performed with the Clustal V method using MegAlign software

version 1.03 (SNAStar Inc., Madison, WI).

The reference strains selected for phylogenetic analysis are

based on the following criteria: 1. Using a blast search (http://

blast.ncbi.nlm.nih.gov/Blast.cgi), the most genetically closest

segment sequence is selected. 2. The selected strains are well-

characterized phylogenetically, so that they can represent their

lineage and host origin, such as avian, pig or human. 3. The

general topology of the phylogenetic tree constructed using the

selected reference strains is consistent with previously well-

recognized evolutionary analysis. Bootstrap support for tree

topologies was accomplished using the Neighbor-joining (NJ)

methods implemented in MEGA 4.0 with 1,000 iterations [45].

Genetic distances based on NJ phylogenetic trees were calculated

applying Kimura’s two-parameter method. In this study, the

nucleotide sequences used for the phylogenetic analysis are as

follows: PB2 1185-2306, PB1 64-2241, PA 1266-1579, HA 78-

1064, NP 46-1504, NA 89-1399, M 35-990, and NS 27-822.

Molecular graphic visualization
Amino acid changes at the five antigenic sites (A,E) [9–11] of

the HA1 molecule were determined by amino acid sequence

alignment using the MegAlign program. Changes at the major

antigenic sites (A, B and C) of the HA monomer were located

using PyMOL software (v0.99) (DeLano Scientific LLC, South

San Francisco, California, U.S.A.) based on the HA structure of

the H5 subtype influenza virus, A/duck/Singapore/3/97 [46],

(1JSM) downloaded from the Protein Data Bank website (http://

Table 1. The primer sequences used for PCR amplification of H3N2 influenza virus genes.

Gene Forward primer 59R39 Reverse primer 59R39

Expected size
(bp)

PB2 GCTGATAGTGAGTGGAAGAGACGAACA AGTAGAAAAAGGTCGTTTTTAAACTATTC 1166

PB1 TGCGAGCTGACTGATTCAATCTGGATA AGTAGAAACAAGGCATTTTTTCATGAA 2321

PA TGCGAGCTGACTGATTCAATCTGGATA AGTAGAAACAAGGTACTTTTTTGGACA 967

HA ATGAAGACTATCATTGCTTTGAGCTAC TCAAATGCAAATGTTGCACCTAATG 1701

NP AGCAAAAGCAGGGTAGATAATCACTCA AGTAGAAACAAGGGTATTTTTCTTTAA 1565

NA AGCAAAAGCAGGAGTAAAGATGAAT AAGCTTATATAGGCATGAGATTGAGG 1433

M ATATTGAAAGATGAGCCTTCTAACCG ACTCCAACTCTATGCTGACAAAATGAC 990

NS AGCAAAAGCAGGGTGACAAAGACATAA AGTAGAAACAAGGGTGTTTTTTATTAT 890

doi:10.1371/journal.pone.0012591.t001
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www.rcsb.org/pdb/home/home.do). The H5 structure was used

because it is available as a monomer structure and it would be

clearer to visualize the amino acid changes on it than the H3

structure, which is only available as a trimer structure.

Nucleotide sequence accession numbers
The nucleotide sequences for all H3N2 influenza virus isolates

analyzed in this study are available from GenBank under accession

numbers GU215015 to GU215038 (Table 2).
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