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Abstract: Tilted fiber Bragg grating, which has the advantages of both fiber Bragg grating and
long-period fiber grating, has been widely studied for sensing in many fields, especially in the field of
biochemistry. Calmodulin, which has a wide distribution in eukaryotes, can regulate several enzymes
such as adenylate cyclase and guanylate cyclase and mediates several cellular processes such as cell
proliferation and cyclic nucleotide metabolism. The abnormal levels of calmodulin in the body will
result in serious effects from metabolism to nerve growth and memory. Therefore, it is important
to measure the calmodulin concentration in the body. In this work, we propose and experimentally
demonstrate a plasmonic tilted fiber Bragg grating-based biosensor for calmodulin detection. The
biosensor was made using an 18◦ tilted fiber Bragg grating with a 50 nm-thick gold nanofilm coating
the surface of the fiber, and transient receptor potential channels were bonded onto the surface of
the gold nanofilm to serve as bio-detectors for calmodulin detection. Experimental results showed
that the limit of detection using our biosensor was 0.44 nM. Furthermore, we also demonstrated
that the interaction between calmodulin and transient receptor potential channels was quite weak
without calcium in the solution, which agrees with the biology. Our proposed biosensor has a simple
structure, is easy to manufacture, and is of small size, making it a good choice for real-time, label-free,
and microliter-volume biomolecule detection.

Keywords: fiber-optic biosensor; tilted fiber Bragg grating; surface plasmonic resonance; calmodulin;
limit of detection

1. Introduction

Because of many desirable advantages, such as small size, remote control, immunity
from electromagnetic fields, and biocompatibility, fiber-optic sensors have been increas-
ingly considered for real-time and label-free biochemical sensing in recent years [1,2].
Among all fiber-optic sensors, tilted fiber Bragg grating (TFBG), in which the refractive
index modulation planes are angled by a few degrees relative to the propagation axis, has
attracted great attention because it can measure small changes in the surrounding refractive
index near the surface of the fiber while simultaneously measuring the temperature for
calibrating the temperature-induced cross-sensitivity [3–5]. Moreover, TFBG is usually
inscribed into the fiber core by using phase-mask or femtosecond laser techniques, which
will not introduce any breaks in the structure of the fiber, making it more stable compared
to other fiber sensors, such as D-shaped [6,7] and tapered fiber sensors [8–10]. Furthermore,
owing to the tilt grating-induced break in the cylindrical symmetry of the fiber, some of the
power propagating in the core of the fiber can be coupled to the fiber cladding, exciting
hundreds of cladding modes traveling backward in the cladding [11]. The excited cladding
modes can be observed as a high-density comb of narrowband spectral resonances (with
a Q-factor of 104 [12]) in the transmission spectrum, covering a wavelength band of tens
of nanometers. The break in cylindrical symmetry also results in a strong polarization
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selectivity of the excited cladding modes, enabling the excitation of surface plasmon reso-
nances (SPR) in a metallic nanofilm that coats the surface of the fiber. TFBG coated with
a metallic nanofilm, also called plasmonic TFBG, has both the advantages of TFBG and
SPR [13]. Compared to the conventional TFBG without a metallic nanofilm, the plasmonic
TFBG has a great advantage in that the electromagnetic energy on the metallic surface
is stronger, resulting in it being more sensitive to the surrounding refractive index [14].
In the past few years, TFBG has been widely studied for biochemical sensing, involving
a non-enzymatic D-glucose biosensor (limit of detection (LOD) 10−8 M, detection range
10−8–10−2 M) [15], a breast cancer biomarker biosensor (LOD 10−12 g/mL) [16], a thrombin
molecule biosensor (LOD 2.5 nM, 2.5–40 nM) [17], a circulating tumor cell detector (LOD
10 cancer cells/mL) [18], a cytokeratin biosensor (LOD 14 pM) [19], a mercury Ions detector
(LOD 3.073 pM, dynamic range 10−11–10−3 M) [20], a glucose detector (LOD 295 pM,
dynamic range 1 nM–10 mM) [21], a small biomolecule biosensor (LOD 1 nM) [22], and a
hydrogen sensor (LOD 180 ppm) [23]. In summary, the LOD of TFBG for biochemical sens-
ing can reach the nanomole level or even the picomole level. Therefore, TFBG-based sensors
can achieve the LOD required for biomedical and biochemical reactions [24–26], enabling
single-point biomedical sensing in hard-to-reach spaces, such as in vivo, to be possible.

Calcium ions (Ca2+) affect almost all physiological activities, and calcium signaling
is common for signaling either between cells or within cells [27]. Many proteins, such as
troponin C, parvalbumin, calmodulin (CaM), and myosin light chains, can bind calcium, but
calmodulin is the most common calcium-modulated protein, as it has a wide distribution
in eukaryotes and mediates several cellular processes, including cell proliferation, gene
expression, cyclic nucleotide metabolism, ion channel activities, protein phosphorylation
and dephosphorylation, cell Ca2+ metabolism, and others [28–30]. In other words, the
effects caused by calmodulin range from inflammation and metabolism to nerve growth
and memory [31,32]. As calmodulin plays an important role in cell cycle regulation,
either directly by regulating the function of cell cycle proteins or indirectly by activating
calmodulin-dependent kinases and phosphatases crucial for cell cycle regulation [33], it is
significant to monitor the calmodulin levels in the body.

In this work, we demonstrate a plasmonic TFBG biosensor, which was made by
a 50 nm thick gold nanofilm coating the fiber surface, followed by bonding transient
receptor potential (TRP) channels onto the surface of the gold nanofilm for acting as bio-
receptors [34], for calmodulin detection. To simplify the implementation process, the sensor
was designed as a reflective probe by depositing a gold mirror downstream of the TFBG.
The LOD of the proposed biosensor was studied in this work, together with the interaction
between CaM and TRP in solution with and without Ca2+.

2. Materials and Methods
2.1. Materials

All biomolecule-related materials, including CaM (1 mM), TRP (1 mM), and buffer so-
lutions were provided by Yukun Cui, and they were purchased from Shanghai Macklin Bio-
chemical Co., Ltd (Shanghai, China). All chemicals, including 11-mercaptoundecanoic acid,
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), and N-
hydroxysuccinimide (NHS) were purchased from Wuhan Boster Biological Engineering
Co., Ltd., Wuhan, China.

2.2. Fabrication of the TFBG-Based Biosensor

The TFBG used in the work was fabricated using the phase-mask technique (±1 diffrac-
tion order) [35], which can be seen in Figure 1. To increase the photosensitivity of the fiber
core, a germanium-doped silica fiber, instead of a commercial single-mode fiber, was used
for tilted grating inscription. An excimer laser with a wavelength of 193 nm, 3 mJ of power
per pulse, and a frequency of 200 Hz, was used as the light source. The laser beam scanned
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the phase-mask during the inscription procedure to improve the quality of tilt grating. The
TFBG transmission spectrum can be expressed as Equations (1) and (2) [4]:

λi =
(

Ncore
e f f (λi) + Ni

e f f (λi)
)
·Λ/ cos θ (1)

Ri = tanh2(κiL) (2)

where λi and Ri represent the resonant wavelength and the strength of the resonance,
respectively. Ncore

e f f (λi) and Ni
e f f (λi) are the effective indices of the guided-mode in the

core and the exciting cladding mode i at the resonant wavelength λi, respectively; Λ is the
grating period, θ is the tilt angle; κi is the coupling coefficient, and L is the grating length.
In this work, a TFBG with a tilt angle of 18◦ was selected for the experiments.
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Figure 1. Detail of the phase-mask technique for TFBG fabrication.

To excite SPR, a 50 nm-thick gold nanofilm was deposited on the surface of the
fabricated TFBG (as shown in Figure 1) through the radio-frequency magnetron sputtered
method [36]. As the fiber is a cylindrical structure, to obtain a more uniform film, the fiber
was continually rotated about the fiber axis at a speed of 0.5 rad/s during the deposition
process. Although we can determine the thickness of the gold deposited on the fiber surface
by controlling the working time of the radio-frequency magnetron sputtered machine, we
could not, one hundred percent, ensure that the gold thickness was 50 nm each time. What
we could guarantee was that the gold thickness was approximately 50 nm according to
our previous experience, and the SPR could be strongly excited. After that, a gold mirror
was deposited, using the same method, downstream of the TFBG, making the plasmonic
TFBG work as a reflection probe. The SPR excited by the TFBG can be understood when
the propagation constants of the cladding modes are equal to those of the surface plasmon
polaritons (SPPs), power coupling between the cladding modes and SPPs can occur, and
this phenomenon is observed as a consequent reduction in the TFBG spectrum. Small
changes near the metallic surface could be measured by monitoring the power changes of
the cladding modes within the SPR absorption area.

In order to make a specific detection, surface functionalization for the plasmonic TFBG
should be carried out. As the TRP can specifically interact with CaM, we used TRP as a
bio-receptor and bonded it onto the metallic surface, as shown in Figure 2. The surface
functionalization included several steps as follows:

(1) The plasmonic TFBG was rinsed with ethanol and with Milli-Q water to remove
unwanted contaminants on the metallic surface, and then was immersed in the 11-
mercaptoundecanoic acid solution (~10 µM) for 2 h to allow the self-assembly of a
monolayer of mercapto compounds on the metallic surface;

(2) The plasmonic TFBG was again rinsed with ethanol and with Milli-Q water for
removing the nonadherent 11-mercaptoundecanoic acid, and then was immersed in a
mixed solution that contained 1.5 mL of EDC (50 mM) and 0.5 mL of NHS (50 mM)
for 30 min to activate the carboxyl groups on the self-assembled monolayer;
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(3) The sensor was rinsed with the reaction buffer consisting of 50 mM Tris-HCl, 100 mM
NaCl, 1 mM DTT, and 1 mM CaCl2 at PH 7.5, for removing the nonadherent EDC and
NHS;

(4) The sensor was immersed in the TRP solution (10 µM) for 1 h to bind the TRP to the
metallic surface. After that, the biosensor was ready for calmodulin detection.
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2.3. Experimental Design

Figure 3 shows the block diagram of the experimental setup used in this work. A
broadband source (1460–1560 nm) followed by an in-line fiber polarizer was the light
source. A manual paddle fiber polarization controller was used to control the polarization
state of the light launched into the TFBG. An optical circulator was applied to connect the
TFBG to an optical spectrum analyzer, which was used to monitor and record the reflected
spectra from the TFBG. The inset in Figure 2 shows the practical microfluidic system
used in the experiment. The inner diameter of the micro-tube and the capillary (with a
length of 5 cm) was 300 µM. Because of the custom-designed microfluidic system, the
sample solution required for the experiment was only 20 µL. Additionally, a two-channel-
pump was used to inject the buffer and sample solutions independently, thus making the
implementation easier.
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3. Results and Discussion

Figure 4 shows a measured spectrum of the proposed biosensor when it was immersed
in a CaM solution. Based on this spectrum, we focused mainly on two spectral regions
during the measuring procedure: one was the SPR absorption area, and the other was
the core mode. The cladding modes within the SPR absorption area were sensitive to
perturbations near the metallic surface, especially the cladding mode resonances adjacent
to the center of the SPR absorption area. Therefore, we selected the first cladding mode
resonance, indicated with a black star “*” on the left side next to the SPR center for
monitoring the detection procedure. We should point out here that the TFBG amplitude
spectrum to the right of the SPR area appeared quite noisy. This power fluctuation of some
cladding modes was caused during the TFBG fabrication. However, the experimental
tests in sensitivity and stability have demonstrated that it could provide performances
as other TFBGs. Furthermore, as we select the first cladding mode to the left of the
SPR center for demodulation, this “noise” to the right of the SPR area will not affect the
demodulated result in this work. The core was used to calibrate the temperature-induced
cross-sensitivity and light source-induced intensity fluctuation in this work. Insets (a) and
(b) show, respectively, the responses of the selected cladding mode resonance and the core
mode when the biosensor was immersed in a 1 µM CaM solution for 30 min. Note that the
optical spectrum analyzer automatically recorded the spectrum every 30 s. The intensity
of the selected cladding mode decreased with time and became stable after a certain time.
The intensity fluctuation, based on the core mode shown in inset (b), was only ~0.05 dB,
far smaller than the intensity change in the selected cladding mode (~1.7 dB). Therefore,
we could ignore the power fluctuation-induced effect in the experiment. Furthermore,
it was not necessary to calibrate the temperature-induced cross-sensitivity, as almost no
wavelength shift occurred according to the core mode.
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To evaluate the LOD of the proposed biosensor, several experiments were carried out
for measuring CaM at different concentrations (Figure 5). As can be seen, the intensity
change of the selected cladding mode was clear when the CaM concentration was 1 nM.
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The change in intensity increases quickly during the first 30 min, and then rises slowly and
becomes almost saturated after 40 min, which means that the interaction between CaM and
TRP channels reaches equilibrium. When the CaM concentration was 0.2 nM, the analytical
signal can be distinguished from the background signal (buffer solution). Although the
change in intensity in the selected cladding mode can also be observed when the CaM
concentration is 0.1 nM (red hollow circles), it is difficult to distinguish it from that caused
by the buffer solution (blue hollow triangles). To precisely calculate the actual LOD of our
biosensor, we repeated the experiments ten times, and the results are shown in Figure 6.
The LOD can be computed according to the following formulas [37]:

LOD = LOB + 1.645 · SDL (3)

LOB = meanblank + 1.645 · SDblank (4)

where LOB (limit of blank) is defined as the highest apparent analyte concentration ex-
pected to be found when replicates of a sample containing no analyte are tested. SDL
and SDblank represent the standard deviations of the blank and the lowest concentration
samples in a ten-time measurement, respectively. meanblank is the mean result of the blank
sample (buffer solution). According to Figure 6, it could be calculated that the LOD of our
biosensor was 0.44 nM.
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Figure 5. Detection of calmodulin at concentrations of 1 nM (black “�”), 0.2 nM (green “3”), and
0.1 nM (red “#”) compared with buffer solution without calmodulin (blue “∆”). The intensity
changes of the core mode (pink “X”), at 1540 nm, as it varied with time is also shown.

In addition, the power fluctuation from the core mode, indicated by the pink “X”, was
only ~0.03 dB during the experiment; thus, we could ignore its induced effect. It needs
to be highlighted that the buffer solutions used for diluting the CaM concentration or for
stability testing contained 1 mM Ca2+, as it was required for the interaction between CaM
and TRP.

Finally, we also tested the interaction between CaM and TRP channels in solution with
and without Ca2+ (Figure 7). Note that the Ca2+ concentration used in the experiment was
1 mM, as the Ca2+ concentration in the body is slightly higher than this value. We can see
that even though the CaM concentration is 10 µM, the interaction between CaM and TRP
was very weak (as the blue circles in Figure 5 show) if there is no Ca2+ in the solution. On
the other hand, the interaction was very strong when the Ca2+ was present in the solution,
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as the black squares show. The change in intensity increased sharply in the first 4 min, and
it reached saturation after 5 min, at which point the interaction reached equilibrium.
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TFBG, together with the microfluidic system, can not only be used for biomolecule detec-
tion but also for interaction monitoring between biomolecules.  

4. Conclusions 
A plasmonic TFBG-based biosensor, in which the TRP channels were bonded onto 

the metallic surface for acting as bio-receptors, was demonstrated for calmodulin detec-
tion in this work. Experimental results showed that the LOD of our biosensor was 0.44 
nM, and the operating time was 40 min. Additionally, our proposed sensor combined with 
a microfluidic system can also be used for monitoring the interaction between CaM and 
TRP channels in real-time. Our proposed plasmonic TFBG sensor, together with the cus-
tom-designed microfluidic system, offers possibilities for practical biomolecule detection 
and biomolecule interaction monitoring in the future, owing to its characteristics of fast 
response, easy to manufacture, automatic control, and a microliter volume requirement 
for the bio-sample solution.  
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W.L.; Data processing, P.X.; Formal analysis, J.S.; supervision. All authors have read and agreed to 
the published version of the manuscript. 
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Figure 7. Interaction monitoring between CaM (10 µM) and TRP channels in solutions with a Ca2+

concentration of 1 mM (labeled “3”) and without Ca2+ (labeled “#”).

Because of the custom-design microfluidic system, bio-sample solutions can be au-
tomatedly injected into the capillary, which acts as a bio-sample cell in the system for
measurements. It was easy to monitor in real-time the interaction between the targeted
biomolecule and the bio-receptor on the sensor surface. Therefore, our proposed plas-
monic TFBG, together with the microfluidic system, can not only be used for biomolecule
detection but also for interaction monitoring between biomolecules.

4. Conclusions

A plasmonic TFBG-based biosensor, in which the TRP channels were bonded onto the
metallic surface for acting as bio-receptors, was demonstrated for calmodulin detection
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in this work. Experimental results showed that the LOD of our biosensor was 0.44 nM,
and the operating time was 40 min. Additionally, our proposed sensor combined with a
microfluidic system can also be used for monitoring the interaction between CaM and TRP
channels in real-time. Our proposed plasmonic TFBG sensor, together with the custom-
designed microfluidic system, offers possibilities for practical biomolecule detection and
biomolecule interaction monitoring in the future, owing to its characteristics of fast re-
sponse, easy to manufacture, automatic control, and a microliter volume requirement for
the bio-sample solution.
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