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Humans are experts at face individuation. Although
previous work has identified a network of face-sensitive
regions and some of the temporal signatures of face
processing, as yet, we do not have a clear understanding
of how such face-sensitive regions support learning at
different time points. To study the joint spatio-temporal
neural basis of face learning, we trained subjects to
categorize two groups of novel faces and recorded their
neural responses using magnetoencephalography (MEG)
throughout learning. A regression analysis of neural
responses in face-sensitive regions against behavioral
learning curves revealed significant correlations with
learning in the majority of the face-sensitive regions in
the face network, mostly between 150–250 ms, but also
after 300 ms. However, the effect was smaller in
nonventral regions (within the superior temporal areas
and prefrontal cortex) than that in the ventral regions
(within the inferior occipital gyri (IOG), midfusiform gyri
(mFUS) and anterior temporal lobes). A multivariate
discriminant analysis also revealed that IOG and mFUS,
which showed strong correlation effects with learning,
exhibited significant discriminability between the two
face categories at different time points both between
150–250 ms and after 300 ms. In contrast, the
nonventral face-sensitive regions, where correlation

effects with learning were smaller, did exhibit some
significant discriminability, but mainly after 300 ms. In
sum, our findings indicate that early and recurring
temporal components arising from ventral face-sensitive
regions are critically involved in learning new faces.

Introduction

Humans have extraordinary ability to recognize
object categories and specific items within such
categories. Nowhere is this ability more apparent than
in the domain of face identification, where humans,
almost universally, are capable of learning and
remembering thousands of individual human faces.
Irrespective of whether face processing mechanisms are
biologically hard-wired or not, and whether they are in
part or fully supported by domain-general learning
mechanisms, acquiring such visual skills depends
crucially on learning over our lifespans (Bruce &
Burton, 2002). Here we explore the neural basis of face
learning by investigating which brain regions, at what
temporal stages in face processing, exhibit changes in
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neural activity as observers learn new, never-before-
seen faces. Previous research in functional magnetic
resonance imaging (fMRI) has identified a spatial
network of brain regions, known as the ‘‘face network,’’
which underlies processing of faces at the individual
level (Gauthier et al., 2000; Haxby, Hoffman, &
Gobbini, 2000; Nestor, Plaut, & Behrmann, 2011). In
parallel, research using magnetoencephalography
(MEG) or electroencephalography (EEG) has identi-
fied a series of event-related temporal waveforms
related to face processing (Liu, Higuchi, Marantz, &
Kanwisher, 2000; Tanaka, Curran, Porterfield, &
Collins, 2006). However, we have a less than clear
picture of the spatio-temporal structure of the neural
activity subserving both face processing and face
learning. The research presented here studies the
temporal stages and spatial locations where neural
activity correlates with learning new faces as part of a
novel face categorization task. Particularly, we focus on
comparing the correlation with learning in the face-
sensitive brain regions along the ventral visual pathway
and in the higher order face-sensitive regions within the
superior temporal areas and the prefrontal cortex at
different temporal stages.

The face-sensitive regions comprise a ‘‘face net-
work,’’ typically identified using fMRI. Critically, these
brain regions at different spatial locations are hypoth-
esized to have different functional roles in face
processing (Ishai, 2008; Pyles, Verstynen, Schneider, &
Tarr, 2013). Figure 1 provides a visual illustration of
the network. The ventral regions, including the
‘‘occipital face area’’ in the inferior occipital gyrus
(IOG; Pitcher, Walsh, & Duchaine, 2011), the ‘‘fusi-
form face area’’ in the middle fusiform gyrus (mFUS;
Kanwisher, McDermott, & Chun, 1997), and an area in
the anterior inferior temporal lobe (aIT; Kriegeskorte,
Formisano, Sorger, & Goebel, 2007; Nestor, Vettel, &
Tarr, 2008; Rajimehr, Young, & Tootell, 2009), are
located along the posterior to anterior direction within
the ventral visual stream (Mishkin, Ungerleider, &
Macko, 1983). Notably, the ventral stream is hypoth-
esized to be hierarchically organized, featuring early to
late, lower level to higher level visual processing along
this same direction (DiCarlo & Cox, 2007). Under this
framework, IOG, mFUS, and aIT are also likely to
follow the ventral stream hierarchy in processing visual
features of faces, supporting face detection, categori-
zation, and individuation. Other regions that are
putatively part of the face network include posterior
superior temporal sulcus (STS), hypothesized to
process the social aspects of faces (e.g., expression and
gaze), and prefrontal regions in the inferior frontal
gyrus (IFG) and orbitofrontal cortex (OFC), hypoth-
esized to process the semantic or valence-related
aspects of faces (Ishai, 2008). These presumed functions
are supported by a rich fMRI literature on face

processing qua face processing; however, only a handful
of fMRI studies have examined the role of the face
network in face learning. For those studies, regions
including IOG, mFUS, and prefrontal cortex, as well as
hippocampus and basal ganglia have all been impli-
cated as being involved in learning to categorize new
faces (DeGutis & D’Esposito, 2007, 2009), but detailed
changes in dynamic cortical activity during learning
have not been described—primarily due to the inher-
ently poor temporal resolution of fMRI.

In this same vein, a second line of work using EEG, a
neuroimaging method characterized by high temporal
resolution, has identified several temporal waveforms
that are face-sensitive: The P100 component at 100 ms
after the stimulus onset appears to be associated with
face detection (Cauchoix, Barragan-Jason, Serre, &
Barbeau, 2014), the N170 peak at 170 ms is associated
with face detection and individuation1 (Campanella et
al., 2000; Cauchoix et al., 2014), and the N250
component at 250 ms (or later) is associated with facial
familiarity (Tanaka et al., 2006). Several studies have
also demonstrated that the face-sensitive waveforms at
170 ms, 200 ms, and �250 ms change in amplitude or
latency during learning new object categories (Rossion,
Kung, & Tarr, 2004), learning a face-gender discrim-
ination task (Su, Tan, & Fang, 2013), and learning new
faces (Itz, Schweinberger, Schulz, & Kaufmann, 2014).
Additionally, differences in the responses associated
with familiar and novel faces have been reported for
both the N170 and N250 (Barragan-Jason, Cauchoix,
& Barbeau, 2015; Tanaka et al., 2006; Zheng,
Mondloch, & Segalowitz, 2012). However, because the
spatial resolution of EEG is inherently limited,
previous studies have rarely spatially related these
particular waveforms to specific face-sensitive brain
regions (however, for some evidence on possible
sources, see Itier & Taylor, 2004, and also Rossion &
Jacques, 2011).

Given the inherent (and different) limitations of both
fMRI and EEG, it remains challenging to achieve both
high spatial and temporal resolutions within either of
these noninvasive neuroimaging techniques. In con-
trast, MEG has a temporal resolution commensurate
with EEG, as high as the millisecond level, but has
better potential than EEG for spatially localizing
source signals in the brain. As such, MEG is one of the
few neuroimaging tools that allow one to study the
spatio-temporal neural dynamics of face processing and
learning. Although we acknowledge that the spatial
resolution of MEG is lower than that of fMRI, one can
reliably infer the spatial locations of neural signals
given that cortical activity in the brain space (known as
the source space) can be reasonably well reconstructed
from the recordings in the sensor space. Interestingly,
despite this potential advantage for MEG, the previous
MEG studies on face processing that have identified the
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face-related M1 and M170 components (corresponding
to the P100 and N170) have not focused on a joint
spatio-temporal model (Liu et al., 2000). Indeed, a
significant advantage of our present study is that we
provide a rigorous, temporally fine-grained analysis of
the localized neural activity tracking across the entire,
continuous learning process. More specifically, we
interrogate how both spatial and temporal neural
activity within the face network changes as a conse-
quence of learning, exploiting not only MEG’s inherent
advantages, but also applying more robust source
localization methods developed in our lab (STFT-R;
Yang, Tarr, & Kass, 2016). To explore the effect of
learning new faces and new face categories, we trained
our subjects to distinguish between two categories of
computer-generated novel faces with trial-by-trial
feedback, driving them to learn specific features of
individual faces. We then examined the degree to which
cortical responses, as measured by MEG throughout
learning, were correlated with their learning as reflected
in their increasing behavioral accuracy.

As mentioned, the key to spatially localizing neural
activity using MEG is the reconstruction of cortical
activity from MEG sensor recordings, termed as source
localization. This is a processing pipeline that solves the

inverse of a linear projection (determined by Maxwell
equations) from the source space to the sensor space
(Hamalainen, Hari, Ilmoniemi, Knuutila, & Lounas-
maa, 1993). However, because there are many more
possible source locations than sensors, the inverse
problem is mathematically underconstrained and suf-
fers from uncertainty in the reconstructed solutions.
Therefore, it is necessary to introduce additional
constraints in source localization to obtain reasonable
solutions with less uncertainty. Here, in addition to the
commonly used source localization method based on
penalizing the squared L2 norms of source activity, we
also relied on spatial constraints derived from the well-
established locations of face-sensitive brain regions
(spatial constraints better defined for face processing
than for many other visual domains), and, as already
mentioned, applied the novel STFT-R source localiza-
tion method to study the correlation of neural activity
with learning in the source space. This approach
exploits a short-time Fourier transform regression
model, which uses sparse time-frequency components
to represent dynamic source activity and embeds
regression of these components on behavioral accuracy
within the source localization step, using spatial
constraints that emphasize the face-sensitive regions

Figure 1. Illustration of the ‘‘face network’’ in one example subject (Subject 8) in this experiment. The yellow areas are face-sensitive

regions identified in an MEG functional localizer session (see Methods and Results); some regions in the face network were not

identified bilaterally in this subject. Although the yellow regions were defined using MEG data, they corresponded to the anatomical

locations of the regions in the typical fMRI literature. The transparently colored ovals enclose the ventral regions (blue), the STS

(yellow-green), and the frontal regions (green).
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(for more details, see Yang et al., 2016). One important
consequence of our method is that the regression
coefficients at different locations and time points,
which describe the correlation with learning, are
temporally smooth and more interpretable than those
derived using more traditional source localization
analysis.

As a preview of our main results, significant
correlations with behavioral learning were identified in
the majority of the face-sensitive regions, mostly
between 150–250 ms, but also after 300 ms. However,
the effect was smaller in nonventral regions (in the
superior temporal areas and prefrontal cortex) than
that in the ventral regions (IOG, mFUS, and aIT). To
further explore whether these face-sensitive regions also
encode information for face individuation in the same
time windows, we computed a spatio-temporal profile
of multivariate discriminability between the two face
categories. Although the majority of the face-sensitive
regions did exhibit significant discriminability after 300
ms, before 300 ms discriminability was detected mainly
in the early and midlevel ventral regions (IOG and
mFUS)—the same regions that showed strong learning
effects. Overall, these results suggest that early and
recurring temporal components arising from ventral
face-sensitive regions are critically involved in learning
new faces. However, tempering the specificity of these
conclusions, it is possible that face learning may recruit
neural mechanisms that support general perceptual
learning (e.g., novel object learning). Indeed, in earlier
work, we found that similar correlation effects with
behavioral learning arise in learning nonface objects
(Xu, D’Lauro, Pyles, Kass, & Tarr, 2013). However, in
this earlier study, identifying the spatio-temporal
components associated with the learning process was
handicapped by our lack of a priori predictions
regarding the relevant brain regions. As such, one of
our motivations for moving from generic novel objects
to novel faces was the well-specified functional spatial
network associated with face processing (i.e., Figure 1).
Building our new study in the context of this well-
established set of face-selective regions allowed us to
both better constrain our source localization methods
and make stronger inferences about the neural basis of
learning, thereby increasing our power with respect to
capturing both the spatial and temporal structure of the
face learning process.

Methods

Subjects

Ten right-handed adults (six females and four
males), aged 18 to 35, participated in the experiment.

All subjects gave written informed consent and were
financially compensated for their participation. All
procedures followed the principles in the Declaration of
Helsinki and were approved by the Institutional
Review Boards of Carnegie Mellon University and the
University of Pittsburgh.

Stimulus design

Two novel face categories (Categories A and B) were
created in a fully parametrized face space. Each
category included 364 face images that were variations
of a category prototype face. The two prototype faces
were identical except for the eye size and mouth width.
These two dimensions were systematically varied in a
grid-based design space to yield a distinct category
boundary (Figure 2a). In general, faces in Category A
had larger eyes and smaller mouths than faces in
Category B. All face images were rendered in 3D and
generated using the FaceGen software (http://www.
facegen.com/index.htm).

Experimental procedures

The MEG experiment involved a continuous learn-
ing task where subjects were asked to distinguish
between the two face categories; this differentiating was
initially based on trial-and-error, but with feedback
reinforcing learning in each trial. The experimental
session consisted of 728 trials where each face exemplar
image was shown in one trial. The session was divided
into four 182-trial blocks separated by self-paced
breaks to reduce fatigue. An additional 30 s break was
introduced in the middle of each block to allow for eye
blinks. Experimental control and stimulus presentation
were implemented in E-Prime (Psychology Software
Tools, Pittsburgh, PA).

The trial structure is illustrated in Figure 2b. Each
trial involved a category verification task in which a
machine-generated speaker articulated either the letter
‘‘A’’ or ‘‘B’’ over a 630 ms interval while a fixation cross
was shown in the center of the screen. Following a
jittered time interval of 120–150 ms, an exemplar face
from either Category A or B was projected (by a
projector) in the center of the screen for 900 ms,
subtending a visual angle of 68 vertically and horizon-
tally. During the presentation, the words ‘‘yes’’ and
‘‘no’’ appeared, respectively, in the left and right
corners of the screen, and the subject was instructed to
press the corresponding buttons on the left or right
glove pads, responding with either ‘‘yes’’ or ‘‘no’’ to
indicate whether the presented face matched the spoken
face category. For each subject, the sequence of audio
category labels and the sequence of face exemplars were
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randomized independently; the number of ‘‘A’’s and
‘‘B’’s in both the audio sequence and the true category
label sequence were maintained to be equal within
every 20 trials. In addition, the left or right positions of
‘‘yes’’ and ‘‘no’’ responses were counterbalanced across
subjects. This design dissociated the particular left or
right motor responses from the true category labels of
individual faces. Following the presentation of the face,
a fixation cross was shown across a jittered time
interval of 100–120 ms. Feedback was then provided in
the form of centered text for 750 ms, informing the
subject as to whether their response was correct,
incorrect, or failed to occur within the given deadline
(respectively, ‘‘correct,’’ ‘‘wrong,’’ or ‘‘too slow’’).
Feedback was followed by an intertrial-interval of 400
ms leading to the next trial. To encourage learning, a
small incremental reward scheme was used in which
subjects additionally received $3, $5, or $7 if their

average categorization accuracy in Blocks 2, 3, and 4
exceeded 70%, 80%, and 90% respectively.

To define spatial face-sensitive regions (via source
localization) for each subject, a separate functional
localizer was run during the MEG session. Similar to
fMRI functional localizers (Grill-Spector, Kourtzi, &
Kanwisher, 2001; Pyles et al., 2013), subjects viewed
color images of four categories: faces, everyday objects,
houses, and scrambled objects, and performed a one-
back task in which they responded whenever the same
image was repeated across two sequential presenta-
tions. Images subtended a visual angle of 68 vertically
and horizontally. Each category was presented in 16-
trial groups, and each trial included an image from the
current category, presented for 800 ms with a 200 ms
intertrial-interval. A run consisted of 12 groups (3
groups 3 4 category conditions) with 6 s fixations
between groups. Each subject participated in 4 runs,
yielding 192 trials per a category.

Figure 2. Stimulus design and trial structure. (a) Positions of the face stimuli in the two-dimensional feature space (eye size and

mouth width), with three exemplars of each category. The prototypes of Category A and B are shown in colored ovals. (b)

Experimental trial structure.
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Data acquisition and preprocessing

MEG

MEG signals were recorded using a 306-channel
whole-head MEG system (Elekta Neuromag, Helsinki,
Finland) at the Brain Mapping Center at the University
of Pittsburgh, while subjects performed the face
category learning task and the one-back functional
localizer task in an electromagnetically shielded room.
The MEG system had 102 triplets, each consisting of a
magnetometer and two perpendicular gradiometers.
The data were acquired at 1 kHz, high-pass filtered at
0.1 Hz and low-pass filtered at 330 Hz. Electrooculo-
gram (EOG) was monitored by recording the differ-
ential electric potentials above and below the left eye,
and lateral to both eyes. Electrocardiography (ECG)
was recorded by placing two additional electrodes
above the chest. The EOG and ECG recordings
captured eye blinks and heartbeats, so that these
artifacts could be removed from the MEG recordings
afterwards. Four head position indicator coils were
placed on the subject’s scalp to record the position of
the head in relation to the MEG helmet. Empty room
MEG data were also recorded in the same session, and
used to estimate the covariance matrix of the sensor
noise.

The MEG data in the face category learning
experiment were preprocessed using MNE/MNE-py-
thon (Gramfort et al., 2013, 2014) in the following
steps. (a) The raw data were filtered with a 1–110 Hz
bandpass filter, and then with a notch filter at 60 Hz to
reduce the power-line interference. (b) Temporal signal-
space separation (tSSS; Taulu & Simola, 2006),
implemented in the MaxFilter software provided by
Elekta, was applied to the filtered data. This step
further removed the noise from outside the MEG
helmet. (c) Independent component analysis (ICA) was
used to decompose the MEG data into multiple
components, and the components that were highly
correlated with eye blinks and heartbeats recorded by
EOG and ECG were removed, via a default script in
MNE-python. The ECG and EOG data for one subject
(s4) were corrupted; therefore the ICA artifact removal
was not run for s4. (d) For each trial in the face
category learning experiment, the MEG data in�140–
560 ms (with 0 being the stimulus onset) were used in
the analyses. The signal space projection (SSP) method
in MNE/MNE-python was further applied, where a
low-dimensional linear subspace characterizing the
empty room noise was constructed, and the projection
onto this subspace was removed from the MEG data.
Finally, for each sensor, trial, and subject, the mean of
the baseline time window (�140 ms to �40 ms) was
subtracted at each time point.2

For the regression analysis below, the trial-by-trial
MEG data were down-sampled at a 100-Hz sampling
rate to reduce computational cost; for the discriminant

analysis below, the trial-by-trial MEG data were
smoothed with a 50-ms Hanning window to further
reduce high-frequency noise, and then down-sampled
at the 100-Hz sampling rate.

The preprocessing of the functional localizer MEG
data differed from the above procedure in the following
ways:3 (a) The data were bandpass-filtered at 0.1 to 50
Hz; (b) tSSS was not applied; (c) principal component
analysis instead of ICA was used to remove artifacts
such as eye blinks or movements; (d) any trials that
showed EOG or ECG activities that were three
standard deviations away from the trial mean at any
time point were discarded; and (e) the baseline window
was defined as�120 to 0 ms, and the data were binned
into 10 ms windows instead of down-sampling.

MRI

A structural magnetic resonance imaging (MRI)
scan was acquired for each subject at the Scientific
Imaging and Brain Research Center at Carnegie
Mellon University (Siemens Verio 3T, T1� weighted
MPRAGE sequence, 1 3 1 3 1 mm, 176 sagittal slices,
TR¼ 2300 ms, TI ¼ 900 ms, FA ¼ 98, GRAPPA ¼ 2).
The cortical surface was reconstructed using Freesurfer
(http://surfer.nmr.mgh.harvard.edu/; Dale, Fischl, &
Sereno, 1999). The source space was defined as 6,000 to
7,000 discrete source points almost evenly distributed
on the bihemispheric cortical surfaces, with 7-mm
separation on average, using the MNE/MNE-python
software. Each source point represented a current
dipole (due to local neural activity) that was perpen-
dicular to the cortical surface.

Regions of interest (ROIs)

The face-sensitive regions (regions of interest or
ROIs) were defined in the source space using the
functional localizer MEG data for each subject. First, a
time window of interest was defined in the following
way. Trial-by-trial MEG sensor data were separated
based on the stimulus category, face, or object. PCA-
Hotelling tests (described below) preserving 99%
variance were run on the data from 102 magnetometer
sensors, binned for every 10 ms from 0–400 ms, to
examine whether the mean multivariate responses to
faces and to objects were statistically different in each
bin. A window with 20 ms on both sides flanking
around the lowest p values within 100–300 ms were
defined as the time window of interest for each
subject—these windows were at 180 ms on average,
which corresponded to the M/N170. Secondly, for each
trial and for each of the 306 sensors, the MEG data
within the time window of interest were averaged, such
that each trial was represented by a 3063 1 vector. The
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minimum-norm estimate (MNE; Hamalainen & Ilmo-
niemi, 1994) of the source activity was obtained using
these vectors. Thirdly, a ‘‘searchlight’’ Hotelling’s T 2

test (see below) was run on the source activity for each
source point and its two closest neighbors. The p values
of these tests reflected how much the three grouped
source points discriminated images of faces and objects.
To focus on the face-sensitive regions commonly
reported in the fMRI literature, the searchlight
procedure was anatomically bounded in regions of
fusiform, lateraloccipital, superior temporal, inferior
frontal, and orbitofrontal gyri as defined by Free-
surfer’s parcellation. Finally, a threshold of p , 0.001
was applied to retrieve those contiguous clusters that
showed significant discriminability between faces and
objects. Isolated small groups of source points were
manually removed. This procedure yielded 11 ROIs
within the bilateral inferior occipital gyri (IOG),
bilateral middle fusiform (mFUS) gyri, bilateral ante-
rior inferior temporal lobes (aIT), bilateral superior
temporal areas (ST), bilateral inferior frontal gyri
(IFG), and the right orbitofrontal cortex (OFC). The
identified superior temporal regions (ST) were roughly
within the superior temporal sulci or the superior
temporal gyri, which were in the vicinity of the face-
sensitive area in the posterior superior temporal sulcus
(STS) in the literature (Ishai, 2008). See Figure 4 and
Figure 7 for illustration of the ROIs in one subject
(Subject 8). See Table 1 for details of the ROIs in each
subject.

Behavioral learning curves

To better characterize the dynamics of behavioral
learning during the experiment, we derived behavioral
learning curves for each subject individually. Specifi-
cally, during each subject’s learning session, we
measured a binary behavioral response after each trial
(1 for ‘‘correct’’ and 0 for ‘‘incorrect/too slow’’). These

binary observations can be viewed as Bernoulli
outcomes from an underlying real-valued accuracy
rate, which varied with the trial index. To characterize
the behavioral accuracy rate as a function of the trial
index, we expressed the rate as a linear combination of
Legendre polynomials of order 5. Using this frame-
work, a logistic regression model was used to estimate
the linear coefficients for each subject, and thus to
reconstruct the function, which we refer to as the
behavioral learning curve. Observations from all the
728 trials were used. Individual subjects may have
different learning rates for the two face categories;
thereby interaction terms between face categories and
the Legendre basis were also included in the design
matrix of the logistic regression. As a consequence of
this interaction, separate learning curves were estimat-
ed for each category. Note that one subject (Subject 9)
showed nearly flat behavioral learning curves for both
categories (i.e., failed to learn) and was therefore
excluded from further data analysis.

Source localization

According to Maxwell’s equations, at each time
point, the MEG sensor data can be approximated by a
linear transformation of the source signals plus sensor
noise (Hamalainen et al., 1993). The source localization
problem is essentially solving the inverse of this linear
transformation. In this experiment, the linear operator
that projected source signals to the sensor space (also
known as the forward matrix) for each subject was
computed using the boundary element model in the
MNE software, according to the position and shape of
the head and the positions of the MEG sensors.
Because the head position was recorded at the
beginning of each half-block, we computed a forward
matrix for each of the eight half-blocks, to correct for
run-to-run head movement. The covariance of the
sensor noise was estimated from empty room record-

IOG_L IOG_R mFUS_L mFUS_R aIT_L aIT_R ST_L ST_R IFG_L IFG_R OFC_R

Subject 1 20 18 13 68 5 17 0 10 7 7 3

Subject 2 3 20 0 38 0 0 0 9 3 3 3

Subject 3 20 21 44 50 6 0 5 3 19 0 0

Subject 4 20 19 54 55 0 0 17 12 3 10 0

Subject 5 18 14 25 43 7 0 3 0 16 0 0

Subject 6 0 0 40 19 17 0 9 0 11 4 0

Subject 7 0 20 46 28 0 9 0 14 0 6 0

Subject 8 14 23 37 47 5 12 6 18 0 12 3

Subject 10 19 14 40 19 0 0 0 13 7 19 0

nsubj 7 8 8 9 5 3 5 7 7 7 3

Table 1. Number of source points in each face-sensitive ROI for each subject. Notes: ‘‘0’’ indicates that the ROI was absent in the
corresponding subject. The suffixes ‘‘_L’’ and ‘‘_R’’ indicate that the ROI was in the left or the right hemisphere. The nsubj in the last
row indicates the number of subjects for whom the ROI was found.
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ings, and used for the source localization methods
below.

The minimum norm estimate (MNE, Hamalainen &
Ilmoniemi, 1994), which constrains the inverse problem
by penalizing the sum of squares (i.e., squared L2

norms) of the source solution, was used to obtain the
source estimates in the functional localizer experiment
to define the face-sensitive ROIs. In the regression and
discriminant analyses of the face category learning
experiment (discussed below), a variation of the MNE,
the dynamic statistical parametric mapping (dSPM)
method (Dale et al., 2000), was used to estimate the
source space activity for each trial separately. As an
improvement of the MNE method, dSPM normalizes
the estimated source activities to dimensionless vari-
ables, and thus reduces the bias towards superficial
source points in MNE. Both MNE and dSPM were
implemented in MNE/MNE-python with the regular-
ization parameter set to 1.0.

The dSPM method is easy to implement and widely
used. However, it does not emphasize the face-sensitive
ROIs, nor does it encourage temporal smoothness.
Moreover, our goal was to investigate how much trial-
by-trial neural responses in the source space were
correlated with behavioral learning curves; with dSPM
solutions, one needs to do an additional regression step
to quantify the correlation. Possible localization errors
in the dSPM solutions may yield inaccurate regression
results. In this context, for the source-space regression
analysis, we also used our newly developed short-time
Fourier transform regression model (STFT-R in Yang
et al., 2016). STFT-R uses a time-frequency decompo-
sition to represent source activities and embeds a linear
regression of each time-frequency component against
trial-by-trial regressors (i.e., the behavioral learning
curve here). In this one-step framework, the regression
coefficients are solved in the source localization step,
with constraints that emphasize the ROIs and encour-
age sparsity over the time-frequency components for
each source point. Due to such sparsity, the estimated
regression coefficients (transformed back to the time
domain) are temporally smooth and concentrated
around time windows of interest (e.g., time windows
after the baseline window); therefore, they are easier to
interpret than those derived from MNE/dSPM solu-
tions. Details of STFT-R are described in Yang et al.
(2016), and the Python code is available at https://
github.com/YingYang/STFT_R_git_repo. For the
short-time Fourier transform in our current experi-
ment, 160-ms time windows and 40-ms steps were used,
resulting in frequencies from 0 to 50 Hz, spaced by 6.25
Hz, according to the 100-Hz sampling rate. The MEG
data were split into two halves (odd and even trials).
The first half was used in learning the sparse structures
in STFT-R; the second half was used to obtain
estimates of the regression coefficients, constrained on

the sparse structure, with penalization of their squared
L2 norms to reduce the biases generated by the sparsity
constraints. The penalization parameters were deter-
mined via a two-fold cross-validation, by minimizing
the mean squared errors of the predicted sensor data.

Regression analysis

For sensor space regression in the time domain, we
ran, at each time point, for each sensor and each
subject, a separate regression against the behavioral
learning curve using trials in each face category. With
only one regressor in this analysis, we fitted two
coefficients—a slope and an intercept. Interested in the
correlation with the behavioral learning curve, we
focused on the slope coefficient. Significantly nonzero
slope coefficients indicate significant correlations be-
tween the MEG data and the behavioral learning curve.
P values of two-sided t tests of the slope coefficients
were obtained, indicating the degree to which the
coefficients were significantly different from zero. We
took the negative logarithms with base 10 of these p
values,�log10(p), as statistics and call them correlation
significance hereafter.

For regression analyses in the face-sensitive ROIs in
the source space, for trials corresponding to each face
category separately, the STFT-R model produced
regression coefficients of the time-frequency compo-
nents of each source point. Inverse STFT was used to
transform the slope coefficients in the time-frequency
domain to slope coefficients at each time point (which
we call ‘‘slope coefficient time series’’) for each source
point. A permutation test, where the trial correspon-
dence with the behavioral learning curve was randomly
permuted, was used to test whether the slope coeffi-
cients were significantly nonzero, for each face category
and each subject. This permutation was only applied in
the second half of the split trials. That is, in each
permutation, the coefficients were obtained with
penalization of their squared L2 norms, on the
permuted second half of the trials, but constrained on
the nonzero structure learned from first half trials of
the original data. Note that each source point
represented an electric current dipole perpendicular to
the cortical surface; signs of the source activity only
indicated the directions of the dipoles. In other words,
positive and negative slope coefficients with the same
magnitudes were equally meaningful. Therefore, when
summarizing the coefficients in an ROI, we averaged
the squares of the coefficients across source points in
the ROI. The p value of the permutation test was
defined as the proportion of permutations where such
an averaged square was greater than the nonpermuted
counterpart. Again, �log10(p)s were used as the
summarizing statistics, reflecting the significance of
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correlation with learning. Similarly, for the dSPM
solutions corresponding to each face category, we ran a
regression for each source point at each time point
within the ROIs, and obtained�log10(p)s using the
same permutation tests. Note that there was no data-
split for the dSPM solutions, so the number of trials
was twice of that in the STFT-R.

Discriminant analysis

To test whether multivariate neural responses from
multiple sensors or source points were able to
discriminate between the two face categories, Hotel-
ling’s two-sample T 2 were run on the multivariate
responses at each time point, for the smoothed data.
Let yr � Rn be the response of n sensors or source
points at a certain time point, in the rth trial. Let A and
B denote the set of trials corresponding to Categories A
and B, and qA, qB be the number of trials in each
category. The Hotelling’s T 2 was computed in the
following way. First, the sample mean for each
category was obtained:

�yA ¼
1

qA

X

r2A
yr �yB ¼

1

qB

X

r2B
yr

Secondly, a common covariance matrix for both
categories was estimated as

W ¼
P

r2Aðyr � �yAÞðyr � �yAÞT þ
P

i2Bðyr � �yBÞð yr � �yBÞT
qA þ qB � 2

Thirdly, the test statistic, T-squared, was defined as

t2 ¼ ð�yA � �yBÞT W�1ð�yA � �yBÞ
1=qA þ 1=qB

Under the null hypothesis that the means of the two
categories were the same, t2 was related to an F
distribution:

qA þ qb � n� 1

nðqA þ qB � 2Þ t
2 ;Fðn; qA þ qB � n� 1Þ

from which p values were obtained. Similarly as in the
regression analysis, negative logarithms with base 10 of
the p values,�log10(p) of the Hotelling’s T 2 tests, which
we term discriminability, were used as statistics to
reflect whether neural responses were able to distin-
guish between the two face categories.

We applied the tests above to both sensor recordings
and the dSPM source solutions within each ROI, at
each time point. Note that for source-space analysis,
this is a two-step approach. Presumably, a one-step
approach combining discriminability tests and source
localization will yield more accurate results. However,
given that such models have not been developed, we

used the two-step approach with dSPM solutions here.
For a large number of sensors or source points, there
might not be a sufficient number of trials to estimate
the covariance matrix. Prior to applying Hotelling’s T 2

tests, two different approaches to dimensionality
reduction were separately applied to source space
analysis and sensor space analysis. First, for source
points within an ROI, whose responses were often
highly correlated, principal component analysis was
used discarding the category labels, and then only the
projections onto the first several principal components
preserving 99% variance were used in the Hotelling’s
T 2 tests. We call this approach PCA-Hotelling.
Second, in sensor space, we observed that the PCA-
Hotelling procedure did not perform well on the 306-
dimensional sensor data, possibly because the number
of dimensions required to capture 99% variance was
still large compared with the number of trials. Instead,
we used a different approach referred to as split-
Hotelling: The trials were split into two parts, and a
univariate two-sample t test, which examined whether
the sensor responses for the two categories were
different, was run on each sensor for the first half of the
trials. The top 20 sensors with the lowest p values were
selected. For the second half of the trials, Hotelling’s
T 2 test was only applied on the selected sensors, where
the multivariate sensor data were normalized (z scored)
such that each dimension had the same variance. This
split was independently run multiple times, and
negative logarithms with base 10 of the p values,
�log10(p), of the splits were averaged as the final
statistics.

Tests of aggregated statistics across subjects

After obtaining the statistics above (correlation
significance and discriminability) for individual sub-
jects, we ran hypothesis tests at group level. Below, we
first introduce how confidence intervals of statistics
averaged across subjects were computed, and then
introduce two different group-level tests. The first,
permutation-excursion test was applied when statistics
from all subjects were available. The second, Fisher’s
method, was applied in source space analysis, where
not every ROI was detected in every subject. This
method is good at detecting effects when the number of
subjects is small, which was the case for several ROIs
that were identified in only a few subjects (see the last
row of Table 1 for aIT_L, aIT_R, ST_L, and OFC_R).

Percentile confidence intervals

The statistics such as �log10(p) obtained from the
analyses above were primarily time series. To obtain
group-level statistics at each time point, we averaged
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these time series across subjects. To visualize the
uncertainty of the average, bootstrapping—random
resampling of the time series at the subject level with
replacement—was used, and percentile confidence
intervals (Wasserman, 2010) were obtained.

Permutation-excursion tests

When examining whether time series of statistics are
significantly different from the null hypothesis, it is
necessary to correct for multiple comparisons across
different time points. Here, permutation-excursion tests
(Maris & Oostenveld, 2007; Xu, Sudre, Wang, Weber,
& Kass, 2011), were used to control the family-wise
error rate and obtain a global p value for time windows.
In a one-sided test to examine whether some statistics
are significantly larger than the null, we first identify
clusters of continuous time points where the statistics
are above a threshold, and then take the sum within
each of these clusters. Similarly, in each permutation,
the statistics of permuted data are thresholded, and
summed for each of the detected clusters. The global p
value for a cluster in the original, nonpermuted case is
then defined as the proportion of permutations, where
the largest summed statistics among all detected
clusters is greater than the summed statistics in that
cluster from the nonpermuted data.

In the regression and discriminant analyses in the
sensor space, we tested whether the averaged�log10(p)
time series across subjects were significantly greater
than baseline. This was accomplished by subtracting
the averaged�log10(p) across time points in the
baseline window (�140 to �40 ms) from the�log10(p)
time series, individually for each subject, and a t test
was used to examine if the group means of these
differences were significantly above zero at any time
windows. Here the testing statistics for the excursion
were the t statistics across subjects at each time point,
and each permutation was implemented by assigning a
random sign to the difference time series for each
subject. This test, which we refer to as permutation-
excursion t test hereafter, was implemented in MNE-
python, where the number of permutations was set to
1024, and the threshold of the t statistics was equivalent
to an uncorrected p � 0.05.

Fisher’s method

For each ROI in the source space, we used Fisher’s
method to combine p values from regression analysis or
discriminant analysis across individual subjects. Let
{pi}, i¼ 1 . . ., K denote p values of K independent tests
(in K subjects). Fisher’s method tests against the
hypothesis that for each individual subject the null
hypothesis is true. Under the null, �2

PK
i¼1 log pi has a

v22K distribution with 2K degrees of freedom, and a

combined p value is obtained based on the v22K null
distribution. As the individual p values were obtained
for each time point, Fisher’s method was applied for
each time point as well. Subsequently, to correct for
multiple comparisons at all time points and all ROIs,
we applied Bonferroni criterion to control the family-
wise error rate. Considering such correction may be
overly conservative, we also applied the Benjamini-
Hochberg-Yekutieli procedure, which controlled the
false discovery rate under any dependency structure of
the combined p values at different time points and
ROIs (see theorem 1.3 in Benjamini & Yekutieli, 2001
and Genovese, Lazar, & Nichols, 2002).

Results

We first present estimated behavioral learning
curves; then, in the sensor space and in the source space
(in the face-sensitive ROIs), we connect behavioral
learning curves to changes in neural activity over time,
thereby revealing the neural correlates of learning.
Finally, we present a complementary discriminant
analysis both in the sensor space and in the face-
sensitive ROIs, in order to connect the patterns of
correlation with learning to the patterns of discrimi-
nability between the two face categories.

Fitting behavioral learning curves

As discussed, one subject showed no evidence of
learning and was excluded from further analyses. In
contrast, all nine other subjects learned the face
categorization task successfully. Based on the trial-by-
trial behavioral responses (‘‘correct’’ or ‘‘incorrect/too
slow’’), we estimated the behavioral learning curves for
each subject using a logistic regression on Legendre
polynomial basis functions. A face category factor was
also included in the regression in order to fit the
learning curves of the two categories separately. Figure
3a shows the learning curve first averaged across the
two categories, then averaged across the nine included
subjects. The blue band shows 95% confidence
intervals (CI 95%), bootstrapped at subject-level, with
Bonferroni correction for 728 trials, i.e., the point-wise
confidence range covers an interval of (2.5%/728, 1–
2.5.%/728). The averaged accuracy rose from near 50%
(chance) to about 80% in the first 500 trials. Since the
learning curves were steeper in the earlier trials, we used
only the first 500 trials in the following regression
analysis to estimate learning effects. Figure S1 in the
supplementary materials shows the fitted curves for
each face category and each individual subject. All nine
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subjects showed increasing trends and reached at least
around 70% accuracy near the 500th trials.

Identifying the neural correlates of learning

To investigate the neural correlates of learning, we
ran regression of trial-by-trial data against behavioral
learning curves, first in the MEG sensor space, and
then in the source space within the face-sensitive ROIs.
The sensor space results, which do not depend on
solutions to the source localization problem, can
roughly demonstrate the temporal profile of correlation
with learning, but not detailed spatial localization. In
contrast, the source space results provide higher spatial
resolution and allow us to compare the learning profiles
in different ROIs within the face network.4, 5

Sensor space analysis

To identify the neural correlates of learning in MEG
sensor recordings, we first regressed sensor data against
the learning curves for each subject, which are shown in
Figure S1. The regression was run for each sensor at
each time point. Observing that for some subjects the
learning curves might be different between the two face
categories, we ran the regression for the two categories
separately. For example, only trials in Category A were
used in the regression against the learning curve for
Category A. Since the learning curves were steeper at

the beginning, we only used the first 250 trials for each
category (500 trials in total). To quantify the signifi-
cance of nonzero correlations between the MEG signals
and behavioral learning curves, we computed the p
values of the regression slope coefficients, and used
�log10(p)s (correlation significance) as statistics to
reflect the strength of the correlation effect with
learning.

To visualize the overall correlation effect across
sensors, we averaged the correlation significance across
both face categories and then across all 306 sensors for
each subject, resulting in nine time series of correlation
significance for nine subjects. Figure 3b shows the
average of these time series across subjects, as well as
95% CI, bootstrapped at the subject-level, with
Bonferroni correction for 71 time points (i.e., the point-
wise confidence range covers an interval of (2.5%/71, 1–
2.5%/71)). Based on a right-sided permutation-excur-
sion t test against the baseline (�140 to �40 ms), we
observed a significant time window (p , 0.01) within
90–560 ms, in which the correlation effect was
predominant within 150–250 ms. To visualize which
sensors contributed to this effect, in Figure 3c we
plotted the correlation significance averaged across
categories and subjects, and then further averaged over
60 ms windows centering at labeled time points on
topology maps of sensors, viewed from the top of the
MEG helmet. Again, we observed a high correlation
effect with learning roughly within 150–250 ms, and
this effect was larger in the posterior sensors and the

Figure 3. Regression against the behavioral learning curves in the sensor space. (a) The overall learning curve averaged across two

categories and across nine subjects. The blue band shows 95% CI. (b) The correlation significance,�log10(p) of the regression analysis,

averaged across all 306 sensors and two face categories, further averaged across subjects. The blue band shows 95% CI; the red area

indicates a window where the group average were significantly higher than the baseline (�140 to�40 ms), with the corrected p value

marked (right sided permutation-excursion t test, nine subjects). (c) Heat maps of averaged correlation significance,�log10(p) of the
regression analysis, across both face categories and all subjects, further averaged in 60 ms windows centering at the labeled time

points, on sensor topology maps viewed from the top of the helmet, with the upper end pointing to the anterior side.
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left and right temporal sensors, which are close to the
visual cortex in the occipital and temporal lobes.

Source space ROI analysis

The sensor space results demonstrated that the
neural activity measured by MEG was correlated with
behavioral learning. To spatially pinpoint the correla-
tion effect in the ROIs of the face network, we applied
the one-step STFT-R model for regression analysis in

the source space. Similarly to our sensor space analysis,
we only analyzed the first 250 trials for each category
(i.e., the first 500 trials in total), and because of the
data-split paradigm in STFT-R, the effective number of
trials we analyzed in each category was 125.

Additionally, we also ran a two-step regression
analysis—obtaining dSPM source solutions for each
trial and running regression afterwards, which is along
with the traditional pipeline of MEG source-space
analysis (e.g., as in Xu et al., 2013). Note that unlike the

Figure 4. Regression against the behavioral learning curves in the face-sensitive ROIs in source space using STFT-R. Each plot shows

�log10 of the combined p values across subjects for each ROI. The red solid lines indicate a significant threshold at level 0.05, with

Bonferroni correction for multiple comparisons (71 time points3 11 ROIs); the red dashdot lines indicate a threshold where the false

discovery rate was controlled at 0.05, by the Benjamini-Hochberg-Yekutieli procedure. The map of ROIs was from one example subject

(Subject 8). For this subject, the ST ROIs were not exactly in the superior temporal sulci but in the vicinity. Left IFG was absent in this

subject; the IFG_L plot only roughly points to an anatomical location in the left inferior frontal gyrus.

Journal of Vision (2017) 17(6):1, 1–23 Yang et al. 12



STFT-R model, the dSPM source localization did not
emphasize the face-sensitive ROIs, nor did it encourage
sparsity in the spatial and time-frequency domains; the
correlation effect identified by the two-step method
could be spatially more spread out and temporally less
smooth than that by STFT-R. Another difference was
that we were able to use all 250 trials for each category,
because there was no data split in the two-step method.

With both STFT-R and the two-step method, we
used permutation tests to examine whether the slope
coefficients in each ROI were nonzero: We averaged the
squares of slope coefficients across source points in
each ROI at each time point, and compared them with
permuted counterparts. Forty permutations of the trial
indices in the regressor (i.e., behavioral learning curves)
were run for each subject and each face category
independently. We used Fisher’s method to combine
the permutation p values between the two categories, at
each time point in each ROI of each subject. We
computed correlation significance, �log10 of the com-
bined p values, which indicate whether, for at least one
category, the slope coefficients were significantly
nonzero. Individual time series of correlation signifi-
cance by STFT-R are plotted in Figure S2 in the
supplementary materials. We then used Fisher’s meth-
od to further combine individual p values across
subjects for each ROI at each time point. Figure 4
shows the�log10 of these group-level p values by
STFT-R. The red solid lines indicate a significant
threshold at level 0.05, with Bonferroni correction for
multiple comparisons at 71 time points3 11 ROIs (781
comparisons in total); the red dashdot lines indicate a
threshold where the false discovery rate was controlled
at 0.05, by the Benjamini-Hochberg-Yekutieli proce-
dure.

From the STFT-R results in Figure 4, we observed
that in the ventral pathway, the�log10 of the combined
p values passed the Bonferroni threshold (red solid
lines) in the right IOG and bilateral mFUS in time
windows roughly within 150–250 ms, and in the right
mFUS in a later (after 300 ms) time window; these
results indicate that in these ROIs within the afore-
mentioned time windows, neural activity was signifi-
cantly correlated with behavioral learning, at least for
some of the subjects, where the family-wise error rate
was smaller than 0.05. Using a less conservative
threshold, where the false discovery rate was controlled
at 0.05 (red dashdot lines), we observed significant
correlations with learning in bilateral IOG, bilateral
mFUS and the left aIT in time windows roughly within
150–250 ms, and in IOG and mFUS in later (after 300
ms) time windows as well. However, with STFT-R, in
the nonventral ROIs (ST and the two prefrontal
regions, IFG and OFC), we did not observe significant
correlation with learning using either of the thresholds.

The �log10 of group-level p values by the two-step
method had a similar pattern as those by STFT-R, but
besides IOG, mFUS, and left aIT, other ROIs
including the right aIT, bilateral ST, and bilateral IFG
also demonstrated�log10(p)s above the Benjamini-
Hochberg-Yekutieli threshold at some time points
between 150–560 ms (see Figure S3 in the supplemen-
tary materials). It is worth noting that not detecting
significant time windows in an ROI does not rule out
the possibility that the ROI was correlated with
learning. It was also not surprising that the two
methods gave slightly different detection patterns. The
constraints of source localization were different; the
two-step method exploited twice as many trials; the
dSPM source localization in the two-step method

Figure 5. The averaged difference of correlation significance

between the nonventral group of ROIs (other) and the ventral

group of ROIs (ventral), using STFT-R. The blue band shows 95%

CI; the red area shows the significant time window from a two-

sided permutation-excursion t test on the nine subjects, with

the p value marked.

Figure 6. Discriminant analysis of the sensor data: averaged

�log10(p) across subjects in split-Hotelling tests over 728 trials.

The blue band shows 95% CI; the red area shows the significant

time window by the permutation-excursion t test, with the p

value marked.
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normalized the solutions for each source point, and
thus the source points were weighted differently from
that in STFT-R during the averaging of squared
coefficients within an ROI. Nevertheless, in both
Figure 4 by STFT-R and Figure S3 by the two-step
method, the�log10(p)s in the nonventral ROIs ap-
peared lower than those in the ventral ROIs. Therefore,
we further directly tested whether the correlation effect
with learning was smaller in the nonventral ROIs than
that in the ventral ROIs.

We merged the ventral ROIs (bilateral IOG, mFUS,
and aIT) into one group, and the nonventral ROIs

(bilateral ST, IFG, and the right OFC) into another
group. In this way, each subject had a merged ventral
group and a merged nonventral group; therefore, we
were able to use all nine subjects in the analysis for the
two groups of ROIs. Using STFT-R, we ran the
permutation tests for each merged group for each
individual subject in the same way as above, and took
the difference of the correlation significance (�log10 of
the combined p values for two categories) between the
nonventral group and the ventral group, at each time
point, for each subject. We applied permutation-
excursion t tests to examine whether the average of the

Figure 7. Discriminability analysis in face-sensitive ROIs. Each plot shows�log10 of combined p values across subjects for each ROI.

The green solid lines indicate a significant threshold at level 0.05, with Bonferroni correction for multiple comparisons (71 time points

3 11 ROIs); the green dashdot lines indicate a threshold where the false discovery rate was controlled at 0.05, by the Benjamini-

Hochberg-Yekutieli procedure. The map of ROIs is from Subject 8 (as in Figure 4).
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computed differences across subjects was nonzero at
certain time points, and found that the averaged
difference was significantly negative from roughly 170–
250 ms (Figure 5); that is, the correlation effects with
learning were significantly smaller (p , 0.05) in the
nonventral ROIs than in the ventral ROIs. In contrast,
we did not detect significant positive differences. Such a
direct comparison suggests that the correlation effect
with learning in the ventral ROIs was stronger than
that in the nonventral ROIs.

Discriminant analysis

In the analysis presented above, we localized the
neural correlates of learning in the majority of the
ROIs. The strongest effects were found in the ventral
ROIs, mainly within 150 to 250 ms, but also in later,
after 300-ms time windows in IOG and mFUS. As a
complementary analysis, we also examined whether
these ROIs encoded information for face categorization
in similar time windows. We obtained a spatio-
temporal profile to quantify how effectively each ROI
discriminated between the two face categories, and then
compared this discriminability profile with the learning
correlation profile. This discriminant analysis was run
on the MEG sensor data first, and then on the dSPM
source solutions in the ROIs, testing whether the neural
representations of the two face categories were
different. To achieve higher power in these tests, all 728
trials in the entire learning session were used.

Sensor space analysis

We ran the split-Hotelling tests on the 306-dimen-
sional sensor data at each time point and used�log10 of
p values of the tests to index the discriminability of the
neural activities. Figure 6 shows the averaged discrim-
inability across subjects, using all 728 trials. We tested
whether the averaged discriminability was greater than
the baseline (�140 to �40 ms), using the permutation-
excursion t test. We observed significant discrimina-
bility (p , 0.01) starting from about 140 ms and lasting
up to about 560 ms, which indicates that the MEG
signals carried information that discriminated between
the two categories beginning at about 140 ms after
stimulus onset. In contrast with the correlation
significance in the sensor space (Figure 3b), which had
a single peak near 200 ms, the discriminability depicted
in Figure 6 appeared to have multiple peaks, and was
stronger in a later time window after 300 ms. This
comparison in the temporal domain suggests that there
are both early and late temporal components related to
the neural representations of the two categories, and
the early component could be more correlated with
learning than the later component. However, more

detailed comparisons require directly contrasting the
spatio-temporal profiles of discriminability and learn-
ing effects; consequently, we move to source space in
the next analyses.

Source space ROI analysis

To obtain a spatio-temporal discriminability profile
for the face-sensitive ROIs, we applied the PCA-
Hotelling procedure to the dSPM source solutions in
each ROI using all 728 trials. The discriminability, at
each time point for each ROI in each subject, was
quantified by�log10 of the p values from the PCA-
Hotelling procedure and is plotted in Figure S4 in the
supplementary materials. We then used Fisher’s meth-
od to combine the PCA-Hotelling p values across
subjects at each time point and in each ROI, and
plotted the�log10 of the combined p values in Figure 7.
The green solid lines indicate a significant threshold at
level 0.05, with Bonferroni correction for multiple
comparisons (71 time points 3 11 ROIs); the green
dashdot lines indicate a threshold where the false
discovery rate was controlled at 0.05, by the Benjamini-
Hochberg-Yekutieli procedure.

In Figure 7, the majority of the ROIs showed
significant discriminability between categories. Only the
right aIT and right OFC did not pass the Bonferroni
threshold at any time windows, and only the right OFC
did not pass the Benjamini-Hochberg-Yekutieli
threshold for false discovery rate control. These results
indicate that neural signals in the majority of the ROIs
significantly discriminated between the two face cate-
gories for at least one subject. More interestingly, the
prefrontal regions (bilateral IFG) and the higher level
ventral region (bilateral aIT) only demonstrated the
significant discriminability in later (after 300 ms) time
windows. The bilateral ST also demonstrated a similar
pattern of late discriminability, although there ap-
peared to be some earlier (before 300 ms) time points
where the�log10(p) was close to the Benjamini-
Hochberg-Yekutieli threshold. In contrast to the ROIs
above, the lower and midlevel ROIs within the ventral
pathway exhibited a different pattern featuring both
early and late discriminability—bilateral IOG and
mFUS both exhibited late (after 300 ms) �log10(p)
above the Bonferroni threshold; moreover, in before
300 ms time windows, the left mFUS and bilateral IOG
exhibited�log10(p) above the Bonferroni threshold,
and the right mFUS exhibited�log10(p) above the less
conservative Benjamini-Hochberg-Yekutieli threshold
near 200 ms and 280 ms. In addition, the profile of
discriminability within ventral ROIs appears to be
consistent with the hypothesis that IOG, mFUS, and
aIT follow a lower to higher level hierarchical
organization, as the initial increases of discriminability
roughly demonstrated an early-to-late pattern along
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the IOG-mFUS-aIT direction, especially in the right
hemisphere.

Comparing the discriminability profile shown in
Figure 7 to the correlation profile with learning shown
in Figure 4, we note that the ventral ROIs that
exhibited earlier discriminability, that is, IOG and
mFUS, were also the ROIs that exhibited a strong
correlation effect with learning. Although the time
course of discriminability did not precisely align with
the time course of correlation with learning at
individual level (Figure S2 and Figure S4), the overall
colocalization suggests that these ventral ROIs—
known to process visual features of faces—seem likely
to underlie face learning, particularly during the early
processing window of 150–250 ms. In addition, it is
possible that IOG and mFUS are also involved in
learning during a later window of after 300 ms. In
contrast, nonventral regions of the face network
expressed facial category discriminability mostly after
300 ms and, moreover, had a less strong correlation
effect with learning than the ventral ROIs. In sum, our
results suggest that early and recurring temporal
components arising from ventral regions in the face
network are critically involved in learning new faces.

Discussion

Connections to previously identified temporal
signatures of face processing

In contrast to traditional EEG studies that focus on
event related potentials (ERPs), our analysis of MEG
sensor space data was not constrained to only the peaks
or latencies of specific event-related components.
Instead, we analyzed the correlations of neural activity
with learning across the entire 0–560-ms window
covering what might be construed as the outer bound
for the feed-forward perception of faces. Critically, this
reasonably broad time window does not preclude some
level of feedback in face processing. Using this
approach, we observed significant correlations with
face learning ranging from about 90 ms to 560 ms. The
effect of learning was most apparent from roughly 150
to 250 ms, which corresponds to both the M/N170 and
N250 time windows in the MEG/EEG literature. The
N250 component is often interpreted as an index of
familiarity (Barragan-Jason et al., 2015; Pierce et al.,
2011; Schweinberger, Huddy, & Burton, 2004; Tanaka
et al., 2006) or a temporal marker of general perceptual
learning (Krigolson, Pierce, Holroyd, & Tanaka, 2009;
Pierce et al., 2011; Xu et al., 2013). M/N170 is typically
construed as a component reflecting face detection and
individuation (Liu et al., 2000). Recently, changes in
both the M/N170 and the N250 components have been

reported in face-related learning tasks (Itz et al., 2014;
Su et al., 2013) and in experiments involving repeated
presentations of faces (Itier & Taylor, 2004). Barragan-
Jason et al., 2015 have also suggested facial familiarity
effects may rely on rapid face processing indexed by M/
N170, as well as later processing indexed by N250. Our
results support the involvement of both the M/N170
and the N250 in face learning, consistent with these
previous reports.

In our complementary multivariate discriminant
analysis, we observed that MEG sensor data signifi-
cantly discriminated between the two face categories as
early as 140 ms, with continued discriminability
occurring as late as 560 ms. This window of discrim-
inability included M/N170 but also N250, suggesting
that both components encode information that can
support face individuation. More broadly, this ob-
served facial category discriminability time window is
also consistent with the 200–500-ms time window for
face individuation observed when using direct electrode
recordings in the human fusiform gyrus (Ghuman et
al., 2014).

Functional roles of face-sensitive ROIs during
face learning

Although the M/N170 and N250 have been ap-
proximately localized to the fusiform gyrus (Deffke et
al., 2007; Schweinberger et al., 2004), our work directly
describes a more comprehensive spatio-temporal profile
over learning within the entire face network. We
observed stronger correlation effects with learning in
the ventral visual ROIs than in the nonventral ROIs.
The ventral ROIs are hypothesized to process the visual
features of faces, whereas the nonventral ROIs are
hypothesized to process semantic information or social
information (Ishai, 2008; Nestor et al., 2008). In this
context, our results are consistent with the hypothesis
that learning new faces is enabled primarily through
visual processing.

The IOG, mFUS, and aIT along the ventral pathway
have been hypothesized to process visual features in a
hierarchical manner. Although Jiang et al., 2011
challenged this view, their study used fMRI during face
detection in noisy images, which cannot rule out
processes arising from top-down feedback induced by
noisy stimuli. In our multivariate discriminant analysis
of dSPM source solutions across all trials in the
learning session, we found significant discriminability
between the two face categories, after 300 ms, in the
majority of face-sensitive ROIs. However, earlier
significant discriminability was observed mainly in IOG
and mFUS. We also observed that the initial increases
in discriminability appeared to be earlier in IOG than
in mFUS in the right hemisphere (Figures 7 and S4).
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Such a pattern is consistent with the hypothesis of an
IOG�mFUS�aIT hierarchy, where information flows
from the lower level to higher level regions. Notably,
the ROIs that exhibited earlier discriminability before
300 ms (IOG and mFUS) were also the brain regions
that showed strong correlation effects with behavioral
learning, suggesting an important role for visual
processing in learning new faces. Additionally, IOG
and mFUS also exhibited correlation with learning in
after 300 ms, which could be due to feedback from the
higher level regions that is modified by the learning
process.

The early peaks of discriminability near 100 to 120
ms in IOG and the left mFUS were observed slightly
later than the responses typically seen in the early visual
cortex at or before 100 ms (Bair, Cavanaugh, Smith, &
Movshon, 2002; Cichy, Pantazis, & Oliva, 2014). Such
early discriminability in IOG is likely based on visual
information—derived from relatively small receptive
fields—passed from low-level visual areas (e.g., V1, V2,
and V3). Under this view, we can hypothesize that early
discriminability arises from representations of local
facial parts that contain diagnostic features (e.g., the
mouth width and eye size in our design space in Figure
2). However, it is difficult to test this hypothesis using
only the temporal pattern of discriminability we
observed here; IOG may receive inputs from neurons
whose receptive fields cover a wide range or even entire
faces. We should also note that due to spatial
correlations in the forward transformation from the
source space to the MEG sensor space, the recon-
structed source solutions by the dSPM method can be
spatially blurred, and neural activity from nearby brain
areas may be localized in face-sensitive ROIs. This
methodological issue increases the difficulty of deter-
mining the functional origins of the early discrimina-
bility.

Comparing discriminability in early and late
stages of learning

Although several ROIs exhibited significant corre-
lations with behavioral learning curves, when we
directly compared the multivariate discriminability
between early and late stages of the learning session
(i.e., the first and the last 200 trials), we did not observe
significant changes in the face-sensitive ROIs. Figure S5
shows the difference in discriminability between the late
stage and the early stage of learning in both the IOG
and mFUS, the ROIs that had strong correlation
effects with behavioral learning curves. To increase
power, we averaged the discriminability across the
corresponding bilateral regions. The green bands show
95% marginal intervals of the difference in discrimina-
bility under the null hypothesis (i.e., zero difference),

uncorrected for multiple comparisons, obtained from
500 permutations in which the trial labels for early and
late stages were permuted. Using permutation-excur-
sion tests, which corrected for multiple comparisons,
we did not find any windows where the averaged
difference across subjects was significantly nonzero at a
level of 0.05, although there appeared to be a trend for
IOG having an increase in discriminability near 220 ms,
and mFUS having a decrease near 200 ms as well as an
increase near 350 ms.

To explore the possibility of more fine-grained
learning effects, we also compared the discriminability
in the first 100 trials to the discriminability in the next
100 trials (from 100 to 200). However, this comparison
did not detect any significant difference. Of course, in
light of the fact that statistical tests and the corrections
for multiple comparisons are generally biased towards
the null hypothesis, our failure to detect any difference
does not imply that there was not an actual difference
in discriminability during different stages of learning.

On one hand, these results may suggest that the
general changes in the representations of both catego-
ries were measurably stronger than any changes in the
discriminant representation between the two categories.
We speculate that face-sensitive brain regions are
already highly efficient in representing facial features
(given the extensive experience all adults have had with
faces); as such, any changes in discriminability during
learning of new faces are likely to be small and subtle,
and, therefore, difficult to detect. On the other hand, an
empirically driven alternative explanation may be that
learning occurred too quickly in our experiment,
thereby reducing the number of trials available to
reliably estimate multivariate discriminability in the
early learning stage. That is, if learning is very rapid, we
are likely to observe little difference in the estimated
discriminability in the first 200 trials and the last 200
trials (or in the first 100 trials and the next 100 trials).

Difficulty of exemplars

In the design space illustrated in Figure 2 (i.e., the
two-dimensional space of eye size and mouth width),
the distance from each exemplar to the decision
boundary of the two categories varied by exemplar.
More specifically, this means that the exemplars far
from the decision boundary—e.g., (�65, 70)—could be
easier to learn than the exemplars close to the decision
boundary—e.g., (5, 20). In an exploratory analysis of
our behavioral data, we equally divided the exemplars
in each category into two groups according to their
Euclidean distances to the decision boundary, labelling
the exemplars closer to the boundary as ‘‘easy’’ and the
exemplars farther from the boundary as ‘‘hard.’’ For
the ‘‘easy’’ exemplars, the behavioral accuracy was
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higher in the majority of the subjects, and the learning
curves appeared steeper in the early stages of learning
for five out of our 10 subjects. As such and not
surprisingly, it is likely that behavioral learning is
somewhat dependent on the difficulty of the stimuli. In
an additional exploratory analysis of the neural data,
we regressed the dSPM source solutions in the face-
sensitive ROIs against both the behavioral learning
curves and the difficulty of the exemplars.6 However,
this analysis failed to detect any significant linear
dependence for the neural data on the interaction
between difficulty and behavioral learning. Note that
this does not mean that there were not any interaction
effects; it is possible that the variations of difficulty
within our stimulus space were simply insufficient to
detect an effect. In future work, it would be interesting
to investigate how neural learning dynamics vary with
categorization difficulty, in particular, using a suffi-
ciently complex stimulus set.

Issues and limitations

One important limitation of our study involves the
fact that we did not collect neural responses for any
untrained face stimuli. More specifically, this lack of
control with respect to the trained stimuli leaves open
the question as to whether the changes we observed
apply to face representations more generally (e.g., there
was a change in the neural code associated with all
faces) or whether the changes we observed were specific
to the trained faces used in our experiment. An example
of the former would be temporarily sharpened repre-
sentations across all known faces or the learning of
features that support better discrimination between all
faces (as with the way training affects other-race face
processing; Lebrecht, Pierce, Tarr, & Tanaka, 2009).
Examples of the latter would be more efficient (e.g.,
sparser) coding for the two trained categories, or more
specific coding of the particular features supporting
discrimination between the two facial categories. One
concern we have with a domain-general account—in
which training affects all faces—is that this explanation
implies that face representations, across the thousands
of individual faces we have learned over our lifetime,
are so malleable to be altered, at least for the duration
of the experiment, in their representational basis due to
the demands placed on the system for learning only a
handful of new faces.7

Returning to the issue of including control condi-
tions to pinpoint whether the correlation effects with
learning we observed were specific to our trained faces,
we could have asked the subjects to categorize extra
pairs of new categories as controls, (both before and)
after the learning session, and compared the discrim-
inability between those untrained pairs of categories

with the discriminability between the trained catego-
ries. We should note, however, that there are challenges
in designing new control categories, which need to be at
least ‘‘dissimilar’’ or ideally ‘‘orthogonal’’ to the trained
categories. One strategy would have been to introduce
new, handcrafted features (e.g., the size of the nose) to
define these categories, and then empirically verify with
behavioral experiments that these new categories were
dissimilar to the trained categories. Such a handcrafted
design can be highly dependent on the definition of
‘‘dissimilarity’’; limitations or biases in the empirical
selection of the new categories can bring challenges in
interpreting the resultant data. Alternatively, we
propose to learn a generative model based on a large
number of realistic face images, in order to characterize
the potentially high-dimensional feature space of faces.
Such models should be able to sample the feature space,
and create realistic individual images of faces.8 In
particular, recent developments in ‘‘deep’’ generative
models, such as generative adversarial networks
(Goodfellow et al., 2014), may be a promising direction
for learning the statistical regularities of realistic faces.
Under such a model, we can more rigorously define our
control categories, as well as introduce exemplars of
newly generated novel categories throughout the
learning session. In future work, we suggest that such a
paradigm could be effective in advancing our under-
standing of how spatio-temporal neural activity
changes with learning.

A second limitation of our present study is whether
we can generalize our results during a face category
learning task to the learning of individual faces.
Although the nominal task here is to categorize faces
into one of the two groups, we hypothesized that this
task prompted subjects to learn features that enabled
discrimination between specific faces—similar to the
kinds of features involved in facial individuation.
Moreover, the within-category variability in each of
our groups of faces mimics variability in the appear-
ance of an individual’s face (e.g., variability across
different lighting conditions or makeup). Nevertheless,
the variability across our stimulus groups is limited as
compared with real-life faces. This limitation was
deemed acceptable relative to our overall goal of
studying the dynamics of learning—as such, we
adopted a design that rendered the task relatively easy
and was built on a tractable method for parameteriz-
ing/generating a large number of faces. In future work,
we suggest a somewhat more complex design in which
we exploit richer generative models of faces that
simulate real-world variability across and within
individuals.

A third limitation was inherent in the stimulus faces
themselves, where only the eye size and mouth width
were varied (i.e., the locations of these facial parts or
facial ‘‘configuration’’ remained constant). This stimu-
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lus design raises the concern that subjects only learned
to discriminate between facial parts, not entire faces.
Although there is some evidence suggesting that
individual face parts can be processed independently
(Gold, Mundy, & Tjan, 2012), there is also extensive
evidence supporting automatic holistic face processing
(Maurer, Le Grand, & Mondloch, 2002; Tanaka &
Sengco, 1997). As such, although individual parts of
faces (e.g., eyes and mouths) may have played an
important role in our task, we suggest that the facial
discrimination task used here is most likely to
automatically recruit the same neural computations
used in almost all face recognition tasks—mechanisms
that do not treat facial parts as independent units (e.g.,
some role for parts surely exists in such computations,
but nonlinearities in how they are combined are critical
to the facial identification process). In sum, we posit
that the task used in our study was biased towards
facial discrimination rather than facial part discrimi-
nation.

Several smaller concerns are addressed next. One
issue is that, to better engage our subjects, we provided
small incremental rewards based on their behavioral
performance. Concerns may arise about whether such a
reward mechanism might present a confound with the
learning effect. However, it is unlikely that our results
were due to this reward system, because the increments
were small compared with the total compensation.
More importantly, the reward was given after the first
block (including 182 trials); yet the behavioral learning
curves rose steeply within that block.

Another issue is that we based our analysis on results
from nine subjects. There is a trade-off between the
number of observations per subject and the total
number of subjects. With a large number of trials per
subject, we were able to get reliable estimates of the
regression effect for each individual. We agree that nine
subjects is not a large group. However, based on the
excursion t tests we observed in the sensor data
analysis, the group average of the regression effects as
well as the discriminability were significant, with p ,
0.01. Such small p values indicate that our results were
not just some marginal effects. In addition, in the plots
of individual p values (Figure S2 and S4), we can see
that the ventral ROIs have clear patterns across all
subjects, which further indicates that our results are not
driven by one or two subjects.

In addition, we note that source localization is an
extremely challenging problem for MEG. In particular,
source points that are spatially close to one another
contribute similarly to sensor readings, and conse-
quently, the reconstructed source estimates may be
spatially blurred. Further limiting the spatial resolution
of our source solutions is the fact that we have only a
limited number of sensors. More specifically, due to the
underdetermined nature of the problem, the source

solution has to be obtained under certain constraints.
These constraints are usually introduced to either
express prior assumptions (e.g., to emphasize ROIs) or
reduce variances of source estimates. However, the
constraints can lead to source reconstructions that are
different from the true activity in the brain. Neverthe-
less, without knowing the ground truth, one has to
‘‘pick his poison’’ by choosing some constraints. In this
paper, we tried to choose reasonable constraints:
focusing on the face-sensitive ROIs and using sparsity-
inducing or minimum-norm penalties. Also when
studying the correlation of neural activity with
learning, we used both traditional two-step analysis
with dSPM and our one-step model that has been
shown to give favorable results under certain circum-
stances (Yang et al., 2016). It was reassuring that the
results by different methods (with different constraints)
showed consistent patterns despite some differences.
However, our results could still be affected by inherent
limitations of source localization, and future experi-
ments on face learning using single-cell recordings or
electrocorticography, which have both superior spatial
and temporal resolutions, are needed to further verify
our findings. Additionally, our analyses focused only
on the ROIs previously identified as components of the
face network. Although the selection of these particular
ROIs was based on the previous literature, our decision
to use functional ROIs was also motivated by our need
to introduce constraints in solving the MEG source
localization problem. However, learning new faces may
also be mediated by other cortical or subcortical
regions that have been previously implicated in
learning, for example, the hippocampus, basal ganglia,
medial temporal lobe, and anterior cingulate cortex
(Bush, Luu, & Posner, 2000; DeGutis & D’Esposito,
2007, 2009). At the same time, learning may also be
mediated by changes in connectivity among brain
regions. In particular, abnormalities in the structural
white matter fiber tracts between the ventral visual
regions and prefrontal cortex have been associated with
congenital deficits in face recognition (Thomas et al.,
2009); the fiber tract that connects the anterior
temporal lobe with the orbitofrontal and the medial
prefrontal cortex has been identified as a correlate of
performance in learning complex visual associations
(Thomas, Avram, Pierpaoli, & Baker, 2015). More
directly, changes in functional connectivity among face-
selective regions, as measured by fMRI, have been
observed in face learning (DeGutis & D’Esposito,
2009). Even so, characterizing the dynamics of func-
tional connectivity during learning with high-temporal
resolution remains challenging, given the difficulty of
source localization using MEG. However, as the field
advances, we expect that future work will be better able
to localize neural sources—possibly by combining
fMRI and MEG/EEG—and, consequently, will be
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better able to explore changes in both neural responses
and dynamic connectivity during learning.

Finally, discriminating between face categories as
defined by variations in simple parametric feature
spaces with perfect linear separation may have resulted
in very rapid learning. As such, this poses a challenge
for detecting changes in discriminability. Future
learning experiments in this domain should exploit
more complex feature spaces with a level of difficulty
sufficient to enable the detection of changes in
discriminability. Moreover, if the stimulus feature
space is sufficiently complex and carefully parame-
trized, one may also be able to explore the how learning
is affected by variations across different facial features.
Of particular interest is what kinds of facial features are
learned in what brain locations at what time stages in
processing. Overall, these kinds of advances are likely
to give rise to a better understanding of the detailed
spatio-temporal profile of how neural activity changes
under conditions of learning.

Conclusions

We explored the spatio-temporal neural correlates of
face learning by examining which spatial regions of the
face network at what temporal stages of face processing
exhibited neural responses that changed during learn-
ing new faces. By regressing neural responses—
localized MEG recordings during a face-category
learning experiment—in the spatial network of face-
sensitive regions against behavioral learning curves, we
found significant correlations with learning in the
majority of regions in the face network, mostly between
150–250 ms, but also after 300 ms. However, the effect
was smaller in nonventral regions (within the superior
temporal areas and prefrontal cortex) than that in the
ventral regions—within the inferior occipital gyri
(IOG), midfusiform gyri (mFUS) and anterior tempo-
ral lobes. Consistent with this observation, a comple-
mentary multivariate discriminant analysis revealed
significant discriminability between face categories after
300 ms in the majority of the face-sensitive regions, but
earlier discriminability only in IOG and mFUS, the
same ventral regions that showed strong correlation
effects with learning in our regression analysis. This
colocalization indicates that early and recurring tem-
poral components arising from ventral face-sensitive
regions are critically involved in learning new faces.

In conclusion, our experiment provided a novel
exploration of the spatio-temporal neural correlates of
face learning. Although limited by the challenging
problem of MEG source localization, we were able to
draw conclusions regarding which brain regions were
likely involved in face learning by exploiting spatial

priors and focusing on regions in the already identified
face network. This approach leads us to conclude that
learning new faces is mediated primarily by represen-
tational changes within face-sensitive visual brain
regions. Future work with improved spatial resolution
for source localization, as well as designs using a more
complex feature space, will allow us to develop a more
complete characterization of spatio-temporal changes
in neural responses that arise during learning across the
brain.

Keywords: learning, face individuation, spatio-
temporal neural basis, MEG
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Footnotes

1 Note the peaks in MEG and EEG tend to be
centered near the referenced time point, but in any
given study, the observed peaks are likely to vary
somewhat from that point.

2 The projector we used to present the stimuli had a
40-ms delay, as measured by a photo sensor, subse-
quent to our presentation program sending the stimulus
trigger to the MEG system. We preprocessed the MEG
data in the face category learning session according to
the intact stimulus triggers recorded by the MEG
machine, and then adjusted the time axis by 40 ms. As a
result, the baseline window extended from�140 to�40
ms, instead of�100 to 0 ms. However, using the latter
time window as our baseline, we would expect to see
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results similar to what we obtained using the former,
adjusted time window.

3 The functional localizer MEG data were prepro-
cessed in an early stage of data analysis, whereas the
MEG data in the face category learning session were
preprocessed in a later stage. There were some changes
in the preprocessing pipeline (e.g., the delay of the
stimulus onset was adjusted before defining the baseline
window in the early stage; the tSSS software became
easier to access in the scanning site in the later stage,
etc.). Nevertheless, we would have expected similar
results in our data analysis if we had used the same
preprocessing pipeline for both sets of data.

4 Although the stimulus in each trial was a distinct
exemplar, the sampling of exemplars in the ‘‘eye size/
mouth width’’ space was balanced as much as possible
during the learning session. In our regression analysis,
we mainly examined the change of neural responses to
the face category as an integrated group, and within-
category difference among exemplars was not consid-
ered.

5 Head movement between runs could be a
confounding factor in our regression analysis, in that
subjects might move their heads as they gradually
became tired over the course of the experiment.
Although we could not control for motion in the sensor
space regression, we did fit different forward matrices
based on the head positions for each half-block in our
source space modeling, thereby accounting for head
movements between runs. In this context, we view it as
unlikely that the correlation with behavioral learning
we identified was primarily due to head movement.

6 In our experimental design, the sampling sequence
of the exemplars in the feature space was randomized
for each subject, and the difficulty of exemplars was
generally balanced throughout the learning sessions. In
this regard, the difficulty was roughly orthogonal to the
behavioral learning curves.

7 In contrast, in Lebrecht et al., 2009, training for
other-race faces is thought to affect only the represen-
tational basis of those faces. Indeed, the explanation
for why training works across all other-race faces is
that the subjects receiving training have had relatively
little experience with other-race faces.

8 By features, we mean not only the facial parts (such
as eyes and mouths), but also any pieces of information
extracted in the face image that are useful in face
individuation in a general sense (e.g., the spatial layout
of facial parts, the perceived 3D shapes, and other
information that might not have a verbal description).
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