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Abstract. We present a multimodal registration algorithm for simulta-
neous alignment of datasets with both scalar and tensor MRI images.
We employ a volumetric, cubic B-spline parametrised transformation
model. Regularisation is based on the logarithm of the singular values of
the local Jacobian and ensures diffeomorphic warps. Tensor registration
takes reorientation into account during optimisation, through a finite-
strain approximation of rotation due to the warp. The combination of
scalar, tensor and regularisation cost functions allows us to optimise the
deformations in terms of tissue matching, orientation matching and dis-
tortion minimisation simultaneously. We apply our method to creating
multimodal T2 and DTI MRI brain templates of two small primates
(the ring-tailed lemur and rhesus macaque) from high-quality, ex vivo,
0.5/0.6 mm isotropic data. The resulting templates are of very high qual-
ity across both modalities and species. Tissue contrast in the T2 channel
is high indicating excellent tissue-boundary alignment. The DTI channel
displays strong anisotropy in white matter, as well as consistent left/right
orientation information even in relatively isotropic grey matter regions.
Finally, we demonstrate where the multimodal templating approach over-
comes anatomical inconsistencies introduced by unimodal only methods.
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1 Introduction

The most common approach to spatial normalisation of multimodal MRI
datasets is to register a single, scalar modality to a template and then transform
all modalities through the resulting warp. However, this approach is only valid
when the within-tissue information is comparable across modalities (e.g., T1 and
T2-weighted scans). When a modality contains additional within-tissue informa-
tion compared to the registered modality (e.g., orientation in DTI), then there
is no reason to believe that the resulting warps will modulate this information
in a consistent manner across subjects.

One method of overcoming this issue is to register each modality indepen-
dently. However, from a generative modelling perspective there is only a single
true warp which maps each subject to the template. This true warp cannot be
estimated by averaging the unimodal warps as the result would not guarantee
the preservation of desirable properties such as diffeomorphism. A preferable
approach is to simultaneously optimise over all modalities, thereby finding the
solution which jointly maximises the similarity across all modalities.

To our knowledge, there is currently only one method (DR-TAMAS) capable of
performing such joint optimisations [1]. This is an extension of the SyN method
[2] to include a similarity term sensitive to local rotations due to warping. One
limitation of DR-TAMAS’s plastic transformation model is that desirable measures
of deformation, such as the local Jacobian determinant, are prohibitively difficult
to regularise explicitly [1]. This necessitates using a simpler but less biologically
meaningful regularisation of the velocity field (e.g., Gaussian smoothing).

Our method overcomes this limitation by employing a cubic B-spline, elastic
transformation which allows for direct regularisation of the Jacobian field, whilst
simultaneously explicitly optimising for local rotations.

A prerequisite for making multimodal registration useful is the existence of
multimodal templates. This work aims to present how our method can be used
to generate such templates, and demonstrate some benefits they provide over
their unimodal counterparts.

2 Registration Method

2.1 Framework

Transformation Model. Our registration framework utilises a 3D cubic B-
spline parametrised transformation t(x). The finite spatial support of B-splines
results in predictable sparseness of the Hessian of the cost function, which we
leverage during optimisation. Additionally, this transformation has analytical
derivatives, which allows for the formulation of explicit relationships between the
transformation parameters and the local Jacobian field. We overcome historical
concerns regarding diffeomorphism of elastic transformations through explicit
regularisation of the Jacobian field as described in Sect. 2.4.
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Optimisation Strategy. We employ the Levenberg-Marquardt variant of
Gauss-Newton optimisation due to its robustness and rapid convergence proper-
ties [3]. Additionally, it does not require manually choosing a learning rate or per-
forming a line search as is necessary when employing gradient only methods. This
necessitates manipulating the cost function into the form C(w) = f2(w) and
iteratively updating the warp parameters w according to Δw = −H−1b, where
b is the gradient and H is the Hessian of C. The Gauss-Newton Hessian is then
HGN = 2 δf

δw

ᵀ δf
δw , and the Levenberg-Marquardt variant is HLM = HGN +λLMI.

Calculating HGN is, in general, computationally expensive. However, this is
aided by our choice of B-spline parametrisation as described in Sect. 2.1. At
higher resolutions HGN may become too large to store in memory (despite its
sparseness). At this point we transition to using a majorising approximation
HMM = diag(abs(HLM )1) [5], where 1 is a column vector of ones. HMM is
then a diagonal matrix where the diagonal entries are the sum of the absolute
values across each row of HLM . This has the property that HMM � HLM ,
and is therefore compatible with the Gauss-Newton family of algorithms. This
greatly reduces memory requirements whilst allowing for a consistent optimisa-
tion strategy across all warp resolutions.

Cost Function Weighting. The relative weighting of each modality and the
regularisation penalty can be set globally (i.e., the importance of each modality
to the overall cost function, controlled by a modality specific λ) as well as locally
(i.e., the importance of each area within a modality to that modality’s cost)
controlled by a spatially varying multiplicative mask.

2.2 Scalar Cost Function

The cost function for scalar modalities is the mean-squares dissimilarity, shown in
Eq. (1) for a reference image f and moving image g defined over Nx voxels, where
x ∈ R

3. This requires bias corrected images with the same nominal contrast.
Residual differences in tissue intensities are modelled using quartic-polynomial
intensity matching. This is re-evaluated at each iteration of the optimisation. The
weight applied to the scalar cost can be modulated by the voxel-wise variance
after each iteration to effectively up- or down-weight the regularisation prior.

CS = λS
1

Nx

∑

x∈R3

(
f
(
x
) − g

(
t(x)

))2

(1)

2.3 Tensor Cost Function

The tensor cost function can be chosen as either the Euclidean, equation (2),
or log-Euclidean, equation (3), distance between two tensor volumes F and G.
These metrics are sensitive to both scalar and vector characteristics of the tensor,
relatively insensitive to variations in tensor fitting, and efficient to implement
[4,6]. The transformation affects these cost functions in two ways: through dis-
placement of the tensor elements as if they were individual scalar modalities
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(tdis), and through the local rotation of tensors (trot). The method proposed
by Yeo [7] allows us to calculate analytical forms of the gradient and Hessian as
a function of the transformation parameters, facilitating efficient implementa-
tion within our optimisation framework. The results in this work were generated
using CE .

CE = λE
1

Nx

∑

x∈R3

tr
((

F
(
trot(x)

) − G
(
tdis(x)

))2
)

(2)

CLE = λLE
1

Nx

∑

x∈R3

tr
((

log
(
F

(
trot(x)

)) − log
(
G

(
tdis(x)

)))2
)

(3)

2.4 Regularisation

The regularisation cost in Eq. (4) is based on work by Ashburner [8], and
penalises the log singular values si of the local Jacobian J. This imposes a
log-normal prior on lineal, areal and volumetric changes, centred at a value of
1. Expansions and contractions are therefore penalised symmetrically. Addition-
ally, the penalty tends to ∞ as |J| approaches both 0 and ∞, ensuring the warps
remain diffeomorphic. By penalising si rather than simply |J| we ensure that
the shape as well as the volume of the transformed images is kept within reason-
able limits. Finally, the highly non-linear nature of the penalty allows for larger
deformations than traditional linear elastic models, bringing our method in line
with the capabilities of LDDMM-based transformation methods.

CR = λR
1

Nx

∑

x∈R

(
1 +

∣∣J
(
t(x)

)∣∣
) 3∑

i=1

log2 si

(
t(x)

)
(4)

3 Methods

3.1 Data Acquisition

Full extracted brains from three ring-tailed lemurs (Lemur catta) and three rhe-
sus macaques (Macaca mulatta) were obtained. Brains were perfusion fixed using
paraformaldehyde after euthanasia for causes unrelated to the current research.
Data were acquired on a 7T magnet with an Agilent DirectDrive console1. A 2D
diffusion-weighted spin-echo protocol with single line readout was used (DW-
SEMS; TE/TR: 25 ms/10 s; matrix size: 128 × 128; number of slices: 128; res-
olution: 0.5 mm (lemur) or 0.6 mm (macaque) isotropic. Sixteen non-diffusion-
weighted (b = 0 s/mm2) and 128 diffusion-weighted (b = 4000 s/mm2) volumes
were acquired with diffusion directions distributed over the whole sphere. The
brains were stored in PBS before scanning and placed in Fluorinert during the
scan.

1 Agilent Technologies, Santa Clara, CA, USA.
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3.2 Data Preprocessing

Diffusion tensors were fit to the data using the FSL FDT toolbox [9]. Additionally,
FDT was used to generate a “no-diffusion” b = 0 image with T2 contrast. The T2
images were then bias-field corrected using FSL FAST [10]. Note that T2 and
DTI images within each subject are already co-registered.

3.3 Template Creation

A combined T2 and DTI template was created for each species individually,
using three subjects per species. Template creation followed a multi-resolution
iterative approach. An initial template space was chosen by affine alignment of
the T2 images to one randomly chosen subject using FSL FLIRT [11]. T2 images
were intensity normalised before being resampled into this space, followed by
voxelwise averaging across subjects. DTI images were resampled with reorien-
tation using FSL vecreg, followed by log-tensor averaging. Each subject was
then non-linearly aligned to the initial template at a warp resolution of 16 mm
isotropic, and averaged in the same way to create a new template. This process
was repeated, doubling the warp resolution each time, to a final resolution of
0.5 mm isotropic. At each iteration all images were smoothed using an isotropic
Gaussian kernel, with a full width at half maximum equal to a quarter of the
current warp resolution. The amount of regularisation was empirically decreased
as warp resolution increased.

Spatial unbiasing of the template was carried out after each iteration, such
that the average displacement of every voxel in the template was approximately
0. The methodology followed is given in Eqs. (5) and (6), where Wm is the warp
from the template f̃ to mth subject.

W̄ (x) =
1
M

M∑

m=1

Wm(x) (5)

f̃unbiased(x) = f̃biased

(
W̄−1(x)

)
(6)

Although W̄−1(x) is not guaranteed to be diffeomorphic, we enforced diffeomor-
phism by projecting this field onto its closest diffeomorphic representation using
the method proposed by Karacali [12].

Relative modality weighting was determined in two steps. First, by setting
λS = 1, λE = 0 and varying λR until the T2 template appeared visually accept-
able. Second, by setting λS = 0, fixing λR to the final value from step 1, and
varying λE until the range of |J| for the warps was similar to that in step 1. In
this way, we aimed to weight the influence of the T2 and DTI modalities on the
warp approximately equally.

The template creation process was carried out three times using different
combinations of the modalities to drive the registration: T2 image only, DTI
image only, and multimodal using both T2 and DTI. We will refer to these meth-
ods and resulting templates as TT2, TDT and TMM respectively. The weighting
of individual modalities and the amount of regularisation was constant across
all methods.
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3.4 Template Quality Assessment

The quality of the T2 and DTI templates were visually evaluated, and exam-
ined for obvious inconsistencies. The T2 template quality was then quantified
using the average mutual information (MI) between each warped subject and
the template as calculated by FSL FLIRT. MI ranges between 0 (worst) and ∞.
The DTI template quality was evaluated using the average overlap of eigenvalue-
eigenvector pairs (OVL) metric between each warped subject and the template
[1,13]. OVL is defined in Eq. (7), where λi and ei are the ith eigenvalue and
eigenvector of the tensor respectively. This provides a voxelwise similarity mea-
sure of the complete eigenvalue-eigenvector tensor descriptor. It ranges between
0 and 1, with 0 representing complete dissimilarity and 1 representing identical
tensors. OVL was evaluated in 3 regions, namely the entire brain, the entire
brain weighted by FA, and within a mask where FA > 0.2.

OV L =
1

Nx

∑

x∈R3

∑3
i=1 λF

i (x)λG
i (x)

(
eF

i (x)ᵀeG
i (x)

)2
∑3

i=1 λF
i (x)λG

i (x)
(7)

4 Results and Discussion

4.1 Visual Evaluation

Figure 1 shows the DTI, FA and T2 volumes of the final TMM template for both
the lemur and macaque. We do not show the entire TT2 and TDT templates as
at this scale they are visually difficult to distinguish from one another. Instead,
we first describe the common appearance of the templates, and then focus on
select regions which demonstrate difference between the methods.

Visually the T2 volumes are sharp, showing good contrast between tissue
types, even within fairly complex structures such as the cerebellum. This is
particularly true for the lemur template where the relatively simpler gyrification
leads to smaller differences between subjects making spatial normalisation some-
what easier. The posterior of the macaque brain showed the highest variability
between subjects and thus is unsurprisingly the least sharp template region. In
general the T2 volume of the TMM and and TT2 templates did appear slightly
sharper than TDT . This is in line with what might be expected: the contrast
between signal from grey matter and from fluid in the sulci and ventricles in
the DTI volume may be insufficient to overcome regularisation. A clear example
of this in the lemur is shown in the bottom left of Fig. 1. Here, TDT has been
unable to correctly align one of the sulci, whereas both TMM and TT2 have had
no such difficulty.

The DTI volumes are of excellent quality. High FA within white matter indi-
cates that not only are the anisotropic regions of the individual subjects brought
to the correct positions, but that they arrive there with a consistent orientation.
Perhaps somewhat surprisingly, the TT2 DTI template is not clearly worse than
the other methods within these high FA regions. We suggest two possible reasons
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for this. Firstly, the regularisation method is primarily focussed on maintaining
plausible deformations. This means that the interior of the white matter is trans-
formed in a sensible manner as it follows the tissue boundaries during registration
of the T2 images. Secondly, the areas of anisotropy are always quite near tissue
boundaries due to the small size of the lemur and macaque brains. Therefore,
the possible deformations which correctly match tissue types are constrained
in terms of allowable rotational effects. However, within some comparatively
isotropic regions we do observed larger differences. In the macaque, the fluid
in the ventricle of one subject had a significantly different (darker) T2 contrast
than the others. The bottom right of Fig. 1 shows how this has led to ghosting
around the ventricle in TT2. In contrast, information in the DTI modality has
allowed both TMM and TDT to correctly align the structure.

From this we can see a clear benefit in terms of anatomical correctness that
the multimodal registration approach provides over its unimodal counterparts.

4.2 Quantitative Evaluation

Quantification of how well the subject data aligns to the templates is shown for
the lemur in Table 1 and for the macaque in Table 2. Both species show similar
trends between the methods indicating that these results generalise well.

Unsurprisingly, TT2 has the highest average MI, followed by TMM and finally
TDT . This is in line with the visual observations of the T2 image sharpness in the
respective templates. However, as shown by the ventricular ghosting above, the
higher MI value does not necessarily mean better global anatomical correctness.

Whole brain OVL is consistently highest for TMM indicating that both high
and low FA regions are being well aligned by this method. The lower perfor-
mance of unimodal methods can be attributed on the one hand to TT2 having
no knowledge of rotations introduced by the warps, and on the other hand to
poorer overlap of tissue types in TDT .

When the OVL calculation is restricted to high-FA regions, either though FA-
weighting or explicit FA masking, the results for all methods is higher than for
the brain as a whole. As might be expected, TDT performance is very similar to
TMM in these regions, and yet the multimodal approach still has an advantage.
Interestingly, the performance deficit between TT2 and the other methods is
greater for the macaque brain compared to the lemur. This may be due to
an increase in the amount of uncontrolled rotation induced by the TT2 warps
during alignment of the comparatively more complex cortical folding patterns in
the macaque.

4.3 Overall Evaluation

Using multimodal data to drive the registration successfully overcame short-
comings in both the scalar and tensor only methods, whilst preserving the best
aspects of each. DTI similarity measures improved across all areas of the tem-
plate brains, and we therefore believe that a multimodal approach to registration
can only be an advantage in the analysis of diffusion MRI data. Whilst scalar



Multimodal MRI Templating in Lemurs and Macaques 149

Table 1. Average MI and OVL measures in the lemur

MM template T2 template DTI template

T2 Mutual Information 1.357 1.407 1.268

OVL Whole Brain 0.859 0.854 0.850

OVL FA Weighted 0.968 0.966 0.967

OVL FA Masked 0.946 0.940 0.944

Table 2. Average MI and OVL measures in the macaque

MM template T2 template DTI template

T2 Mutual Information 1.151 1.210 1.072

OVL Whole Brain 0.784 0.769 0.774

OVL FA Weighted 0.964 0.949 0.960

OVL FA Masked 0.891 0.870 0.880

registration appears to have a slight advantage over multimodal in terms of MI
scores, the lower OVL scores and some clear anatomical inconsistencies in the
T2 driven template suggest that this might be attributable to over-fitting. As
the goal of registration in neuroimaging is anatomical consistency rather than
outright image similarity, this regularisation effect of the tensor data in the mul-
timodal method is in fact a desirable quality.

5 Conclusion and Future Work

We have shown that multimodal registration is a powerful tool for template cre-
ation, capable of leveraging complimentary imaging contrasts to find a common
space which is truly representative of the group data. Our combination of scalar,
tensor and regularisation cost functions allows us to optimise multiple aspects
of the deformations simultaneously such that the most anatomically plausible
mapping to this common space can be found. The multimodal-driven lemur and
macaque templates we created show improved consistency with individual sub-
ject scans compared to both unimodal scalar and tensor driven templates.

The data used to create these templates is quite unique, with the lemur
template in particular being the first of its kind for this species. We hope that
by having a multimodal template available, any future analysis done on this
species will be able to take advantage of increased anatomical consistency when
analysing and reporting results of both individual and group studies.

Future work will focus on applying these same techniques to large human
cohorts such as the Human Connectome Project and UK Biobank where we
hope the benefits of multimodal templating will be even more apparent.
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