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Abstract Despite continual renewal and damages, a multicellular organism is able to maintain its

complex morphology. How is this stability compatible with the complexity and diversity of living

forms? Looking for answers at protein level may be limiting as diverging protein sequences can

result in similar morphologies. Inspired by the progressive role of apical-basal and planar cell

polarity in development, we propose that stability, complexity, and diversity are emergent

properties in populations of proliferating polarized cells. We support our hypothesis by a

theoretical approach, developed to effectively capture both types of polar cell adhesions. When

applied to specific cases of development – gastrulation and the origins of folds and tubes – our

theoretical tool suggests experimentally testable predictions pointing to the strength of polar

adhesion, restricted directions of cell polarities, and the rate of cell proliferation to be major

determinants of morphological diversity and stability.

DOI: https://doi.org/10.7554/eLife.38407.001

Introduction
Multicellular organisms are amazing in their ability to maintain complex morphology in face of con-

tinuous cell renewal and damages. Adult salamander can regenerate entire limbs (Eguchi et al.,

2011), and, during development, some regions can maintain patterning when moved to different

parts of an embryo or if the size is varied (Lyons et al., 2012). Given the vast complexity and diver-

sity of living shapes, how can we reconcile the robustness to perturbations with flexibility to diver-

sify? While undoubtedly the end result is encoded in the DNA and protein networks, looking for an

answer at this level is challenging. Examples of phenotypic plasticity (Libby and Rainey, 2011), con-

vergent evolution, and contrasting rates of morphological and protein evolution (Cherry et al.,

1979) show that morphological similarity may not couple to the protein sequence similarity

(Gould, 1970). Inspired by the unfolding of morphological complexity in development, we propose

that cellular polarity may be the key for reconciling complexity, robustness, and diversity of organis-

mal morphologies.

During early development, the increase in morphological complexity coincides with the progres-

sive polarization of cells – first apical-basal (AB) polarity and then planar cell polarity (PCP)

(Müller and Bossinger, 2003; Roignot et al., 2013; Andrew and Ewald, 2010; Li and Bowerman,

2010). This theme is ubiquitous across vertebrates and invertebrates (Figure 1): starting from the

single fertilized egg cell, first the morula formed by non-polarized cells turns into the blastula – a hol-

low sphere of cells with AB polarity. Then, as cells acquire additional PCP, primary head-tail axis

forms and elongates during gastrulation and neurulation (Loh et al., 2016). Because of the optical

transparency, these stages are particularly prominent in sea urchin. At the morula stage, a lumen in

the center is formed and is gradually expanding as cells proliferate and rearrange into the hollow
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sphere. Next, during gastrulation, a group of cells invaginate and rearrange into a tube that narrows

and elongates primarily by cell rearrangement and convergent extension movements (Martik and

McClay, 2017). The tube then merges with the sphere at the side opposite to invagination, and as a

result, the sphere transforms into a torus. Emerging data suggest that PCP drives both invagination

and tube elongation (Nishimura et al., 2012; Croce et al., 2006; Long et al., 2015) – a recurring

theme across species.

Mutations in PCP pathways produce shorter and wider tubes (Ochoa-Espinosa et al., 2012;

Saburi et al., 2008; Kunimoto et al., 2017), somites (Song et al., 2010), and embryos (Gong et al.,

2004). Formation and elongation of the tubes can proceed without cell division and cell death by

cells rearranging along the tube’s axis, termed convergent extension (CE) (Andrew and Ewald,

2010; Tanimizu et al., 2009; Martik and McClay, 2017). While the importance of PCP in gastrula-

tion and tubulogenesis is well established (Andrew and Ewald, 2010; Tanimizu et al., 2009;

Martik and McClay, 2017; Kunimoto et al., 2017), it is unclear how polarity may control tube

morphology.

The bulk-lumens-folds/tubes transition seen across animal species in early embryogenesis, is also

a key feature of the later organ formation. The early stages of organogenesis in the liver, kidney,

brain, gut, and pancreas are apparently so robust, that they can be recapitulated in vitro, allowing

for advanced quantification and manipulation (Little, 2017). The case of pancreatic organoids is

interesting as it illustrates an increase of morphological complexity from spheres to folds. Cells in in

vitro pancreatic organoids first grow as a bulk and later acquire AB polarity and develop lumens.

Depending on the growth conditions, organoids develop into a hollow sphere or acquire a complex

folded shape (Greggio et al., 2013). It is currently unknown what drives the transition from sphere

eLife digest Cells have the power to organise themselves to form complex and stable

structures, whether it is to create a fully shaped baby from a single egg, or to allow adult

salamanders to grow a new limb after losing a leg. This ability has been scrutinised at many different

levels. For example, researchers have looked at the chemical messages exchanged by cells, or they

have recorded the different shapes an embryo goes through during development. However, it is still

difficult to reconcile the information from these approaches into a description that makes sense at

multiple scales.

When an embryo develops, sheets of cells fold and unfold to create complex 3D shapes, like the

tubes that make our lungs. Moulding sheets into tubes relies on interactions between cells that are

not the same in all directions. In fact, two types of asymmetry (or polarity) guide these interactions.

Apical-basal polarity runs across a sheet of cells, which means that the top surface of the sheet

differs from the bottom. Planar cell polarity runs along the sheet and distinguishes one end from the

other. For instance, apical-basal polarity marks the inner and outer surfaces of our skin, while planar

cell polarity controls the direction in which our hair grows.

Nissen et al. set out to investigate how these polarities help cells in an embryo organise

themselves to form complicated folds and tubes. To do this, simple mathematical representations of

both apical-basal and planar cell polarities were designed. The representations were then combined

to create computer simulations of groups of cells as these divide and interact with each other.

Simulations of ‘cells’ with only apical-basal polarity were able to generate different shapes in the

‘tissues’ produced, including many found in living organisms. External conditions, such as how cells

were arranged to start with, determined the resulting shape. With both apical-basal and planar cell

polarities, the simulations reproduced an important change that occurs during early development.

They also replicated how the tubes that transport nutrients and oxygen form.

These results show that simple properties of individual cells, such as polarities, can produce

different shapes in developing tissues and organs, without the need for a complicated overarching

program. Abnormal changes in cell polarity are also associated with diseases such as cancer. The

mathematical model developed by Nissen et al. could therefore be a useful tool to study these

events.

DOI: https://doi.org/10.7554/eLife.38407.002
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to folded state; the two possible hypotheses are rapid proliferation or physical

pressure from growing into a stiff matrigel.

Is the apparent link between cellular polarity and morphological complexity accidental? Or, could

it be that morphological transitions, stability, and diversity are emergent features in a population of

proliferating polarized cells? If true, can we identify what drives the transition from lumens to folds

and tubes? Why are these stable? Can we predict what controls fold depth, and tube length and

width? To answer these questions, we lack a unified approach that could bridge polar interactions

between single cells to the global features emerging on the scale of thousands of cells in 3D.

Starting with D’Arcy Thompson’s seminal contribution (Thompson, 1942), quantitative models

aided in understanding specific morphogenetic events (Figure 1—figure supplement 1). Among

these are invagination (Odell et al., 1981; Rauzi et al., 2015; Polyakov et al., 2014;

Hočevar Brezavšček et al., 2012), primitive streak formation (Newman, 2008), convergent exten-

sion (Collinet et al., 2015; Belmonte et al., 2016), epithelial folding (Buske et al., 2012;

Osterfield et al., 2013; Monier et al., 2015; Murisic et al., 2015), emergence of global PCP align-

ment from local cell–cell coupling (Amonlirdviman et al., 2005; Le Garrec et al., 2006; Burak and

Shraiman, 2009), origins of tubulogenesis (Engelberg et al., 2008), and recently statistical proper-

ties of branching morphogenesis (Hannezo et al., 2017). However, they are often on either of the

2nd1st
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Globular symmetry

Two polarities 
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Apical-basal 
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Figure 1. Two symmetry-breaking events, gain of apical-basal (AB) polarity and planar cell polarity (PCP), on cellular level coincide with the appearance

of a rich set of morphologies. Starting from an aggregate of non-polarized cells (globular symmetry), individual cells can gain AB polarity and form one

or multiple lumens (spherical symmetry). Additional, gain of PCP allows for tube formation (axial symmetry). Complex morphologies can be formed by

combining cells with none, one, or two polarities. In Figure 1—figure supplement 1, we schematically illustrate how existing models capture different

elements of development.

DOI: https://doi.org/10.7554/eLife.38407.003

The following figure supplement is available for figure 1:

Figure supplement 1. Overview of the existing literature on models addressing specific developmental events discussed in our work.

DOI: https://doi.org/10.7554/eLife.38407.004
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two ends of the spectra: those modeling single cells explicitly, often rely on vertex-based

approaches and are limited to dozens of cells (Alt et al., 2017; Misra et al., 2016; Aigouy et al.,

2010; Le Garrec et al., 2006). To capture the large features spanning thousands of cells, one typi-

cally turns to elastic models where AB polarity is implicit and epithelia is presented as a 2D elastic

sheet (Hannezo et al., 2014; Etournay et al., 2015; Hufnagel et al., 2007; Nagai and Honda,

2009; Aliee et al., 2012; Nagai and Honda, 2001).

We developed a theoretical approach that, with only a few parameters, bridges cellular and

organ scales by integrating both types of polarity. A main difference to earlier approaches is that a

cell’s movement is coupled to how its AB polarity and PCP are oriented relative to each other and

relative to neighbor cell polarities. In other words, in our approach, the adhesion strength between

neighbor cells is modulated by the orientation of their polarities. We find that polarity enables com-

plex shapes robust to noise but sensitive to changes in initial and boundary constraints, thus sup-

porting that morphological stability and diversity are emergent properties of polarized cell

populations. Lumens, folds, and stable tubes emerge as a result of energy minimization. We make

testable predictions on morphological transitions in pancreatic organoids, tubulogenesis, and sea

urchin gastrulation. Our approach illustrates the evolutionary flexibility in the regulatory proteins and

networks, and suggests that despite differences in proteins between organisms, the same core prin-

ciples may apply.

Model
There are three key elements that allow us to bridge the scale from cellular level to macroscopic sta-

ble morphologies.

(1) Cells are approximated by point particles
Cell–cell adhesion is modeled by repulsive and attractive forces acting between cell centers. This

allows a substantially gain in computation time compared to vertex-based models where cell surface

adhesion is explicitly considered (Alt et al., 2017). The potential for pairwise interaction between

two interacting neighbors, i and j, separated by distance rij is

Vij ¼ e�rij � S e�rij=b; (1)

where the first term corresponds to repulsion, and the second term to attraction (see Figure 2A).

For a pair of non-polar cells, the strength of attraction S = 1. b >1 is the parameter that sets how

much longer the attraction range is compared to repulsion. We set b = 5 throughout the paper, but

our results and conclusions are consistent for smaller b. The main results are also not sensitive to the

exact choice of the potential, thus for example the higher power in the exponential,

Vij ¼ e� rijð Þ
4

� S e� rij=bð Þ
4

; (2)

give qualitatively similar results (see Figure 2—figure supplement 1A). The potential energy of a

cell is the sum of pairwise neighbor interactions

Vi ¼
X

j

Vij: (3)

(2) Cells interact with (a subset of Voronoi) neighbors
Interacting neighbors of cell i are selected from a subset of cells sharing a Voronoi surface. The sub-

set is limited to the nearest neighbors j which are closest to the midpoint between i and j

(Figure 2B–C). This constrain effectively corrects for the finite volume associated with point particles

and assures that two cells will not interact if the line of sight between their centers is separated by a

surface of a third cell. Without this constraint, the macroscopic morphologies collapse. However, our

results are robust to replacing the line of sight constraint with full Voronoi and a cut-off distance for

attraction force (Figure 2—figure supplement 1B).
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(3) Cell–cell adhesion depends on the orientation of polarity
To capture directional adhesion, we set the strength of attraction, S, to be dependent on the relative

orientation of the polarities in each of the cells. We assume that AB polarity and PCP are orthogonal,

and that the polarities of one cell align with the polarities of its neighbor cells. Mathematically, we

introduce unit vectors, p̂i and p̂j representing AB polarity, and q̂i and q̂j representing PCP for cell i

and j, respectively. We set

S¼ l1S1 þl2S2 þl3S3 (4)

where l1, l2, and l3 are the strengths of the different polarity terms. We require that

l1 þl2 þl3 ¼ 1; (5)

to satisfy the constraint that perfectly aligned cells always have a steady state distance of 2 cell

radii (for b = 5). To capture that in an epithelial sheet, AB polarities align parallel to each other and
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Figure 2. Cells are modeled as interacting particles with a polarity-dependent potential. (A) Potential between two interacting cells with apical-basal

polarity (see Equation 6). Cells repulse when polarities are antiparallel (top/green part) and attract when they are parallel (orange/bottom part). (B–C)

Two cells interact only if no other cells block the line of sight between them. (B) Cell i and j do not interact if ij’s midpoint (black dot) is inside of the

Voronoi diagram for cell k (shaded in grey). (C) Cell i and j interact because cell k is further away than the distance ij/2 and ij’s midpoint therefore lie

outside of cell k’s Voronoi diagram. In the related Figure 2—figure supplement 1A–D, we test the sensitivity of our model to the details of the

potential and neighborhood assignments. In Figure 2—figure supplement 2, we relate changes in cell shapes to the model components, and in

Figure 2—figure supplement 3 (Figure 2—video 1), we illustrate how altering polarity affects the dynamics of the systems with two and six cells.

DOI: https://doi.org/10.7554/eLife.38407.005

The following video and figure supplements are available for figure 2:

Figure supplement 1. Dependence on the shape of the physical potential, the interaction partners, and noise.

DOI: https://doi.org/10.7554/eLife.38407.006

Figure supplement 2. Changes in cell shapes may reorient apical-basal (AB) polarity.

DOI: https://doi.org/10.7554/eLife.38407.007

Figure supplement 3. Examples of simple systems consisting of only two or six cells (see also Figure 2—video 1).

DOI: https://doi.org/10.7554/eLife.38407.008

Figure 2—video 1. Dynamics for two and six interacting cells.

DOI: https://doi.org/10.7554/eLife.38407.009
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tight adherens junctions form in the plane perpendicular to AB polarity, we introduce the quadruple

product

S1 ¼ p̂i � r̂ij
� �

� p̂j � r̂ij
� �

: (6)

This makes two interacting cells with AB polarity maximally attracted (S1 = 1) if the two apical

sides are next to each other. On the other hand, if apical side of one cell is next to the basal side of

another cell, the two cells will be maximally repulsing (S1 = �1), see Figure 2A.

In case of planar polarization, we define

S2 ¼ p̂i� q̂ið Þ � p̂j � q̂j
� �

; (7)

which makes the attraction maximal if the PCP of two cells are parallel to each other and perpen-

dicular to their AB polarities. In addition, we assume that similarly to AB polarity, two cells with PCP

are maximally attracted if their PCP are parallel and cells have the same kind of pole (e.g. Vangl-

enriched) next to each other,

S3 ¼ q̂i � r̂ij
� �

� q̂j � r̂ij
� �

: (8)

We later show that this assumption makes neighbor exchange on a sheet possible and results in

CE. However, unlike with tight junctions, preferred directional adhesion with PCP is not as well

established. Cells adhere to each other by membrane proteins assembled in adherens junctions just

below the apical surface. Both proteins regulating adherens junctions, for example Smash

(Beati et al., 2018), as well as adherence proteins forming adherens junctions can be planar polar-

ized, for example Bazooka, E-cadherins (Simões et al., 2010; Tamada et al., 2017; Levayer and

Lecuit, 2013; Warrington et al., 2013; Aigouy and Le Bivic, 2016). These indirectly support our

assumption of anisotropic, planar polarized adhesion.

The motion of the cells and their polarities are calculated assuming overdamped dynamics

d�ri

dt
¼�

dVi

d�ri
þh; (9)

d�pi

dt
¼�

dVi

d�pi
þh; (10)

and

d�qi

dt
¼�

dVi

d�qi
þh; (11)

where the �pi and �qi differentiation takes into account the rotation of polarity vectors, and h is a

random uncorrelated Gaussian noise. In practice, we implemented the model in a MATLAB script

(available in the Materials and methods section), where we use the Euler method. We perform the

differentiation along the polarity by differentiating along all three cartesian coordinates (see Model

details in the Materials and methods section). After each time step, we normalize the updated polar-

ity vectors. The above differentiation does not include the change in partners when neighborhood

changes. This is treated as a non-equilibrium step where potential energy can increase (Equation 3).

Biologically, this is similar to cells spending biochemical energy as they rearrange their

neighborhood.

The point particle approximation has been utilized earlier for modeling non-polar cell adhesion in

early blastocyst (Krupinski et al., 2011), slug formation in amebae (Dallon and Othmer, 2004), and

PCP organization in primitive streak formation (Newman, 2008). The main novelty of our approach

is the dynamical coupling of cell positions and polarity orientations (Equation 6–8).

Model implications
One of the implications of the coupling between position and polarity is that in a sheet of cells, turn-

ing AB polarity in one cell will cause a force on its neighbors. In case of two cells (Figure 2—figure

supplement 3 and Figure 2—video 1), the pair relaxes the imposed stress by rotating both the

polarity and their positions. In biological terms, turning AB polarity in one cell (e.g. by apical
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constriction, illustrated in Figure 2—figure supplement 2) of an epithelial sheet will induce bending

of the sheet as is the case with bottle cells in invagination.

The present formulation of PCP has several implications. First, we restrict the effects of PCP to

directed (anisotropic) cell–cell adhesion and do not consider its other possible roles, in for example

asymmetric cell differentiation, thus primarily focusing on its role on CE. Second, in our current for-

mulation, AB polarity and PCP influence each other’s orientation on equal footing (Equation 7).

PCP, however, is typically constrained to the apical plane and thus is expected not to influence the

orientation of AB polarity. Disabling PCP’s effect on AB polarity (see Materials and methods) does

not influence our main results on tube formation and gastrulation. However, the symmetry in polari-

ties is appealing for its simplicity and is indirectly supported by the following experimental observa-

tions: First, cells can acquire PCP without AB polarity present (Baer et al., 2009; Zorn and Wells,

2009). Second, proteins required for AB polarity can be planar-polarized (Warrington et al., 2013;

Aigouy and Le Bivic, 2016; Beati et al., 2018; Choi and Sokol, 2009; Dollar et al., 2005;

Kaplan and Tolwinski, 2010). Third, changes in cell shapes during invagination (e.g. sliding of adhe-

rens junctions and formation of bottle cells) are regulated by PCP in neural tube closure

(Ossipova et al., 2014; Nishimura et al., 2012; Kinoshita et al., 2008), gastrulation in C. elegans

(Lee et al., 2006), sea urchin (Croce et al., 2006), and Xenopus (Choi and Sokol, 2009). These

changes in cell shape effectively reorient AB polarity (Figure 2—figure supplement 2).

Results
We have recently introduced effective representation of AB polarity, and showed that it is sufficient

for capturing spherical trophectoderm in the early blastocyst (Nissen et al., 2017). Expanding on

that work, we here explore how AB polarity supports diverse yet stable and complex morphologies.

Stable complex shapes emerge from randomly polarized cell
aggregates
Adult organismal shapes are stable over long time, maintaining sizes and relative positions of lumens

and folds, despite continual local damages and cell renewal. To test if cellular polarity could enable

such stability in time and to random local perturbations, we first performed a series of tests with AB

polarized cells (Figure 3 and Figure 3—video 1).

When starting a bulk of cells with AB polarities pointing randomly, an initial rapid expansion

(Figure 3A–C) stabilizes into a complex morphology of interconnected channels (Figure 3C–E). The

shape remains unchanged for at least 10 times longer than the initial expansion (Figure 3C–E). The

stability of the shape is illustrated by the time evolution of the average energy per cell (Figure 3F)

that after an initial fast drop converges to a constant value. As expected, this value is higher than

the energy of a hollow sphere (yellow dot in Figure 3F) – a configuration obtained if we start with

radially, instead of random, polarized cells and preserve radial polarization at all times. The observed

behavior is not sensitive to the shape of the potential (Figure 2—figure supplement 1A) but is sen-

sitive to how the neighborhood is defined (Figure 2—figure supplement 1B–D). Rerunning the sim-

ulation in Figure 3 with different initial conditions results in a different stable shape (Figure 2—

figure supplement 1E and Figure 3—figure supplement 1).

The macroscopic features of the shapes are robust to noise (Figure 2—figure supplement 1E–F

and Figure 3—figure supplement 1). While the shapes emerging under high and low noise are not

identical, the relative position and sizes of the majority of channels and lumens are preserved. The

changes caused by noise stem from perturbations during initial expansion stage. If the same level of

noise is applied after the system reached stable state, after time t = 10000, noise does not cause

any major macroscopic changes (Figure 2—figure supplement 1G). The obtained shapes have self-

sealing features, as an initial cut and unwrapping of a section of a surface refolds and seals back into

the original morphology (Figure 3—figure supplement 2A–C). Furthermore, the shapes

(Figure 3D–E) are also robust to overall growth (Figure 3—figure supplement 2D–F) retaining the

same macroscopic features, just scaled to a larger size. Robustness to noise and cell proliferation fur-

ther support the link between polarity and stability of morphologies, for example organ shapes, as

they expand from infant to adult.
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Figure 3. Development of 8000 cells from a compact aggregate starting at time 0. (A) Cells are assigned random apical-basal polarity directions and

attract each other through polar interactions (see Equation 6). (A–D) Cross-section of the system at different time points with red and blue marking two

opposite sides of the polar cells. Cells closest to the viewer are marked red/blue, whereas cells furthest away are yellow/white. (E) Full system at the

time point shown in (D). (F) Development of the number of neighbors per cell (red) and the energy per cell (blue), as defined by the potential between

Figure 3 continued on next page
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The final shapes are robust to noise but sensitive to initial and
boundary conditions
The orientation of polarities in a subpopulation of cells may be set by the environment that the cells

are embedded in, for example signaling molecules deposited into extracellular matrix can influence

orientation of the AB polarity (Overeem et al., 2015) or signals from neighboring cells of a different

type can orient PCP (Chu and Sokol, 2016). We will refer to these constraints as boundary

conditions.

To investigate sensitivity to boundary conditions, we consider three cases where polarities are

fixed at all times and point either radially out from the center of mass (Figure 4A), radially out from

a central axis (Figure 4B), or pointing away from a central plane (Figure 4C). As anticipated, the dif-

ference in symmetries of boundary conditions results in a sphere, a cylinder, or two parallel planes

(Figure 4—video 1). At the same time, in these symmetric cases, the differences in initial conditions

but without imposed boundary conditions are not sufficient to generate different structures; they all

converge to the nested ‘Russian doll’-like hollow spheres (Figure 4D). In development, this high-

lights the importance of the neighboring tissues for defining boundary conditions.

Our results thus support the idea that polar adhesion enables stable and robust macroscopic

shapes. The closest biological parallels would be the complex luminal morphologies emerging in

reaggregation experiments on for example Hydra (Seybold et al., 2016) or in vitro culture of pur-

junkie brain cells (Muguruma et al., 2015). Together with our simulations, these experiments high-

light how stable and complex morphologies can develop in non-proliferating populations from cell

rearrangements alone.

Folding by pressure or rapid proliferation result in different fold-
morphologies
Transitions from spheres to folded shapes are ubiquitous in development. Folds are an important

part of in vivo organ development, and the composition of cell types in the folded organoids is

closer to that in real organs (Greggio et al., 2013). To date, it is unclear what drives the transition

from spheres to folded lumens. One possibility is that it is driven by the mechanical properties of the

matrigel that effectively may place the growing organoid under pressure. Alternatively, data from

3D brain organoids suggests that the rapid cell proliferation leads to the emergence of surface fold-

ing (Li et al., 2017).

The simplicity of our tool allows to explore both of these scenarios. To model dividing cells, we

pick a random cell from the entire population and introduce a new daughter cell with inherited

polarity direction placed in a random location a half cell radius away from the mother cell. This event

introduces dynamic perturbation by locally increasing cell density and requires some time to relax

back to equilibrium. If proliferation is slow, and the time between two cell divisions anywhere in the

system is longer than relaxation time of the whole system (the time it takes to reach equilibrium), the

system approaches global equilibrium and will expand as a sphere. However, if proliferation is

increased, the system will be pushed out of equilibrium and folds will emerge (Figure 5A, Materials

and methods). In more quantitative terms, our forces are such that a single cell can move up to 0.2

Figure 3 continued

neighbor cells in Figure 2. Dark colors show the mean over all cells while light-shaded regions show the cell–cell variations. The yellow dot marks the

energy for a hollow sphere with the same number of cells. See Figure 3—video 1 for full time series. In Figure 2—figure supplement 1E–G and

Figure 3—figure supplement 1, we study how the final morphology depends on noise. In Figure 3—figure supplement 2, we show how the outer

surface self-seals, and that the shape is maintained when cells divide.

DOI: https://doi.org/10.7554/eLife.38407.010

The following video and figure supplements are available for figure 3:

Figure supplement 1. The final shapes are more sensitive to initial polarities than to noise.

DOI: https://doi.org/10.7554/eLife.38407.011

Figure supplement 2. The complex morphology in Figure 3 self-seals and is robust to overall system growth.

DOI: https://doi.org/10.7554/eLife.38407.012

Figure 3—video 1. An aggregate of 8000 cells with initial random polarities unfolds into a stable complex morphology.

DOI: https://doi.org/10.7554/eLife.38407.013
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Figure 4. Different morphologies can be obtained by varying boundary conditions (Figure 4—video 1). (A) A hollow sphere emerges if polarities are

fixed and initially point radially out from the center of mass. (B) A hollow tube is obtained if polarities point radially out from a central axis. (C) Two flat

planes pointing in opposite directions are obtained if polarities point away from a central plane. (D) For all three initial conditions (A–C), if the polarities

are allowed to change dynamically and the noise is high (h = 100 compared to h = 10�1 in A–C), the resulting shape consists of three nested ‘Russian

doll’-like hollow spheres that will never merge due to opposing polarities. In contrast to the random initial condition in Figure 3, the initial conditions in

(D) are symmetric.

DOI: https://doi.org/10.7554/eLife.38407.014

The following video is available for figure 4:

Figure 4—video 1. Dynamics when the polarities have restricted orientations.

DOI: https://doi.org/10.7554/eLife.38407.015
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cell diameter per time unit. For cells that divide every 1000 time units, the transition to non-equilib-

rium buckling happens when the system has grown to about 5000 cells (Figure 5—video 1).

As cells divide faster, our simulations predict a transition from a smooth spherical shell to an

increasingly folded structure with multiple pronounced folds, in line with the observation of brain

organoids proliferating at different rates (Li et al., 2017). In comparison with the model for cortical

convolutions by Tallinen et al., 2016 in which folding is a result of expanding cortical sheet adhered

to the non-expanding white matter core, our mechanism does not require a bulk core. Instead folds

emerge in a fast-expanding sheet when the growth is faster than the global relaxation to dynamical

equilibrium.

While we find that the external pressure is not necessary for folding, pressure alone can also drive

folding (Figure 5B, Materials and methods). However, this scenario contradicts the observation that

pancreatic organoids can grow as spheres or folded morphologies in gels with the same stiffness

but different media composition (Greggio et al., 2013).

In principle, both scenarios may contribute to folding, but visually the fold morphologies are dif-

ferent. To differentiate between the two, we have quantified the final folded structures in terms of

their local minima (Figure 5, Materials and methods, see also Figure 5—video 1). Our simulations

predict that in the pressure-driven case, the number of local minima will reach an upper limit as

Figure 5. The number of complex folds in a growing organoid depends on the generation time and the pressure from the surrounding medium

(Figure 5—video 1). (A) Number of local minima as a function of 1/(generation time), tG
�1. In silico organoids grow from 200 cells up to 8000, 12,000,

or 16,000 cells with different generation times and no outer pressure. (B) Number of local minima as a function of pressure, P. In silico organoids grow

to the same size with the same 1/(generation time), tG
�1 = 1.4�10�4 but different outer pressure. The images illustrate the 16,000 cells stage. Blue dots

mark the average, while light shaded regions show the SEM based on triplicates. See also Figure 5—figure supplement 1 for additional

measurements on the differences between rapid growth and pressure.

DOI: https://doi.org/10.7554/eLife.38407.016

The following video and figure supplement are available for figure 5:

Figure supplement 1. Organoids grown under external pressure have deeper and longer folds compared to organoids grown with rapid cell

proliferation.

DOI: https://doi.org/10.7554/eLife.38407.017

Figure 5—video 1. In silico organoids grown from 200 up to 16,000 cells.

DOI: https://doi.org/10.7554/eLife.38407.018
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organoids increase in size (Figure 5B). In the case of out-of-equilibrium proliferation, new folds can

continue forming as organoids grow (Figure 5A). Increased proliferation causes more and shallower

folds. These folds are different than obtained with pressure which causes fewer but deeper minima.

Quantitatively, both the depth and the horizontal extension of the folds are about double as large

with pressure than with growth-induced folding (Figure 5—figure supplement 1).

PCP enables convergent extension and robust tubulogenesis
Despite the numerous evidences supporting the role of PCP in tubulogenesis, it remains unresolved

whether oriented cell division or the extent of CE controls tube length and width (Karner et al.,

2009; Carroll and Yu, 2012). It is also debated if it is important for the tubes to maintain regular

shape, or if it is only important for tube initiation and growth (Kunimoto et al., 2017).

The simplicity of our approach allows us to address these questions by introducing cell–cell inter-

actions through PCP. This term favors front-rear cell alignment in the interaction potential with only

two additional parameters: the strength of the orientational constraint of AB polarity with respect to

PCP, l2, and the strength of PCP, l3 (see Equations 4–8). For simplicity, we focus on the stability

(ability to maintain regular diameter over time) and tube morphogenesis in systems without cell

division.

Inducing PCP in a spherical lumen leads to two significant events. First, independent of initial ori-

entation, after some transient time PCPs becomes globally ordered and point in direction parallel to

an emerging equator that self-organizes around the sphere (inset in Figure 6). This arrangement has

the lowest energy. Second, cells start intercalating along the axis perpendicular to PCP orientation,

gradually elongating the lumen (Figure 6—video 1). During intercalations, cells exchange their

neighbors through T1-like transitions as reported experimentally, Figure 6—figure supplement 3

(Nishimura et al., 2012; Sanchez-Corrales et al., 2018). The intercalations along the axis continue

until the force balance between AB polarity and PCP is restored at a new equilibrium. Thus, our

model predicts that the strength of PCP (l3) relative to AB polarity (l1) determines the width and

the length of the tube (Figure 6). We obtain similar results if we constrain PCP to always remain in

the apical plane and thus does not allow PCP to reorient AB polarity (Figure 6—figure supplement

1, Materials and methods). Note, that this result is very different in nature from the tube presented

in Figure 4B as both AB polarity and PCP can now reorient in each cell at any time.

These results support the observations that stable tubes can emerge without cell proliferation. In

addition, when first the tube is formed, loss of PCP does not lead to cyst formation as recently

shown by Kunimoto et al. (2017). However, localized cysts could result if the lumen is initialized

with varying strength of PCP along the axis (Figure 6—figure supplement 2).

Two polarities are sufficient to explain major features of sea urchin
gastrulation
Currently invagination in neurulation and gastrulation is understood and quantitatively modeled as a

process driven by changes in cell shapes or the mechanical properties of cells with AB polarity

(Rauzi et al., 2013; Tamulonis et al., 2011; Misra et al., 2016; Hočevar Brezavšček et al., 2012).

This process is often assumed to be driven by apical constriction and decoupled from the eventual

tube formation and elongation. However, emerging data suggests that PCP drives both invagination

and tube elongation (Nishimura et al., 2012; Croce et al., 2006; Long et al., 2015) likely because

apical constriction is controlled by PCP (Ossipova et al., 2014; Nishimura et al., 2012; Croce et al.,

2006) and cell intercalations, similar to those in CE, contribute to invagination (Nishimura et al.,

2012; Rembold et al., 2006; Sanchez-Corrales et al., 2018).

To probe the limits of our approach, we investigated if AB polarity, PCP, and boundary conditions

reminiscent of posterior organizer (Loh et al., 2016) are sufficient to recapitulate the main stages of

sea urchin gastrulation: invagination, tube formation, elongation (by CE), and finally merging of the

gastrula tube with the pole opposite to invagination site.

The current understanding is that sea urchin gastrulation consists of primary invagination, driven

by swelling of the inner layer of extracellular matrix beneath invaginating cells (Lane et al., 1993),

and formation of a ring of bottle cells due to apical constriction (Kimberly and Hardin, 1998), and

secondary invagination where tube elongates due to CE (Lyons et al., 2012). PCP is necessary for
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both invagination, possibly through its effect on apical constriction in bottle cells (Nishimura et al.,

2012), and tube extension (Croce et al., 2006).

Motivated by these observations, we set boundary condition such that PCP of the invaginating

cells are oriented around the anterior-posterior (top-bottom) axis, and are always in the apical plane.

This constrain on PCP orientation allows for CE. While this particular configuration is not docu-

mented, it is consistent with observed effects of WNT orienting PCP within the apical plane
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Figure 6. The length and width of tubes are set by the strength of planar cell polarity (PCP, l3). For each value of l3, we initialize 1000 cells on a hollow

sphere with PCP whirling around an internal axis (PCP orientation marked by cyan arrows in the top-left inset). Semi-major axis (dark blue) and semi-

minor axis (light blue) are measured at the final stage (Materials and methods). Images show the final state. Throughout the figure, l2 = 0.5 and l1 = 1 -

l2 - l3. The animated evolution from sphere to tube is shown in Figure 6—video 1. See also Figure 6—figure supplement 1 where we show that

tubes also form when we disable the direct influence of PCP on apical-basal polarity, and Figure 6—figure supplement 2 where we vary the degree of

PCP along the axis of the tube. In Figure 6—figure supplement 3, we show that cell intercalations result in experimentally reported T1 neighbor

exchanges during convergent extension.

DOI: https://doi.org/10.7554/eLife.38407.019

The following video and figure supplements are available for figure 6:

Figure supplement 1. Removing the influence of planar cell polarity (PCP) on apical-basal (AB) polarity.

DOI: https://doi.org/10.7554/eLife.38407.020

Figure supplement 2. A lumen forms inside a developing tube in areas that lack planar cell polarity (PCP).

DOI: https://doi.org/10.7554/eLife.38407.021

Figure supplement 3. T1 exchanges occur during sphere–tube transition.

DOI: https://doi.org/10.7554/eLife.38407.022

Figure 6—video 1. Model of tubulogenesis.

DOI: https://doi.org/10.7554/eLife.38407.023

Nissen et al. eLife 2018;7:e38407. DOI: https://doi.org/10.7554/eLife.38407 13 of 25

Research article Developmental Biology Physics of Living Systems

https://doi.org/10.7554/eLife.38407.019
https://doi.org/10.7554/eLife.38407.020
https://doi.org/10.7554/eLife.38407.021
https://doi.org/10.7554/eLife.38407.022
https://doi.org/10.7554/eLife.38407.023
https://doi.org/10.7554/eLife.38407


(Humphries and Mlodzik, 2018). Second, we simulate the combined effect of bottle cells (Fig-

ure 2—figure supplement 2) and bending by swelling of the extracellular matrix by applying an

external force, F, on AB polarity (see Materials and methods). This force gradually reorients AB

polarity away from the anterior-posterior axis, thus leading to bending of the epithelial sheet. The

effect is maximal for cells closest to the anterior-posterior axis. This external force is a phenomeno-

logical description aiming at capturing the observed effects of how change in AB polarity results in

tissue bending and does not aim at capturing mechanisms driving the reorientation of AB polarity.

As a result, cells start to rearrange, the bottom flattens (Figure 7B) and bends inward

(Figure 7C). Subsequently, the CE-driven by PCP causes the invaginated cells to rearrange, tube

elongates, and merges with the top of the sphere (Figure 7F and Figure 7—video 1). In line with

experimental observations, the tube elongates due to cells moving in the tube (Martik and McClay,

2017).

A B C

D E F

Figure 7. External constraints on apical-basal (AB) polarity and planar cell polarity (PCP) can initiate invagination and drive gastrulation in sea urchin.

(A) The lower third of the cells in a blastula with AB polarity (apical is blue–white, basal is red–orange) pointing radially out acquire PCP (cyan–green) in

apical plane pointing around the anterior-posterior (top-bottom) axis (as in the inset to Figure 6). (B) Flattening of the blastula and (C) invagination

occur due to external force reorienting AB polarity (Materials and methods). (D–E) Tube elongation is due to PCP-driven convergent extension and (F)

merging with the top of the blastula happens when the tube approaches the top. Throughout the simulation, l1 = 0.5, l2 = 0.4, and l3 = 0.1 for the

lower cells while the top cells have l1 = 1 and l2 = l3 = 0. For full time dynamics see Figure 7—video 1. In Figure 7—figure supplement 1, we

consider alternative scenarios of sea urchin gastrulation and and neurulation.

DOI: https://doi.org/10.7554/eLife.38407.024

The following video and figure supplement are available for figure 7:

Figure supplement 1. Directed changes in the direction of planar cell polarity (PCP) may drive invagination in gastrulation and neurulation.

DOI: https://doi.org/10.7554/eLife.38407.025

Figure 7—video 1. Model of sea urchin gastrulation.

DOI: https://doi.org/10.7554/eLife.38407.026
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The contribution of extracellular matrix swelling is specific to sea urchin invagination. As bottle

cells alone are sufficient to drive invagination in other systems, we have tested a cell-intrinsic sce-

nario where AB polarities of bottle cell neighbors prefer to be tilted towards each other (by e.g.

modifying the potential in Equation 6 to capture AB polarities as in Figure 2—figure supplement

2, unpublished results). This also resulted in successful invagination.

Several observations suggest that radial intercalation movements towards the center of invagina-

tion may drive tissue bending (Sanchez-Corrales et al., 2018; Panousopoulou and Green, 2016;

Rembold et al., 2006; Chung et al., 2017). When tested in our model, PCP alone (omitting external

or cell-intrinsic reorientation of AB polarity) results in exvagination and tube elongating outside of

the sphere (this is more energetically favorable than extending inwards). A similar, exogastrulating,

phenotype was observed in a PCP mutant (Long et al., 2015). While the similarity may be acciden-

tal, it is possible that this mutation abrogates PCP-driven apical constriction (Ossipova et al., 2014;

Nishimura et al., 2012) and since cellular apices face outside, abrogating apical constriction elimi-

nates the bias in direction of tube formation. We have also tested the consequences of apical con-

striction (reorienting AB polarity) in the model without PCP and while this was sufficient for

invagination, the cavity remained spherically symmetric and failed to form a tube.

Discussion
Despite the stunning diversity and complexity of morphologies, the same concepts seem to emerge

across organismal development. One of them is the link between local, cellular, and global, organs/

whole organism, symmetry breaking. We know, from experimental and, to a lesser degree, theoreti-

cal work that cellular polarity is essential for forming axis, complex folded sheets, and intercon-

nected tubes (Figure 1—figure supplement 1). What we do not know is why are these shapes so

stable, and where do the differences between species and organs come from. To understand the dif-

ferences, we typically compare genes or gene regulatory networks, thus limiting our understanding

to analog processes within a few related species.

Phenomenological description bridges cell polarity to macroscopic
morphologies
To address the origins of morphological diversity and stability across species and organs, we focused

on a phenomenological description of polarized cell–cell interactions. This allowed us to bridge local

single-cell symmetry breaking events to global changes in morphologies spanning tens of thousands

of interacting cells. With this tool at hand, we find that with only a few parameters, we can recapitu-

late the two global symmetry breaking events: formation of epithelial sheets and folds by cells with

AB polarity, and emergence of global axial symmetry (tubes) among cells with PCP.

Remarkably, our results show that interactions among AB polarized cells lead to stable morpholo-

gies, that after initial relaxation remain indefinitely in their final configuration. The morphologies are

robust to noise, growth, and local damage (Figure 3—figure supplement 2). These results may

explain how organs and embryos preserve their architecture while growing. Polar cell–cell interac-

tions not only provide clue to the morphological stability, but also point to a simple explanation to

the origin of the diversity. We find that the exact morphological details are defined by initial condi-

tions, for example initial positions and orientation of polarities, and boundary conditions, for exam-

ple polarities restricted to certain direction for a fraction of the cells. It is thus tempting to speculate

that diverse shapes do not require multiple interacting morphogen gradients, but can be a result of

differences in initial and/or boundary conditions: as for example presence of yolk cells at start and

boundary constraints by vitelline membrane (Schierenberg and Junkersdorf, 1992; Wu et al.,

2010).

The diversity of shapes and forms is further enriched by a second symmetry breaking event, PCP,

oriented perpendicular to AB polarity. Within our phenomenological framework, addition of PCP

component is simple, and requires only two additional parameters: one favoring perpendicular ori-

entation of AB polarity and PCP within a cell, and another, favoring parallel PCP alignments between

neighbor cells. These constraints are the coarse-grained representation of the well-established

experimental and computational results on intracellular symmetry breaking events and global order-

ing of planar polarities mediated by cell–cell coupling (Le Garrec et al., 2006;

Amonlirdviman et al., 2005; Wang et al., 2006). The first constraint allowed formation of axial
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symmetry and in combination with AB polarity, stable tubes, with length and diameter remaining

constant with time. The second constraint resulted in cell rearrangements and intercalations consis-

tent with the cell-autonomous CE typically associated with PCP. The patterns of neighbor exchanges

during cell-rearrangements are in line with the ubiquitous T1 exchanges through formation and reso-

lution of four cell vertex, Figure 6—figure supplement 3 (Nishimura et al., 2012; Sanchez-

Corrales et al., 2018). The mechanism of the CE in our model is in line with the results by ‘filopodia

tension model’ where elongated structures of many cells emerge from local cell–cell interactions in a

direction defined by PCP (Belmonte et al., 2016). The presented formulations of our model cap-

tures only some of the known events contributing to CE and does not include PCP-driven changes in

cell shape mediated by for example apical constriction (Nishimura et al., 2012) or contribution of

external forces (Lye and Sanson, 2011).

Combining AB polarization and a local induction of PCP in a subpopulation of cells was sufficient

to obtain main stages of sea urchin gastrulation: invagination, tube formation, and elongation

through CE as well as merging of the tube with the animal pole at the top of the blastula. It is impor-

tant to notice that the model for gastrulation uses an external force (Equation 25) acting on AB

polarity, and the model for neurulation uses an imposed external constraint on PCP. This is not fully

satisfying, and suggests an extension of the model to capture tissue bending induced by changes in

cell shapes at the edge of the region that invaginates.

The existing in silico models treat invagination and CE-driven tube elongation as independent

processes (Figure 1—figure supplement 1). Recent data, however, suggests that multiple mecha-

nisms (intracellular apical constriction, intercellular directed cell division and cell intercalations, and

supracellular actomyosin cables) act simultaneously and contribute to both invagination and tubulo-

genesis (Chung et al., 2017; Nishimura et al., 2012; Ossipova et al., 2014). Within our approach

apical constriction (modeled as reorientation of AB polarity) and CE can act in parallel (Figure 7). It

will be interesting to parallel recent experimental work (Chung et al., 2017) and computationally

investigate how a combination of intra-, inter- and supracellular mechanisms contribute to the

robustness of tubulogenesis, and to what extent the model can capture the range of observed

phenotypes.

It has been proposed that the above mechanisms may all be coordinated by PCP

(Nishimura et al., 2012). Besides the reported molecular links, a simple logic suggests that these

mechanisms cannot be isotropic as in this case the initial bending will result in spherical structures.

Thus, apical constriction, cell intercalations, and actomyosin cables have to be anisotropic (planar

polarized) in directions consistent with the eventual tube orientation. This anisotropy is reported for

both ‘wrapping’ tubes forming parallel to the epithelial plane, for example neurulation

(Nishimura et al., 2012), and ‘budding’ tubes forming orthogonally to the epithelial plane, for exam-

ple salivary glands (Chung et al., 2017; Sanchez-Corrales et al., 2018).

As organizing signals such as WNT can induce and orient PCP (Chu and Sokol, 2016) within the

apical plane, we asked if it is in principle possible to design PCP constraints (not limited to the apical

plane) that would result in ‘wrapping’ and ‘budding’. First, pointing PCP out of the plane was suffi-

cient for a sheet of cells to bend (Figure 7—figure supplement 1). This is because in our formula-

tion, PCP can drive reorientation of AB polarity and that in its turn is able to bend the sheet

(Figure 7). Both ‘budding’ and ‘wrapping’ were qualitatively captured by the model when the axial

and radial anisotropy were set by constraining orientation of PCP for cells within a circle (‘budding’

in sea urchin) and two stripes of cells (mimicking hinge points in neurulation ‘wrapping’). While CE

was needed for proper tube forming in sea urchin example, the tube formed without CE in neurula-

tion (Figure 7—figure supplement 1).

Thus, the simulations suggest that ‘wrapping’ in neurulation and gastrulation in Drosophila (Fig-

ure 7—figure supplement 1) vs. ‘budding’ in sea urchin and organogenesis (Andrew and Ewald,

2010; Zegers, 2014) may be outcomes of different constraints imposed on PCP. While it is intrigu-

ing to speculate that PCP may be oriented out of epithelial plane directly by organizing signals, this

may also be an indirect effect of a sequence of intermediate steps. As the organizing signals not

only induce and orient PCP but also drive apical constriction (effectively reorienting AB polarity) the

PCP may be gradually oriented out of the original plane of epithelium by the following sequence of

events: PCP fi apical constriction fi tilt in AB polarity fi tilt in apical plane fi PCP out of original

epithelial plane. This less precise but simpler interpretation highlights the fact that PCP may drive

many of the alternative mechanisms of tubulogenesis and shifts the focus from the differences in
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mechanisms driving tubulogenesis to the differences in boundary conditions – a set of constraints

imposed on cell polarities by neighboring tissue (e.g. notochord in neurulation and organizer in

gastrulation).

Testable predictions
In addition to our conceptual findings, we propose three testable predictions. First, we predict that

two potential mechanisms behind the emergence of folds in pancreatic organoids – matrigel resis-

tance and rapid, out-of-equilibrium, cell proliferation – will result in distinct morphologies. Our

results suggest that in case of rapid proliferation, the growing structure will develop many shallow

folds close to the surface which later tend to deepen. In contrast, external pressure causes fewer but

deeper and longer folds (Figure 5—figure supplement 1). And further, as organoids grow in size,

the number of folds will reach an upper limit when under pressure, however, in case of rapid prolifer-

ation, the number of folds will keep growing (Figure 5). Visual inspection of published morphologies

seems to support the out-of-equilibrium growth (Greggio et al., 2013; Li et al., 2017). To assess if

the growth is out-of-equilibrium in 3D organoids, one can quantify the distributions of cell shapes

(Cerruti et al., 2013). Our model thus predicts that quantitative counting of folds and measurements

of the fold depth and length relative to the size of the growing structure may discriminate between

the alternative hypothesis. Quantification of the folds can be done in in vitro organoids by either

phase or confocal fluorescence microscopy of whole-mount immunostained samples (Greggio et al.,

2013; Li et al., 2017). The fold depth and length can be quantified with the same approach as

applied to simulated shapes (Materials and methods) in binarized images of the 3D organoid surfa-

ces. As oganoids cannot be cultured without gel supporting 3D growth, it will be necessary to vary

both gel stiffness and generation time to uncouple their respective contribution to the folding. The

work by Little, 2017 shows that in brain organoids generation time can be both slowed down and

speeded up by either genetic manipulation or by adding small molecule inhibitors of pathways regu-

lating cell proliferation. Unfortunately, changing stiffness of matrigel also changes its biochemical

composition and may affect cell proliferation and differentiation. One will have to turn to synthetic

hydrogels, where it is now possible to uncouple mechanical and biochemical clues (Gjorevski et al.,

2016). To illustrate possible applications of our approach, we have only focused on two out of sev-

eral possible mechanisms that may contribute to folding. The other likely alternative is that folding

may result from differences in biomechanical interactions or generation times characteristic to the

different cell types. These alternative scenarios are straightforward to consider in our model and will

be an exciting venue to explore when more quantitative data on differences in organoid morpholo-

gies is available.

Our second prediction is that in case of tubes formed by non-proliferating cells, the length and

width of the tubes are controlled by the relative strength of AB polarity and PCP. This result calls for

quantification of adhesion proteins along the AB polarity and PCP axes. In PCP mutants with shorter

and wider tubes, one would expect less planar polarization in adherens junctions and actomyosin,

for example larger spread compared to wild type in their orientation quantified relative to the tube

axis (Nishimura et al., 2012). Alternatively, the balance between AB polarity and PCP can be altered

by weakening AB polarity, for example mutating tight junction proteins should result in longer tubes.

A similar phenotype has already been reported for Drosophila tracheal tube (Laprise et al., 2010).

With the recent advancements in in vitro systems of tubulogenesis, allowing for easy genetic manip-

ulations and more amenable for quantitative imaging, it may in principle be possible to relate the

extent of planar anisotropy in PCP mutants and strength of AB adhesion in tight junction mutants

with tube length and diameter. The existing coupling between PCP and AB polarity may, however,

make it challenging to tweak one polarity at a time.

Our third, and probably most challenging to test, prediction is on the conditions differentiating

between tubes forming perpendicular (e.g. sea urchin gastrulation) or parallel (as in Drosophila gas-

trulation or neurulation) to the plane of epithelium. We predict that the outcome will be defined by

the orientation of PCP in the invaginating region and the geometry of the boundaries (circular for

budding and axial for wrapping) set by for example WNT organizing signals. Recent development in

imaging localization of PCP complexes in single cells (Wu et al., 2013; Chu and Sokol, 2016;

Minegishi et al., 2017; Habib et al., 2013) allows monitoring localization of PCP complexes, and

thus PCP orientation, in individual cells. By placing WNT-soaked (Habib et al., 2013) beads or WNT-

secreting cells (Chu and Sokol, 2016) one can vary PCP orientation in the cells at the epithelial
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boundary facing WNT and test for the direction of the epithelial bending and possibly tube

formation.

Our approach is by purpose phenomenological and by its nature cannot make predictions about

specific molecular details. In all cases, we do not see our simulations as finalized predictions, but

rather as pointing in the most promising direction for further exploration of these complex develop-

mental processes. Our setup easily allows for changes as we learn more. The proposed tool should

be used in close collaboration with gained experimental knowledge on initial conditions, cell genera-

tion times and differentiation processes where polarities play a central role.

Our results open for a series of biological generalizations both in development and diseases. On

one hand, we now may be able to explain and unify the apparently very distinct morphological tran-

sitions during gastrulation in flies, frogs, fish, mice, and humans by accounting for different initial

and boundary conditions. Our model suggests how a moderate change in expression of polarities

during some critical evolutionary stages could lead to widely different final morphologies. Thereby,

development driven by cell–cell polarity interactions could provide major morphological transitions

from local and transient modulations in polarity.

On the other hand, it becomes possible to think of gastrulation, neurulation, tubulogenesis, and

organogenesis as the same class of phenomena, where the orientation of the tube is guided by local

organizers, and lengths/widths of the tubes are determined by the relative strength of AB polarity

and PCP. At the same time, there is an emerging view that wound healing and cancer are local per-

turbations – for example local loss of cells, dysregulation of cell polarities (Martin-Belmonte and

Perez-Moreno, 2012), proliferation, or autonomously induced organizing signals – of otherwise con-

ceptually the same developmental processes (Humphries and Mlodzik, 2018). The power of our

model is that it allows to address these hypotheses through predictive models for the dynamics of

many cells that interact through combinations of AB polarity and PCP.

Materials and methods
Throughout the paper, we use the Euler method to integrate the ordinary differential equations

stated in the Model section with dt set to 0.1 or 0.2. Lower dt values will give qualitatively similar

results but with increased simulation time. Higher dt values, will result in a collapse of the presented

morphologies. The time unit is arbitrary, and the same throughout the paper.

The noise parameter h = 10�4 where nothing else is stated. Lower noise values will give more

smooth simulations, while h on the order of 100 will result in collapsing shapes (see also Figure 2—

figure supplement 1E–F).

Model details
In our model, we use the following potential to describe the pairwise interaction between cells

Vij ¼ e�rij � S e�rij=b; (12)

where rij is the center–center distance between cell i and cell j, and S is the polarity factor

S¼ l1S1 þl2S2 þl3S3 (13)

Here, l1, l2, and l3 are the strengths of the respective polarity terms which are given as

S1 ¼ p̂i � r̂ij
� �

� p̂j � r̂ij
� �

; (14)

S2 ¼ p̂i� q̂ið Þ � p̂j � q̂j

� �

; (15)

S3 ¼ q̂i � r̂ij
� �

� q̂j � r̂ij

� �

: (16)

The unit vectors p̂i; p̂j and q̂i; q̂j represent the apical-basal polarity and planar cell polarity of cell i

and j. Throughout the paper, b is a constant which we set to 5. In order to use the Euler method, we

need the gradient of Vij differentiated with respect to position, �ri, and the two polarities, �pi and �qi:
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dVij

d�ri
¼ e�rij=b g r̂ij�

l1

rij
r̂ij � p̂j
� �

p̂iþ r̂ij � p̂i
� �

p̂j
� �

�
l3

rij
r̂ij � q̂j
� �

q̂iþ r̂ij � q̂i
� �

q̂j
� �

� �

; (17)

dVij

d�pi
¼ e�rij=b l1 S1p̂i� p̂jþ r̂ij � p̂j

� �

r̂ij
� �

þl2 S2p̂i� q̂i � q̂j
� �

p̂j þ q̂i � p̂j
� �

q̂j
� �� 	

; (18)

dVij

d�qi
¼ e�rij=b l2 S2q̂i� p̂i � p̂j

� �

q̂j þ p̂i � q̂j
� �

p̂j
� �

þl3 S3q̂i� q̂jþ r̂ij � q̂j
� �

r̂ij
� �� 	

: (19)

In order to derive Equations 17, 18, and 19, we have used the following:

d

d�ri
e�rij=b ¼

1

b
e�rij=b r̂ij; (20)

g¼ e�rij b�1ð Þ=b �
S

b
þ

2

rij
l1 r̂ij � p̂i
� �

r̂ij � p̂j
� �

þl3 r̂ij � q̂i
� �

r̂ij � q̂j
� �� �

; (21)

dS1

d�ri
¼

1

rij
r̂ij � p̂i
� �

p̂j þ r̂ij � p̂j
� �

p̂i
� �

� 2 r̂ij � p̂i
� �

r̂ij � p̂j
� �

r̂ij
� �

; (22)

dS1

d�pi
¼

1

pi
p̂j � r̂ij � p̂j

� �

r̂ij� S1p̂i
� �

; (23)

where pi is the length of the polarity of cell i which is equal to one at all times.

Generation time in growing organoids
In Figure 5, the number of cells, N, at a given time, t, is N = 200 exp(ln(2) t/tG) where tG is the gen-

eration time. In these simulations, the AB potential (Equation 6) between cells is set to zero when

the angle between their polarity is larger than p/2.

Modeling resistance from matrigel
In Figure 5, we model resistance from the matrigel by imposing a surface force pointing toward the

center of mass. The potential of the pressure in the growth medium is given by

VM ¼�
Pr2

2rmax
(24)

where P is the stiffness of the medium, r is distance from the center of mass, and rmax is the dis-

tance to the cell that is the furthest away from the center of mass. The resulting force will be con-

stant in time at the periphery. Thus, all cells on a growing sphere will be exposed to a force of equal

size. However, cells that end up deep inside a folded morphology will experience weaker resistance.

Quantification of the local minima
In Figure 5, the number of local minima is defined as the number of cells that do not have any neigh-

bor cells that are closer to the center of mass than themselves, and at the same time have an aver-

age angle between their AB polarity and their neighbor cells displacement vector that is less than p/

2.

Measuring the tube length and width
In Figure 6, the semi-minor and semi-major axes correspond to the half-width and half-length of the

tubes, respectively. As cells on opposite sides of a tube have AB polarity pointing in opposite direc-

tions, we approximate the semi-major and semi-minor axes, by finding the half of the maximum and

minimum distance between two cells with AB polarity pointing in opposite directions.

Nissen et al. eLife 2018;7:e38407. DOI: https://doi.org/10.7554/eLife.38407 19 of 25

Research article Developmental Biology Physics of Living Systems

https://doi.org/10.7554/eLife.38407


Modeling cells with different polarities
In the gastrulation simulation (Figure 7), each cell is assigned a specific value of polarity strengths

(l1,i, l2,i, and l3,i). We define the mutual interaction strength between a pair, i and j, of cells in Equa-

tion 4 with different polarity strengths by setting l1 = mean(l1,i, l1,j), and l2 = mean(l2,i, l2,j) as well

as l3 = mean(l3,i, l3,j). This choice makes sure that two neighbor cells interact with a force with equal

magnitude but opposite sign. Furthermore, it makes sure that l1 + l2 + l3 = 1 holds for all cells.

Disabling PCP’s effect on AB polarity
In the model described by Equations 6–9, AB polarity and PCP can influence each other’s orienta-

tion. To constrain PCP to the apical plane and thus disable its influence on AB polarity, we set l2 = 0

when updating AB polarity in time (during the numerical integration of Equation 10).

Modeling bottle cells and apical constriction by an external force
The invagination in gastrulation is implemented by adding an external force, F, that act on the AB

polarity in addition to our usual intrinsic forces from Equation 10

F¼�k r e �x2�y2ð Þ=s2

; (25)

The two parameters are k which is the strength of the force (in Figure 7, k = 0.02), and s which

defines the decline of the gaussian force (in Figure 7, s = 10). ris the unit vector pointing from

x = y = 0 to the cells’ position, and x and y are the respective coordinates of the cells. This force is

applied on the AB polarity and bends the orientation of the polarity away from a z-axis (the anterior-

posterior axis).

MATLAB script
MATLAB script to generate and visualize data. MATLAB R2016b or newer is required together with

the Statistics and Machine Learning Toolbox. In addition, the Parallel Computing Toolbox is required

if the PAR parameter in the basic script is set to 1. The input folder contains initial conditions for

three standardized systems. Bulk systems have neither apical-basal (AB) polarity nor planar cell

polarity. Plane and shell systems have only AB polarity. ‘N’ in the file names gives the number of cells

in the system. The initial polarity directions can be modified on line 4–5 in the basic.m file. Inside this

file, it is also possible to set the degree of noise (h), the size of the time steps (dt), and the relation

between the polarity strengths (l1, l2, and l3). The parameter inc is used to speed up the simula-

tions by only applying the neighborhood function to the nearest 100 neighbors. Generated data is

saved in the output folder, and the visualization script is in a separate folder.
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